Object-Oriented Remote Sensing Approaches for the Detection of Terrestrial Impact Craters as a Reconnaissance Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Preparation
2.2. Optimum Scale Parameter Selection for Impact Crater Detection
2.3. Random Forest Model for Terrestrial Impact Crater Detection
Type | Parameters | Brief Description | References |
---|---|---|---|
Topographic | Elevation | Express the height of an object below or above sea level | [48] |
Slope | Express the steepness of the surface of an object | [49] | |
Aspect | Express the orientation of slope of an object | [50] | |
Hillshade | Illustrate the impression of the 3D surface of an object from the point of view of the sun | [50] | |
Standard deviation of elevation | Express the variability of elevation within the object | [51] | |
Standard deviation of slope | Express the variability of slope within the object | [51] | |
Terrain Relief | Represent the difference between maximum and minimum elevation within the object | [52] | |
Geometric | Length/Width ratio | Represent the relative comparison between the length and width of an object | [48] |
Elliptical fit | Shape descriptor quantifies how much an area of an object fits the shape of an ellipse with a similar area | [48] | |
Circularity | Shape descriptor that quantifies the roundness of an object: (Perimeter2)/(4π × Area) | [53] | |
Texture (GLCM) | Homogeneity | Estimate the similarity between the pairs of pixels in the image object | [54] |
Dissimilarity | Estimate the difference between the pairs of pixels in the image object | ||
Angular Second Moment (ASM) | Estimate the amount of homogeneity or uniformity within the image object | ||
Contrast | Measure the local intensity variation in the image object | ||
Correlation | Measure the linear dependency between the pairs of pixel values in the image object | ||
Entropy | Measure the unpredictability or randomness of the relationship between the pixels in the image object |
3. Results and Discussion
3.1. Selection of Optimal Scale Parameter for Impact Crater Segmentation
3.2. RF Classification of Terrestrial Impact Craters and Other Topographic Features
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Impact Crater | Country | Latitude | Longitude | ID | Diameter (km) | Exposure | Target Lithology | Type | Ages (ma) |
---|---|---|---|---|---|---|---|---|---|
Dhala | India | 25.298 | 78.142 | I01 | 12 | ex, pc | Crystalline | C | 1700–2500 |
Sierra Madera | USA | 30.596 | −102.912 | I02 | 12 | ex, pc | Sandstone | C | 100 |
Gweni-Fada | Chad | 17.421 | 21.755 | I03 | 14–22 | ex, pc | Sandstone | C | 355 |
Bigach | Kazakhstan | 48.568 | 82.036 | I04 | 8 | ex, pc | Mixed | C | 3–5 |
Meteor Crater | USA | 35.027 | −111.023 | I05 | 1.2 | ex, pc | Sandstone | S | 0.05 |
Ramgarh | India | 25.335 | 76.624 | I06 | 10.2 | ex, pc | Sandstone | C | 165 |
Cerro do Jarao | Brazil | −30.211 | −56.539 | I07 | 13 | ex, smor | Sandstone | C | 137 |
Connolly Basin | Australia | −23.538 | 124.761 | I08 | 9 | ex, pc | Sandstone | C | 55–75 |
Tenoumer | Mauritania | 22.918 | −10.405 | I09 | 1.9 | ex, pc | Mixed | S | 1.52 |
Piccaninny | Australia | −17.420 | 128.438 | I10 | 7 | ex, smor | Sandstone | C | 360 |
Chogye | SouthKorea | 35.537 | 128.269 | I11 | 7 | ex, pc | Sandstone | C | 0.03–0.06 |
Vargeao Dome | Brazil | −26.805 | −52.164 | I12 | 12.4 | ex | Sandstone | C | 137 |
Mien | Sweden | 56.431 | 14.856 | I13 | 9 | ex, sub | Crystalline | C | 118.7 |
Gow | Canada | 56.453 | −104.482 | I15 | 5 | ex, sub | Crystalline | C | 250 |
Santa Marta | Brazil | −10.167 | −45.233 | I16 | 10 | ex, pc | Sandstone | C | 93 |
Acraman | Australia | −32.017 | 135.450 | I17 | 40–85 | ex, sub | Crystalline | C | 580 |
