Applying a 1D Convolutional Neural Network in Flood Susceptibility Assessments—The Case of the Island of Euboea, Greece
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. First Phase—Inventory Database
3.2. Second Phase
3.3. Flood-Related Variables
3.4. Third Phase—Pearson’s Correlation—Multi-Collinearity Analysis and Importance Analysis
3.4.1. Pearson’s Correlation
3.4.2. Multi-Collinearity Analysis
3.4.3. Importance Ranking—Shapley Additive Explanations—SHAP
3.5. Fourth Phase—Applying Deep Learning Models and Benchmark Machine Learning Models and Constructing the Flood Susceptibility Maps
3.5.1. Convolutional Neural Network CNN
3.5.2. Benchmark Models
Logistic Regression (LR)
Gradient Boosting
Deep Learning Neural Networks
3.6. Fifth Phase—Evaluation of the Performance of the Flash Flood Susceptibility Models
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- CRED. 2022 Disasters in Numbers; CRED: Brussels, Belgium, 2023; Available online: https://cred.be/sites/default/files/2022_EMDAT_report.pdf (accessed on 12 May 2023).
- Diakakis, M. Flood Hazard Assessment with the Use of Modeling Techniques; National and Kapodistrian University of Athens: Athens, Greece, 2012. [Google Scholar]
- Ilia, I.; Tsangaratos, P.; Tzampoglou, P.; Chen, W.; Hong, H. Flash Flood Susceptibility Mapping Using Stacking Ensemble Machine Learning Models. Geocarto Int. 2022, 37, 15010–15036. [Google Scholar] [CrossRef]
- Hoque, M.; Tasfia, S.; Ahmed, N.; Pradhan, B. Assessing Spatial Flood Vulnerability at KalaparaUpazila in Bangladesh Using an Analytic Hierarchy Process. Sensors 2019, 19, 1302. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, O.; Darabi, H.; Panahi, M.; Kalantari, Z.; Naghibi, S.A.; Ferreira, C.S.S.; Kornejady, A.; Karimidastenaei, Z.; Mohammadi, F.; Stefanidis, S.; et al. Development of novel hybridized models for urban flood susceptibility mapping. Sci. Rep. 2020, 20, 12937. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Mandal, A.; Wilson, M.; Smith, D. Flood Hazard Mapping in Jamaica Using Principal Component Analysis and Logistic Regression. Environ. Earth Sci. 2016, 75, 465. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.-C.; Jung, H.-S.; Lee, M.J.; Lee, S. Spatial Prediction of Flood Susceptibility Using Random-Forest and Boosted-Tree Models in Seoul Metropolitan City, Korea. Geomat. Nat. Hazards Risk 2017, 8, 1185–1203. [Google Scholar] [CrossRef]
- Chen, W.; Hong, H.; Li, S.; Shahabi, H.; Wang, Y.; Wang, X.; Ahmad, B.B. Flood Susceptibility Modelling Using Novel Hybrid Approach of Reduced-Error Pruning Trees with Bagging and Random Subspace Ensembles. J. Hydrol. 2019, 575, 864–873. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F. Identifying the Essential Flood Conditioning Factors for Flood Prone Area Mapping Using Machine Learning Techniques. Catena 2019, 175, 174–192. [Google Scholar] [CrossRef]
- Bui, D.T.; Ngo, P.-T.T.; Pham, T.D.; Jaafari, A.; Minh, N.Q.; Hoa, P.V.; Samui, P. A Novel Hybrid Approach Based on a Swarm Intelligence Optimized Extreme Learning Machine for Flash Flood Susceptibility Mapping. Catena 2019, 179, 184–196. [Google Scholar] [CrossRef]
- Shin, J.-Y.; Ro, Y.; Cha, J.-W.; Kim, K.-R.; Ha, J.-C. Assessing the Applicability of Random Forest, Stochastic Gradient Boosted Model, and Extreme Learning Machine Methods to the Quantitative Precipitation Estimation of the Radar Data: A Case Study to Gwangdeoksan Radar, South Korea, in 2018. Adv. Meteorol. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H.; Peng, L. Flood Susceptibility Mapping Using Convolutional Neural Network Frameworks. J. Hydrol. 2020, 582, 124482. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative Study of Landslide Susceptibility Mapping with Different Recurrent Neural Networks. Comput. Geosci. 2020, 138, 104445. [Google Scholar] [CrossRef]
- Costache, R.; Ngo, P.T.T.; Bui, D.T. Novel Ensembles of Deep Learning Neural Network and Statistical Learning for Flash-Flood Susceptibility Mapping. Water 2020, 12, 1549. [Google Scholar] [CrossRef]