Gosses Bluff | Australia | −23.817 | 132.308 | I18 | 22 | ex, pc | Sandstone | C | 142 |
Upheaval Dome | USA | 38.433 | −109.928 | I20 | 6 | ex | Sandstone | C | 66–100 |
Foelsche | Australia | −16.676 | 136.784 | I21 | 6 | ex, pc | Sandstone | C | 541–981 |
Jebel Waqf as Suwwan | Jordan | 31.039 | 36.807 | I22 | 6.1 | ex, pc | Sandstone | C | 37 |
Agoudal | Morocco | 31.996 | −5.516 | I24 | 2.8 | ex | Sandstone | C | 0.3 |
Aorounga | Chad | 19.084 | 19.244 | I25 | 12.6–16 | ex | Sandstone | C | 355 |
Decaturville | USA | 37.890 | −92.720 | I26 | 6 | ex, pc | Sandstone | C | 300 |
Bosumtwi | Ghana | 6.500 | −1.408 | I27 | 10.5 | ex, sub | Mixed | C | 1.07 |
Decorah | USA | 43.300 | −91.772 | I29 | 5.6 | pc | Sandstone | T | 460–483 |
Ouarkziz | Algeria | 29.004 | −7.551 | I30 | 3.5 | ex, pc | Sandstone | T | 66 |
Zhamanshin | Kazakhstan | 48.350 | 60.937 | I32 | 14 | ex, pc | mixed | C | 0.75–1.1 |
Oasis | Libya | 24.572 | 24.412 | I33 | 5.2–18 | ex, pc | Sandstone | C | 120 |
Serra da Cangalha | Brazil | −8.082 | −46.857 | I34 | 13.7 | ex | Crystalline | C | 300 |
La Moinerie | Canada | 57.440 | −66.586 | I35 | 8 | ex, sub | Crystalline | C | 400 |
Middlesboro | USA | 36.631 | −83.728 | I36 | 6 | ex | Sandstone | C | 290–300 |
Colonia | Brazil | −23.880 | −46.706 | I37 | 3.6 | ex, pc | Crystalline | T | 5–36 |
Vista-Alegre | Brazil | −25.961 | −52.690 | I38 | 9.5 | ex | Mixed | C | 111–134 |
B.P. structure | Libya | 25.318 | 24.310 | I40 | 3.4 | ex | Sandstone | C | 120 |
Ragozinka | Russia | 58.706 | 61.797 | I41 | 9 | ex, pc | mixed | C | 50 |
Goyder | Australia | −13.477 | 135.040 | I43 | 3 | ex, pc | Sandstone | C | 150–1400 |
Chiyli | Kazakhstan | 49.177 | 57.834 | I44 | 5.5 | ex, pc | Sandstone | C | 5.5 |
Lonar | India | 19.974 | 76.509 | I46 | 1.88 | ex, sub | Crystalline | S | 0.57 |
Wetumpka | USA | 32.525 | −86.176 | I47 | 7 | ex | Crystalline | C | 84 |
Karakul | Tajikistan | 39.067 | 73.433 | I48 | 52 | ex, smor | Mixed | C | 50–5 |
Pantasma | Nicaragua | 13.365 | −85.954 | I49 | 14 | ex | Crystalline | C | 0.8 |
Shunak | Kazakhstan | 47.207 | 72.761 | I50 | 2.8 | ex, pc | Crystalline | S | 34 |
Deep Bay | Canada | 56.415 | −102.983 | I51 | 13 | ex, sub | Crystalline | C | 95–102 |
Crawford | Australia | −34.728 | 139.033 | I53 | 8.5 | ex | Crystalline | C | 32–38 |
Talemzane | Algeria | 33.315 | 4.034 | I54 | 1.75 | ex, pc | Sandstone | S | 0.5–3 |
Xiuyan | China | 40.364 | 123.460 | I57 | 1.8 | ex, pc | Crystalline | S | 0.05 |
Goat Paddock | Australia | −18.348 | 126.677 | I61 | 5 | ex, pc | Sandstone | T | 56–64 |
Tin Bider | Algeria | 27.600 | 5.112 | I62 | 6 | ex, pc | Sandstone | C | 50 |
Clearwater West | Canada | 56.211 | −74.500 | I63 | 32 | ex, sub | Mixed | C | 290–300 |
Clearwater East | Canada | 56.064 | −74.083 | I64 | 24 | ex, sub | Mixed | C | 460–470 |
Spider | Australia | −16.742 | 126.089 | I66 | 13 | ex, smor | Sandstone | C | 573 |
Roter Kamm | Namibia | −27.762 | 16.289 | I67 | 2.5 | ex, pc | Sandstone | S | 5 |
Yilan | China | 46.391 | 129.311 | I69 | 1.85 | ex, pc | Crystalline | S | 0.05 |
Tswaing | SouthAfrica | −25.411 | 28.083 | I70 | 1.13 | ex, sub | Mixed | S | 0.22 |
Shoemaker | Australia | −25.881 | 120.883 | I71 | 30 | ex, pc | Sandstone | C | 1630 |
Brent | Canada | 46.078 | −78.482 | I73 | 3.8 | ex, pc | Crystalline | S | 396–453 |
Ries | Germany | 48.873 | 10.695 | I77 | 26 | ex, pc | Crystalline | C | 15 |
Wolfe creek | Australia | −19.170 | 127.795 | I78 | 0.88 | ex, pc | Sandstone | S | 0.12 |
Cleanskin | Australia | −18.170 | 137.942 | I79 | 15 | ex, pc | Sandstone | C | 540–1400 |
Luizi | D.R. Congo | −10.175 | 28.006 | I65 | 17 | ex | Sandstone | C | 575 |
Carswell | Canada | 58.418 | −109.517 | I82 | 39 | ex, smor | Mixed | C | 481 |
Strangways | Australia | −15.200 | 133.567 | I84 | 25–40 | ex, pc | Mixed | C | 646 |
Sao Miguel do Tapuio | Brazil | −5.617 | −41.388 | I87 | 21 | ex | Sandstone | C | 120 |
Amelia Creek | Australia | −20.858 | 134.883 | I88 | 20 | ex | Mixed | C | 600–1600 |
Mistastin | Canada | 55.891 | −63.311 | I89 | 28 | ex, sub | Crystalline | C | 36.6 |
Charlevoix | Canada | 47.533 | −70.350 | I90 | 55 | ex, sub | Mixed | C | 450 |
Beaverhead | USA | 44.600 | −112.967 | I91 | 60–75 | ex, pc | Mixed | C | 600 |
Araguainha | Brazil | −16.785 | −52.983 | I92 | 40 | ex | Crystalline | C | 252–259 |
Lawn Hill | Australia | −18.693 | 138.652 | I93 | 20 | ex, pc | Sandstone | C | 472 |
Manicouagan | Canada | 51.399 | −68.683 | I94 | 70–100 | ex, sub | Crystalline | C | 214 |
Liverpool | Australia | −12.393 | 134.047 | I81 | 2 | ex, pc | Sandstone | S | 150 |
Tabun-Khara obo | Mongolia | 44.131 | 109.654 | I83 | 1.3 | ex, pc | Sandstone | S | 145–163 |
Ritland | Norway | 59.249 | 6.422 | I39 | 2.7 | ex, pc | mixed | S | 500–540 |
Aouelloul | Mauritania | 20.241 | −12.675 | I45 | 0.39 | ex, pc | Sandstone | S | 3.1 |
Dalgaranga | Australia | −27.633 | 117.289 | I56 | 0.024 | ex, pc | Crystalline | S | 0.27 |
Monturaqui | Chile | −23.928 | −68.262 | I58 | 0.36 | ex | Crystalline | S | 0.663 |
Kalkkop | SouthAfrica | −32.709 | 24.432 | I55 | 0.64 | ex, pc | Sandstone | S | 0.25 |
Amguid | Algeria | 26.088 | 4.395 | I68 | 0.45 | ex, pc | Sandstone | S | 0.1 |
Kamil | Egypt | 22.018 | 26.088 | I19 | 0.045 | ex | Sandstone | S | 0.003 |
Boxhole | Australia | −22.613 | 135.196 | I14 | 0.17 | ex | Crystalline | S | 0.017 |
Whitecourt | Canada | 53.999 | −115.596 | I72 | 0.036 | ex | Sandstone | S | 0.001 |
Henbury | Australia | −24.571 | 133.148 | I23 | 0.18 | ex, pc | Sandstone | S | 0.0042 |
Rio Cuarto | Argentina | −32.871 | −64.183 | I31 | 4.5 | ex | Sandstone | S | 0.11 |
Yallalie | Australia | −30.443 | 115.771 | I59 | 12 | pc | Sandstone | C | 83.6–89.8 |
Presquile | Canada | 49.726 | −74.833 | I74 | 22 | ex, sub | Crystalline | C | 500 |
Macha | Russia | 60.085 | 117.652 | I60 | 0.3 | ex, pc, | Sandstone | C | 0.0073 |
Rock Elm | USA | 44.717 | −92.228 | I28 | 6.5 | ex, pc | Sandstone | C | 410–460 |
Mount Toondina | Australia | −27.945 | 135.359 | I52 | 4 | ex, pc | Sandstone | C | 66–144 |
Kelly west | Australia | −19.933 | 133.950 | I75 | 14 | ex, pc | Sandstone | C | 541 |
Matt Wilson | Australia | −15.506 | 131.181 | I42 | 7.5 | ex | Sandstone | C | 1400–1500 |
Sudbury | Canada | 46.600 | −81.183 | I76 | 180–200 | ex, pc | Crystalline | C | 1849 |
Vredefort | SouthAfrica | −27.009 | 27.500 | I85 | 180–275 | ex, pc | Crystalline | C | 2023 |
Rochechouart | France | 45.831 | 0.782 | I86 | 23 | ex | Crystalline | C | 201 |
Yarrabubba | Australia | −27.183 | 118.833 | I80 | 30 | ex, pc | Sandstone | C | 2246 |
Volcanic Calderas | Country | Latitude | Longitude | D_max | D_min | Type | ID |
---|---|---|---|---|---|---|---|
Toba | Indonesia | 2.580 | 98.830 | 100 | 30 | C | V103 |
Taal | Philippines | 14.010 | 120.998 | 30 | 25 | S | V10 |
Kawah Ijen | Indonesia | −8.119 | 114.056 | 20 | 20 | S | V18 |
Ijen_II | Indonesia | −8.058 | 114.244 | 18 | 17 | S | V19 |
Shikotsu | Japan | 42.751 | 141.317 | 15 | 13 | S | V49 |
Long Valley | USA | 37.717 | −118.884 | 32 | 18 | C | V56 |
Solitario | USA | 29.451 | −103.809 | 16 | 16 | C | V62 |
Rotorua | NewZeland | −38.080 | 176.250 | 20 | 16 | S | V73 |
Crater Lake | USA | 42.930 | −122.113 | 10 | 8 | S | V74 |
Henry’s Fork Caldera | USA | 44.330 | −111.330 | 37 | 29 | C | V77 |
Ngorongoro | Tanzania | −3.177 | 35.580 | 19 | 16 | S | V80 |
Kapenga | NewZeland | −38.089 | 176.273 | ? | ? | C | V92 |
Colli Albani | Italy | 41.754 | 12.700 | 12 | 10 | C | V97 |