- Khosravi, K.; Panahi, M.; Golkarian, A.; Keesstra, S.D.; Saco, P.M.; Bui, D.T.; Lee, S. Convolutional Neural Network Approach for Spatial Prediction of Flood Hazard at National Scale of Iran. J. Hydrol. 2020, 591, 125552. [Google Scholar] [CrossRef]
- Tabbussum, R.; Dar, A.Q. Performance Evaluation of Artificial Intelligence Paradigms—Artificial Neural Networks, Fuzzy Logic, and Adaptive Neuro-Fuzzy Inference System for Flood Prediction. Environ. Sci. Pollut. Res. 2021, 28, 25265–25282. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Dai, Z.; Gong, H.; Guo, T.; Guo, G.; Wang, J.; Teatini, P. Spatiotemporal Modeling of Land Subsidence Using a Geographically Weighted Deep Learning Method Based on PS-InSAR. Sci. Total Environ. 2021, 799, 149244. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wang, Z.; Feng, Z.; Sun, L.; Yang, X.; Zheng, J.; Ma, T. Assessment of China’s Forest Fire Occurrence with Deep Learning, Geographic Information and Multisource Data. J. For. Res. 2023, 34, 963–976. [Google Scholar] [CrossRef]
- Senanayake, S.; Pradhan, B.; Alamri, A.; Park, H.-J. A New Application of Deep Neural Network (LSTM) and RUSLE Models in Soil Erosion Prediction. Sci. Total Environ. 2022, 845, 157220. [Google Scholar] [CrossRef] [PubMed]
- Bui, Q.-T.; Nguyen, Q.-H.; Nguyen, X.L.; Pham, V.D.; Nguyen, H.D.; Pham, V.-M. Verification of Novel Integrations of Swarm Intelligence Algorithms into Deep Learning Neural Network for Flood Susceptibility Mapping. J. Hydrol. 2020, 581, 124379. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can Semantic Labeling Methods Generalize to Any City? The Inria Aerial Image Labeling Benchmark. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); IEEE: Fort Worth, TX, USA, 2017; pp. 3226–3229. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: Boston, MA, USA, 2015; pp. 3431–3440. [Google Scholar]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef]
- Guirado, E.; Tabik, S.; Alcaraz-Segura, D.; Cabello, J.; Herrera, F. Deep-Learning Convolutional Neural Networks for Scattered Shrub Detection with Google Earth Imagery. arXiv 2017, arXiv:1706.00917v1. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H. Comparison of Convolutional Neural Networks for Landslide Susceptibility Mapping in Yanshan County, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. Integration of Convolutional Neural Network and Conventional Machine Learning Classifiers for Landslide Susceptibility Mapping. Comput. Geosci. 2020, 139, 104470. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradhan, B.; et al. Modeling Flood Susceptibility Using Data-Driven Approaches of Naïve Bayes Tree, Alternating Decision Tree, and Random Forest Methods. Sci. Total Environ. 2020, 701, 134979. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Dikshit, A.; Al-Katheri, M.M.; Matar, S.S.; Mahdi, A.M. Landslide Susceptibility Mapping Using CNN-1D and 2D Deep Learning Algorithms: Comparison of Their Performance at Asir Region, KSA. Bull. Eng. Geol. Environ. 2022, 81, 165. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Dikshit, A.; Mahdi, A.M. Comparative Study of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Flood Susceptibility Mapping: A Case Study at Ras Gharib, Red Sea, Egypt. Geocarto Int. 2022, 37, 11088–11115. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Adhikari, T. Designing a Convolutional Neural Network for Image Recognition: A Comparative Study of Different Architectures and Training Techniques. Soc. Sci. Res. 2023, 2023, 28. [Google Scholar] [CrossRef]
- Zhao, G.; Pang, B.; Xu, Z.; Peng, D.; Zuo, D. Urban Flood Susceptibility Assessment Based on Convolutional Neural Networks. J. Hydrol. 2020, 590, 125235. [Google Scholar] [CrossRef]
- Ullah, K.; Wang, Y.; Fang, Z.; Wang, L.; Rahman, M. Multi-Hazard Susceptibility Mapping Based on Convolutional Neural Networks. Geosci. Front. 2022, 13, 101425. [Google Scholar] [CrossRef]
- ESRI. ArcGIS Desktop: Release 10.5; Environmental Systems Research Institute: Redlands, CA, USA, 2015; Available online: https://desktop.arcgis.com/en/index.html (accessed on 29 June 2022).