Copahue | Chile & Argentine | −37.858 | −71.177 | 10 | 10 | S | V03 |
Paektu Mountain | China & N. Korea | 42.005 | 128.056 | 14 | 12 | S | V07 |
Karymshina | Russia | 54.118 | 159.657 | 25 | 15 | C | V101 |
Aso | Japan | 32.885 | 131.084 | 25 | 18 | C | V17 |
Mount Longonot | Kenya | −1.155 | 36.354 | 12 | 8 | C | V37 |
Valles | USA | 35.870 | −106.570 | 22 | 16 | C | V58 |
Braciano | Italy | 42.316 | 12.174 | 20 | 15 | S | V96 |
Akademia Nauk | Russia | 53.981 | 159.462 | 11 | 11 | S | V98 |
Uzon | Russia | 54.500 | 159.970 | 12 | 9 | C | V99 |
Ayarza | Guatemala | 14.420 | −90.120 | 7 | 5 | S | V08 |
Mount Okmok | USA | 53.468 | −168.175 | 9.3 | 9.3 | C | V09 |
Deriba | Sudan | 12.950 | 24.270 | 5 | 5 | C | V23 |
Toya | Japan | 42.598 | 140.856 | 10 | 9 | C | V48 |
Mount Silali | Kenya | 1.152 | 36.231 | 8 | 5 | C | V59 |
Ilopango | El Salvador | 13.670 | −89.050 | 11 | 8 | C | V60 |
Alcedo | Ecuador | −0.430 | −91.120 | 7.4 | 6.1 | S | V67 |
Mount Aniakchak | USA | 56.864 | −158.151 | 10 | 10 | C | V79 |
Emi Koussi | Chad | 19.851 | 18.538 | 16 | 12 | C | V93 |
Huichapan | Mexico | 20.340 | −99.550 | 10 | 10 | C | V104 |
Sollipulli | Chile | −38.970 | −71.520 | 4 | 4 | S | V15 |
Gadamsa | Ethiopia | 8.356 | 39.181 | 7 | 9 | C | V24 |
Karkar | New Guinea | −4.650 | 145.967 | 5.5 | 3.2 | C | V25 |
Agua de Pau | Portugal | 37.770 | −25.470 | 7 | 4 | S | V26 |
The Barrier | Kenya | 2.320 | 36.587 | 6 | 5 | C | V29 |
Mallahle | Ethiopia | 13.270 | 41.650 | 6 | 6 | C | V34 |
Asavyo | Ethiopia | 13.098 | 41.599 | 12 | 12 | C | V35 |
Suswa | Kenya | −0.915 | 36.457 | 12 | 8 | C | V36 |
Kone | Ethiopia | 8.840 | 39.688 | 6 | 5 | C | V40 |
San Pedro | Mexico | 21.263 | −104.698 | 8 | 8 | C | V46 |
Gallosuelo | NewZeland | −5.200 | 151.240 | ? | ? | S | V51 |
Darwin | Ecuador | −0.180 | −91.280 | 5 | 5 | S | V68 |
Cerro Azul | Ecuador | −0.170 | −91.240 | 5 | 5 | S | V69 |
Sierra Negra | Ecuador | −0.830 | −91.170 | 10 | 7 | S | V71 |
Worf | Ecuador | −0.020 | −91.350 | 7 | 5 | S | V72 |
Cerro Panizos | Argentina | −22.187 | −66.681 | 15 | 15 | C | V75 |
Gadamsa | Ethiopia | 8.350 | 39.180 | 10 | 8 | C | V76 |
Incapillo | Argentina | −27.902 | −68.824 | 6 | 5 | C | V78 |
Olmoti | Tanzania | −3.016 | 35.652 | 6.5 | 6.5 | C | V82 |
Nemurt | Turkey | 38.621 | 42.235 | 8.5 | 7 | S | V91 |
Vico | Italy | 42.120 | 12.230 | - | - | C | V94 |
Montefiascone | Italy | 42.579 | 11.931 | 3 | 3 | S | V95 |
Laslajas | Nicaragua | 12.300 | −85.730 | 7 | 7 | C | V04 |
Krasheninnikov | Russia | 54.593 | 160.273 | 11 | 9 | C | V102 |
Karthala | Comores Island | −11.760 | 43.353 | 4 | 3 | S | V12 |
Ale Bagu | Ethiopia | 13.508 | 40.632 | 3 | 2.1 | C | V13 |
Amealco | Mexico | 20.126 | −100.169 | 11 | 11 | C | V16 |
Numazawa | Japan | 37.450 | 139.579 | 3 | 2 | C | V22 |
Sete Cidades | Portugal | 37.870 | −25.780 | 5 | 5 | S | V28 |
Fantale | Ethiopia | 8.984 | 39.907 | 4 | 3 | S | V39 |
Mauna Loa | USA | 19.479 | −155.603 | 6.2 | 2.5 | C | V41 |
Fernandina | Ecuador | −0.370 | −91.550 | 6.5 | 6.5 | S | V70 |
Embagai | Tanzania | −2.911 | 35.827 | 4 | 4 | S | V81 |
Gorely Khrebet | Russia | 52.558 | 158.027 | 13 | 10 | C | V87 |
Changbaishan | China & N. Korea | 42.005 | 128.058 | 5 | 5 | S | V05 |
Mount Katmai | USA | 58.260 | −154.975 | 10 | 10 | S | V11 |
Towada IV | Japan | 40.500 | 140.900 | 3.5 | 3 | S | V21 |
Furnas | Portugal | 37.770 | −25.320 | 6 | 6 | C | V27 |
Kaguyak | USA | 58.613 | −154.053 | 3 | 2.5 | S | V31 |
Mazama | USA | 58.613 | −154.053 | 10 | 8 | C | V38 |
Villarrica | Chile &Argentine | −39.420 | −71.950 | 9 | 6 | C | V53 |
Aoba (Ambae) | Vanuatu | −15.389 | 167.835 | 2.1 | 2.1 | S | V02 |
Izu-Oshima | Japan | 34.724 | 139.394 | 4.5 | 3.5 | C | V06 |
Ngozi | Tanzania | −9.010 | 33.554 | 3 | 3 | S | V30 |
Pinatubo | Philippines | 15.142 | 120.350 | 2.5 | 2.5 | S | V32 |
Cerro Azul | Chile | −35.653 | −70.761 | 4 | 5 | S | V33 |
Geger Halang | Indonesia | −6.896 | 108.408 | 4 | 4 | C | V44 |
Ceboruco | Mexico | 21.125 | −104.508 | 3.7 | 3.7 | C | V45 |
Mount Meru | Tanzania | −3.247 | 36.748 | 3.5 | 3.5 | C | V52 |
Ikeda | Japan | 31.237 | 130.561 | 5 | 4 | C | V57 |
Coate peque | El Salvador | 13.859 | −89.553 | 5 | 5 | C | V61 |
TianChi | China | 42.007 | 128.054 | 5 | 5 | S | V64 |
Tazawa | Japan | 39.721 | 140.663 | 6 | 6 | S | V65 |
Sakurajima | Japan | 31.578 | 130.661 | 23 | 17 | C | V01 |
Conguillio | Chile | −38.901 | −71.728 | 4 | 3 | S | V14 |
Paka | Kenya | 0.918 | 36.191 | 1.5 | 1.5 | S | V20 |
Mauna Kea | USA | 19.813 | −155.472 | 4.2 | 2.5 | C | V42 |
Poas | Costa Rica | 10.200 | −84.233 | 2.5 | 2.5 | S | V43 |
Kuttara | Japan | 42.500 | 141.180 | 3 | 3 | S | V47 |
Gallosuelo | NewZeland | −5.342 | 151.117 | 13 | 10.5 | C | V50 |
Logo Tromen | Chile-Argentine | −39.931 | −72.028 | 5 | 6 | C | V54 |
Mocho chosheunco | Chile-Argentine | −39.500 | −71.715 | 5 | 4 | C | V55 |
Lake City | USA | 37.955 | −107.391 | 18 | 15 | C | V63 |
Groppo | Ethiopia | 11.715 | 40.232 | 3.8 | 3.8 | C | V66 |
Monduli | Tanzania | −2.868 | 35.949 | 2.9 | 2.9 | S | V83 |
Gela | Tanzania | −2.763 | 35.916 | 3.1 | 3.1 | S | V84 |
Oldeani | Tanzania | −3.297 | 35.449 | 3 | 3 | S | V85 |
Creede | USA | 37.748 | −106.922 | 25 | 20 | C | V86 |
Mutnovsky | Russia | 52.451 | 158.166 | 9 | 9 | C | V88 |
Ksudach | Russia | 51.800 | 157.530 | 7 | 7 | C | V89 |
Opala | Russia | 52.543 | 157.339 | 14 | 12 | C | V90 |
Mary Semyachik | Russia | 54.058 | 159.442 | 10 | 10 | C | V100 |
References
- Bruzzone, L.; Lizzi, L.; Marchetti, P.G.; Earl, J.; Milnes, M. Recognition and detection of impact craters from EO products. Eur. Sp. Agency Spec. Publ. ESA SP 2004, 553E.13B, 85–92. [Google Scholar]
- Ishak, B. Encyclopedic Atlas of Terrestrial Impact Craters; Contemporary Physics; Springer: Berlin/Heidelberg, Germany, 2019; Volume 60, p. 330. ISBN 9783030054496. [Google Scholar]
- Grieve, R.A.F.; Therriault, A.M. Observations at terrestrial impact structures: Their utility in constraining crater formation. Meteorit. Planet. Sci. 2004, 39, 199–216. [Google Scholar] [CrossRef]
- Kennedy, J.; Alanís, R.M. Book Review. Carbohydr. Polym. 2005, 62, 87. [Google Scholar] [CrossRef]
- Schmieder, M.; Kring, D.A. Earth’s Impact Events through Geologic Time: A List of Recommended Ages for Terrestrial Impact Structures and Deposits. Astrobiology 2020, 20, 91–141. [Google Scholar] [CrossRef]
- Le Feuvre, M.; Wieczorek, M.A. Nonuniform cratering of the terrestrial planets. Icarus 2008, 197, 291–306. [Google Scholar] [CrossRef]
- Kenkmann, T. The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more. Meteorit. Planet. Sci. 2021, 56, 1024–1070. [Google Scholar] [CrossRef]
- Crósta, A.P.; Reimold, W.U.; Vasconcelos, M.A.R.; Hauser, N.; Oliveira, G.J.G.; Maziviero, M.V.; Góes, A.M. Impact cratering: The South American record—Part 1. Chem. Der Erde 2019, 79, 1–61. [Google Scholar] [CrossRef]
- Lobpries, T.A.; Lapen, T.J. Remote sensing evidence for a possible 10 kilometer in diameter impact structure in north-central Niger. J. Afr. Earth Sci. 2019, 150, 673–684. [Google Scholar] [CrossRef]
- Reimold, W.U.; Koeberl, C. Impact structures in Africa: A review. J. Afr. Earth Sci. 2014, 93, 57–175. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.P.; Tornabene, L.L.; Ramsey, M.S. Remote Sensing of Impact Craters. Impact Cratering Process. Prod. 2012, 194–210. [Google Scholar] [CrossRef]