- Hellenic Statistical Authority (ELSTAT). Available online: http://dlib.statistics.gr/Book/GRESYE_01_0005_00008%20.pdf (accessed on 2 May 2023).
- Institute of Geology and Subsurface Research, Island of Euboea, scale 1:200.000. 1967. Available online: https://catalogue.nla.gov.au/Record/8613577 (accessed on 12 November 2022).
- Ulbrich, U.; Lionello, P.; Belušić, D.; Jacobeit, J.; Knippertz, P.; Kuglitsch, F.G.; Leckebusch, G.C.; Luterbacher, J.; Maugeri, M.; Maheras, P.; et al. 5—Climate of the Mediterranean: Synoptic Patterns, Temperature, Precipitation, Winds, and Their Extremes. In The Climate of the Mediterranean Region; Lionello, P., Ed.; Elsevier: Oxford, UK, 2012; pp. 301–346. ISBN 9780124160422. [Google Scholar]
- Katsafados, P.; Kalogirou, S.; Papadopoulos, A.; Korres, G. Mapping Long-Term Atmospheric Variables over Greece. J. Maps 2012, 8, 181–184. [Google Scholar] [CrossRef]
- Lekkas, E.; Spyrou, N.-I.; Kotsi, E.; Filis, C.; Diakakis, M.; Lagouvardos, K.; Cartalis, C.; Kotroni, V.; Dafis, S.; Vassilakis, E.; et al. The August 9, 2020 Evia (Central Greece) Flood; Newsletter of Environmental; Disaster and Crises Management Strategies: Athens, Greece, 2020. [Google Scholar]
- Antoniadis, Z. Scale Development for Flash Flood Impacts; National and Kapodistrian University of Athens: Athens, Greece, 2016. [Google Scholar]
- Sideris, N.; Papageorgiou-Torpidi, N.; Skokou, T.; Papanikolaou, G.; Foteinopoulos, B. Special Secretariat for Water. Available online: https://floods.ypeka.gr/index.php?option=com_content&view=article&id=15&Itemid=507 (accessed on 30 December 2020).
- European Union Directive. 2007/60/EC of the European Counil and European Parliment of 23 October 2007 on the assessment and management of flood risks. Off. J. Eur. Union 2007, 288, 27–34. [Google Scholar]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Twumasi, Y.A.; Merem, E.C.; Namwamba, J.B.; Asare-Ansah, A.B.; Annan, J.B.; Ning, Z.H.; Armah, R.N.D.; Apraku, C.Y.; Yeboah, H.B.; Atayi, J.; et al. Flood Mapping in Mozambique Using Copernicus Sentinel-2 Satellite Data. ARS 2022, 11, 80–105. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service—part of the Copernicus Programme. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 20 December 2022).
- Bonham-Carter, G.F. Geographic Information Systems for Geoscientists: Modelling with GIS, Vol. 13, Computer Methods in the Geosciences; Pergamon Press: Oxford, UK, 1994; p. 398. [Google Scholar]
- Ilia, I.; Tsangaratos, P. Applying Weight of Evidence Method and Sensitivity Analysis to Produce a Landslide Susceptibility Map. Landslides 2016, 13, 379–397. [Google Scholar] [CrossRef]
- Ilia, I.; Tsangaratos, P.; Koumantakis, I.; Rozos, D. Application of A Bayesian Approach in Gis Based Model For Evaluating Landslide Susceptibility. Case Study Kimi Area, Euboea, Greece. Geosociety 2017, 43, 1590. [Google Scholar] [CrossRef]
- Agterberg, F.P.; Bonham-Carter, G.F.; Wright, D.F. Statistical Pattern Integration for Mineral Exploration. In Computer Applications in Resource Estimation; Gaál, G., Merriam, D.F., Eds.; Pergamon: Amsterdam, The Netherlands, 1990; pp. 1–21. ISBN 978-0-08-037245-7. [Google Scholar]
- ALOS-PALSAR—Earth Data. Available online: https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/ (accessed on 20 December 2022).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Ballabio, C.; Panagos, P.; Monatanarella, L. Mapping Topsoil Physical Properties at European Scale Using the LUCAS Database. Geoderma 2016, 261, 110–123. [Google Scholar] [CrossRef]
- Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An Ensemble Prediction of Flood Susceptibility Using Multivariate Discriminant Analysis, Classification and Regression Trees, and Support Vector Machines. Sci. Total Environ. 2019, 651, 2087–2096. [Google Scholar] [CrossRef]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A Novel Hybrid Artificial Intelligence Approach for Flood Susceptibility Assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Tien Bui, D. A Comparative Assessment of Decision Trees Algorithms for Flash Flood Susceptibility Modeling at Haraz Watershed, Northern Iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.T.; Tsangaratos, P.; Ngo, P.-T.T.; Pham, T.D.; Pham, B.T. Flash Flood Susceptibility Modeling Using an Optimized Fuzzy Rule Based Feature Selection Technique and Tree Based Ensemble Methods. Sci. Total Environ. 2019, 668, 1038–1054. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood Susceptibility Assessment Using GIS-Based Support Vector Machine Model with Different Kernel Types. Catena 2015, 125, 91–101. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology/Un Modèle à Base Physique de Zone d’appel Variable de l’hydrologie Du Bassin Versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Weiss, A. Topographic Position and Landforms Analysis. Available online: http://jennessent.com/downloads/TPI-poster-TNC_18x22.pdf (accessed on 9 October 2022).