- Mansouri Daneshvar, M.R. Remote sensing analysis for the possible impact structure of Lakhčak Crater in southern Afghanistan. Appl. Geomat. 2015, 7, 275–282. [Google Scholar] [CrossRef]
- Scholz, C.A.; Karp, T.; Lyons, R.P. Structure and morphology of the Bosumtwi impact structure from seismic reflection data. Meteorit. Planet. Sci. 2007, 42, 549–560. [Google Scholar] [CrossRef]
- Vasconcelos, M.A.R.; Crósta, A.P.; Molina, E.C. Geophysical characteristics of four possible impact structures in the Parnaíba Basin, Brazil: Comparison and implications. Spec. Pap. Geol. Soc. Am. 2010, 465, 201–217. [Google Scholar] [CrossRef]
- Theilen-Willige, B. Morphometric and Structural Evaluations of Satellite Data from the Bosumtwi Impact Structure and Adjacent Areas in Ashanti, Ghana. Eur. J. Environ. Earth Sci. 2021, 2, 7–14. [Google Scholar] [CrossRef]
- Wang, X.Y.; Luo, L.; Guo, H.D.; Mu, L.L.; Li, C.; Ji, W.; Cai, H. Cratering process and morphological features of the Xiuyan impact crater in Northeast China. Sci. China Earth Sci. 2013, 56, 1629–1638. [Google Scholar] [CrossRef]
- Crósta, A.P.; Kazzuo-Vieira, C.; Pitarello, L.; Koeberl, C.; Kenkmann, T. Geology and impact features of Vargeão Dome, southern Brazil. Meteorit. Planet. Sci. 2012, 47, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Maziviero, M.V.; Vasconcelos, M.A.R.; Crósta, A.P.; Góes, A.M.; Reimold, W.U.; De Carneiro, C. Geology and impact features of Riachão structure, northern Brazil. Meteorit. Planet. Sci. 2013, 48, 2044–2058. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.E.; Gostin, V.A. Geomorphology of the Acraman impact structure, Gawler Ranges, South Australia. Cad. Do Lab. Xeol. Laxe 2010, 35, 209–219. [Google Scholar]
- Vamshi, G.T.; Martha, T.R.; Vinod Kumar, K. An object-based classification method for automatic detection of lunar impact craters from topographic data. Adv. Sp. Res. 2016, 57, 1978–1988. [Google Scholar] [CrossRef]
- Sawabe, Y.; Matsunaga, T.; Rokugawa, S. Automated detection and classification of lunar craters using multiple approaches. Adv. Sp. Res. 2006, 37, 21–27. [Google Scholar] [CrossRef]
- Urbach, E.R.; Stepinski, T.F. Automatic detection of sub-km craters in high resolution planetary images. Planet. Space Sci. 2009, 57, 880–887. [Google Scholar] [CrossRef]
- Salamunićcar, G.; Lonarić, S.; Pina, P.; Bandeira, L.; Saraiva, J. MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets. Planet. Space Sci. 2011, 59, 111–131. [Google Scholar] [CrossRef]
- Masaitis, V.L. Morphological, structural and lithological records of terrestrial impacts: An overview. Aust. J. Earth Sci. 2005, 52, 509–528. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhou, B.; Hsu, C.Y.; Li, Y.; Ren, F. Recognizing terrain features on terrestrial surface using a deep learning model—An example with crater detection. Proc. 1st Work. GeoAI AI Deep Learn. Geogr. Knowl. Discov. GeoAI 2017, 33–36. [Google Scholar] [CrossRef]
- Grieve, R.A.F. Economic natural resource deposits at terrestrial impact structures. Geol. Soc. Spec. Publ. 2005, 248, 1–29. [Google Scholar] [CrossRef]
- Turtle, E.P.; Pierazzo, E.; Collins, G.S.; Osinski, G.R.; Melosh, H.J.; Morgan, J.V.; Reimold, W.U. Impact structures: What does crater diameter mean? Spec. Pap. Geol. Soc. Am. 2005, 384, 1–24. [Google Scholar] [CrossRef]
- Osinski, G.R.; Silber, E.A.; Clayton, J.; Grieve, R.A.F.; Hansen, K.; Johnson, C.L.; Kalynn, J.; Tornabene, L.L. Transitional impact craters on the Moon: Insight into the effect of target lithology on the impact cratering process. Meteorit. Planet. Sci. 2019, 54, 573–591. [Google Scholar] [CrossRef]
- Kenkmann, T.; Poelchau, M.H.; Wulf, G. Structural geology of impact craters. J. Struct. Geol. 2014, 62, 156–182. [Google Scholar] [CrossRef]
- Holohan, E.P.; Schöpfer, M.P.J.; Walsh, J.J. Mechanical and geometric controls on the structural evolution of pit crater and caldera subsidence. J. Geophys. Res. Solid Earth 2011, 116, B07202. [Google Scholar] [CrossRef]
- Geyer, A.; Martí, J. A short review of our current understanding of the development of ring faults during collapse caldera formation. Front. Earth Sci. 2014, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Acocella, V. Regional and local tectonics at Erta Ale caldera, Afar (Ethiopia). J. Struct. Geol. 2006, 28, 1808–1820. [Google Scholar] [CrossRef]
- Thouret, J.C. Volcanic geomorphology-an overview. Earth Sci. Rev. 1999, 47, 95–131. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Paz-Salas, N.; Morante-Carballo, F. Volcanic geomorphology: A review of worldwide research. Geoscience 2020, 10, 347. [Google Scholar] [CrossRef]
- Straumann, R.K.; Purves, R.S. Delineation of valleys and valley floors. Lect. Notes Comput. Sci. Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform. 2008, 5266, 320–336. [Google Scholar] [CrossRef] [Green Version]
- Bamber, E.R.; Goudge, T.A.; Fassett, C.I.; Osinski, G.R. Constraining the formation of paleolake inlet valleys across crater rims. Icarus 2022, 378, 114945. [Google Scholar] [CrossRef]
- Survey USG. USGS [Internet]. Available online: https://earthexplorer.usgs.gov (accessed on 14 December 2021).
- GVB-CSIC. CCDB [Internet]. Available online: https://gvb-csic.es/CCDB/ (accessed on 10 December 2021).
- Trimble. Trimble Documentation: eCognition® Developer User Guide; Trimble Germany GmbH: Munich, Germany, 2018; pp. 1–272. [Google Scholar]
- Drǎguţ, L.; Eisank, C. Automated object-based classification of topography from SRTM data. Geomorphology 2012, 141–142, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 2010, 116, 24–36. [Google Scholar] [CrossRef]
- Lucieer, A.; Stein, A. Existential uncertainty of spatial objects segmented from satellite sensor imagery. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2518–2521. [Google Scholar] [CrossRef] [Green Version]
- El-naggar, A.M. Determination of optimum segmentation parameter values for extracting building from remote sensing images. Alex. Eng. J. 2018, 57, 3089–3097. [Google Scholar] [CrossRef]
- Yang, J.; He, Y.; Caspersen, J.; Jones, T. A discrepancy measure for segmentation evaluation from the perspective of object recognition. ISPRS J. Photogramm. Remote Sens. 2015, 101, 186–192. [Google Scholar] [CrossRef]
- Li, P.; Song, B.; Guo, J.; Xiao, X. A Multilevel Hierarchical Image Segmentation Method for Urban Impervious Surface Mapping Using Very High Resolution Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 103–116. [Google Scholar] [CrossRef]
- DeFries, R.S.; Chan, J.C.W. Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sens. Environ. 2000, 74, 503–515. [Google Scholar] [CrossRef]
- Castillejo-González, I.L.; Angueira, C.; García-Ferrer, A.; Orden, M.S. de la Combining object-based image analysis with topographic data for landform mapping: A case study in the semi-arid Chaco ecosystem, Argentina. ISPRS Int. J. Geo.-Inf. 2019, 8, 132. [Google Scholar] [CrossRef] [Green Version]
- Olaya, V.; Conrad, O. Geomorphometry in SAGA; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 293–308. ISBN 9780123743459. [Google Scholar]
- Van Den Eeckhaut, M.; Poesen, J.; Verstraeten, G.; Vanacker, V.; Moeyersons, J.; Nyssen, J.; van Beek, L.P.H. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 2005, 67, 351–363. [Google Scholar] [CrossRef]
- Wilson, J.P.; Gallant, J.C. (Eds.) Terrain Analysis: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2000; p. 520. Available online: https://www.wiley.com/en-ie/Terrain+Analysis:+Principles+and+Applications-p-9780471321880 (accessed on 25 February 2022).