- Zwolinski, Z.; Stefańska, E. Relevance of Moving Window Size in Landform Classification by TPI. In Geomorphometry for Geosciences; Jasiewicz, J., Zwoliński, Z., Mitasova, H., Hengl, T., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2015; pp. 273–277. [Google Scholar]
- Newman, D.R.; Lindsay, J.B.; Cockburn, J.M.H. Evaluating Metrics of Local Topographic Position for Multiscale Geomorphometric Analysis. Geomorphology 2018, 312, 40–50. [Google Scholar] [CrossRef]
- Alam, A.; Ahmed, B.; Sammonds, P. Flash Flood Susceptibility Assessment Using the Parameters of Drainage Basin Morphometry in SE Bangladesh. Quat. Int. 2021, 575, 295–307. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Zeinivand, H. Flood Susceptibility Mapping Using Frequency Ratio and Weights-of-Evidence Models in the Golastan Province, Iran. Geocarto Int. 2016, 31, 42–70. [Google Scholar] [CrossRef]
- Ouma, Y.; Tateishi, R. Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef]
- Tariq, A.; Yan, J.; Ghaffar, B.; Qin, S.; Mousa, B.G.; Sharifi, A.; Huq, M.E.; Aslam, M. Flash Flood Susceptibility Assessment and Zonation by Integrating Analytic Hierarchy Process and Frequency Ratio Model with Diverse Spatial Data. Water 2022, 14, 3069. [Google Scholar] [CrossRef]
- Fernandez, H.; Martins, F.; Isodoro, J. Using the Modified Fournier Index to model rainfall aggressiveness with scarce rainfall data. In Proceedings of the 20th EGU General Assembly (EGU 2018), Vienna, Austria, 8–13 April 2018. [Google Scholar]
- Dimitriou, E. Precipitation Trends and Flood Hazard Assessment in a Greek World Heritage Site. Climate 2022, 10, 194. [Google Scholar] [CrossRef]
- Aydin, H.E.; Iban, M.C. Predicting and Analyzing Flood Susceptibility Using Boosting-Based Ensemble Machine Learning Algorithms with SHapley Additive ExPlanations. Nat. Hazards 2023, 116, 2957–2991. [Google Scholar] [CrossRef]
- Shapley, L.S. Stochastic Games. Proc. Natl. Acad. Sci. USA 1953, 39, 1095–1100. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T. Xgboost: Extreme Gradient Boosting. R package version 1.7.3.1. Available online: https://CRAN.R-project.org/package=xgboost (accessed on 12 May 2023).