- Na, J.; Ding, H.; Zhao, W.; Liu, K.; Tang, G.; Pfeifer, N. Object-based large-scale terrain classification combined with segmentation optimization and terrain features: A case study in China. Trans. GIS 2021, 25, 2939–2962. [Google Scholar] [CrossRef]
- Takashimizu, Y.; Iiyoshi, M. New parameter of roundness R: Circularity corrected by aspect ratio. Prog. Earth Planet. Sci. 2016, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Laliberte, A.S.; Rango, A. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Mason, B.G.; Pyle, D.M.; Oppenheimer, C. The size and frequency of the largest explosive eruptions on Earth. Bull. Volcanol. 2004, 66, 735–748. [Google Scholar] [CrossRef]
- Tsikalas, F.; Faleide, J.I. Post-impact structural crater modification due to sediment loading: An overlooked process. Meteorit. Planet. Sci. 2007, 42, 2013–2029. [Google Scholar] [CrossRef]
- Cole, J.W.; Milner, D.M.; Spinks, K.D. Calderas and caldera structures: A review. Earth-Sci. Rev. 2005, 69, 1–26. [Google Scholar] [CrossRef]
- Mouginis-Mark, P.J.; Rowland, S.K. The geomorphology of planetary calderas. Geomorphology 2001, 37, 201–223. [Google Scholar] [CrossRef]
- Krüger, T.; Hergarten, S.; Kenkmann, T. Deriving morphometric parameters and the simple-to-complex transition diameter from a high-resolution, global database of fresh lunar impact craters (D ≥ ~ 3 km). J. Geophys.Res. Planets 2018, 123, 2667–2690. [Google Scholar] [CrossRef]
- Schmincke, H. Cyclic caldera collapse: Piston or piecemeal subsidence? Field and experimental evidence. Geology 2002, 30, 135–138. [Google Scholar]
- Lavallée, Y.; Stix, J.; Kennedy, B.; Richer, M.; Longpré, M.A. Caldera subsidence in areas of variable topographic relief: Results from analogue modeling. J. Volcanol. Geotherm. Res. 2004, 129, 219–236. [Google Scholar] [CrossRef]
- McCall, G.J.H. Half a century of progress in research on terrestrial impact structures: A review. Earth-Sci. Rev. 2009, 92, 99–116. [Google Scholar] [CrossRef]
Segmentation Settings | Impact Craters | |||||
---|---|---|---|---|---|---|
SP | Shape | Compactness | Diameter Range (km) | Count Segmented (%) | AFI | Count Not Segmented (%) |
5000–3000 | 0.4 | 0.6 | 70–180 | 1 (1.0) | 0.48 | 2 (2.1) |
2000 | 0.4 | 0.6 | 24–60 | 8 (8.5) | 0.07–0.50 | 0 |
1000 | 0.4 | 0.6 | 8–39 | 12 (12.7) | 0.01–0.41 | 0 |
700 | 0.4 | 0.6 | 6–30 | 6 (6.3) | 0.08–0.43 | 2 (2.1) |
400 | 0.4 | 0.6 | 6–17 | 9 (9.5) | 0.04–0.43 | 3 (3.1) |
200 | 0.4 | 0.6 | 1.8–12 | 21 (22.3) | 0.08–0.49 | 6 (6.3) |
100 | 0.4 | 0.6 | 1.8–6 | 6 (6.3) | 0.12–0.44 | 0 |
80 | 0.4 | 0.6 | 0.88–3.4 | 7 (7.4) | 0.12–0.35 | 1 |
60 | 0.4 | 0.6 | 0.024–0.64 | 0 | 0 | 10 (11.7) |
Overall: | 70/94 (74.5%) | 24 (25.5%) |
Training data | |||||
Classes: | Crater | Caldera | Valley | ||
Crater | 43 | 0 | 0 | Accuracy | 100% |
Caldera | 0 | 59 | 0 | Kappa Coefficient | 1 |
Valley | 0 | 0 | 82 | ||
Validation data | |||||
Classes: | Crater | Caldera | Valley | PA (%) | UA (%) |
Crater | 20 | 3 | 1 | 74.1 | 83.3 |
Caldera | 7 | 23 | 0 | 88.5 | 76.6 |
Valley | 0 | 0 | 41 | 97.6 | 100 |
Overall accuracy | |||||
Accuracy | 88.4 | ||||
Kappa coefficient | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emmanuel, H.; Yu, J.; Wang, L.; Choi, S.H.; Rwatangabo, D.E.R. Object-Oriented Remote Sensing Approaches for the Detection of Terrestrial Impact Craters as a Reconnaissance Survey. Remote Sens. 2023, 15, 3807. https://doi.org/10.3390/rs15153807
Emmanuel H, Yu J, Wang L, Choi SH, Rwatangabo DER. Object-Oriented Remote Sensing Approaches for the Detection of Terrestrial Impact Craters as a Reconnaissance Survey. Remote Sensing. 2023; 15(15):3807. https://doi.org/10.3390/rs15153807
Chicago/Turabian StyleEmmanuel, Habimana, Jaehyung Yu, Lei Wang, Sung Hi Choi, and Digne Edmond Rwabuhungu Rwatangabo. 2023. "Object-Oriented Remote Sensing Approaches for the Detection of Terrestrial Impact Craters as a Reconnaissance Survey" Remote Sensing 15, no. 15: 3807. https://doi.org/10.3390/rs15153807
APA StyleEmmanuel, H., Yu, J., Wang, L., Choi, S. H., & Rwatangabo, D. E. R. (2023). Object-Oriented Remote Sensing Approaches for the Detection of Terrestrial Impact Craters as a Reconnaissance Survey. Remote Sensing, 15(15), 3807. https://doi.org/10.3390/rs15153807