- Hubel, D.H.; Wiesel, T.N. Receptive Fields of Single Neurones in the Cat’s Striate Cortex. Physiol. J. 1959, 148, 574–591. [Google Scholar] [CrossRef] [PubMed]
- Chau, K.T.; Chan, J.E. Regional Bias of Landslide Data in Generating Susceptibility Maps Using Logistic Regression: Case of Hong Kong Island. Landslides 2005, 2, 280–290. [Google Scholar] [CrossRef]
- Cheeseman, P.C.; Stutz, J.C. Bayesian Classification (AutoClass): Theory and Results. In Advances in Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Tsangaratos, P.; Ilia, I. Comparison of a Logistic Regression and Naïve Bayes Classifier in Landslide Susceptibility Assessments: The Influence of Models Complexity and Training Dataset Size. Catena 2016, 145, 164–179. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Statist. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Singaravel, S.; Suykens, J.; Geyer, P. Deep-Learning Neural-Network Architectures and Methods: Using Component-Based Models in Building-Design Energy Prediction. Adv. Eng. Inform. 2018, 38, 81–90. [Google Scholar] [CrossRef]
- Heaton, J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep Learning: The MIT Press: Cambridge, MA, USA, 2016; p. 800. ISBN: 0262035618. Genet. Program. Evolvable Mach. 2018, 19, 305–307. [Google Scholar] [CrossRef]
- Hahnloser, R.H.R.; Sarpeshkar, R.; Mahowald, M.A.; Douglas, R.J.; Seung, H.S. Digital Selection and Analogue Amplification Coexist in a Cortex-Inspired Silicon Circuit. Nature 2000, 405, 947–951. [Google Scholar] [CrossRef]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Mirzaei, S.; Vafakhah, M.; Pradhan, B.; Alavi, S.J. Flood Susceptibility Assessment Using Extreme Gradient Boosting (EGB), Iran. Earth Sci. Inform. 2021, 14, 51–67. [Google Scholar] [CrossRef]
- Douglas, E.M.; Vogel, R.M.; Kroll, C.N. Trends in Floods and Low Flows in the United States: Impact of Spatial Correlation. J. Hydrol. 2000, 240, 90–105. [Google Scholar] [CrossRef]
- Karkani, A.; Evelpidou, N.; Tzouxanioti, M.; Petropoulos, A.; Santangelo, N.; Maroukian, H.; Spyrou, E.; Lakidi, L. Flash Flood Susceptibility Evaluation in Human-Affected Areas Using Geomorphological Methods—The Case of 9 August 2020, Euboea, Greece. A GIS-Based Approach. GeoHazards 2021, 2, 366–382. [Google Scholar] [CrossRef]
- Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; Ghazali, A.H. bin. Ensemble Machine-Learning-Based Geospatial Approach for Flood Risk Assessment Using Multi-Sensor Remote-Sensing Data and GIS. Geomat. Nat. Hazards Risk 2017, 8, 1080–1102. [Google Scholar] [CrossRef]
- Mrozik, K.D. Problems of Local Flooding in Functional Urban Areas in Poland. Water 2022, 14, 2453. [Google Scholar] [CrossRef]
- Petrović, A.M. Challenges of torrential flood risk management in Serbia. Journal of the Geographical Institute “Jovan Cvijic”. SASA 2015, 65, 131–143. [Google Scholar] [CrossRef]
- Miller, J.R.; Ritter, D.F.; Kochel, R.C. Morphometric Assessment of Lithologic Controls on Drainage Basin Evolution in the Crawford Upland, South-Central Indiana. Am. J. Sci. 1990, 290, 569–599. [Google Scholar] [CrossRef]
- Karymbalis, E.; Valkanou, K.; Tsodoulos, I.; Iliopoulos, G.; Tsanakas, K.; Batzakis, V.; Tsironis, G.; Gallousi, C.; Stamoulis, K.; Ioannides, K. Geomorphic Evolution of the Lilas River Fan Delta (Central Evia Island, Greece). Geosciences 2018, 8, 361. [Google Scholar] [CrossRef]
- Hong, H.; Tsangaratos, P.; Ilia, I.; Liu, J.; Zhu, A.-X.; Chen, W. Application of Fuzzy Weight of Evidence and Data Mining Techniques in Construction of Flood Susceptibility Map of Poyang County, China. Sci. Total Environ. 2018, 625, 575–588. [Google Scholar] [CrossRef] [PubMed]
Flood-Related Variable | Source | Influence on Flood |
---|---|---|
Land Cover | CORINE 2018 | Affects runoff accumulation and infiltration rate |
Elevation/Altitude | DEM (ALOS-12.5 m) | High-elevation areas increase runoff, low-elevation areas prone to flooding |
Slope Angle | DEM | Slope angle affects runoff and flooding |
Modified Fournier Index | WorldClim 2.0 | MFI expresses the influence of the rainfall |
Topographic Water Index | DEM | Affects runoff accumulation |
Topographic Position Index | DEM | Affects runoff accumulation |
Distance from River Network | DEM/Topographic Map | Areas close to river and streams are more susceptible to flooding |
Plan Curvature | DEM | The curvature of the surface influence runoff and flooding |
Lithology | Geology Map | Influence on hydrologic process (percolation and water flow) |
Profile Curvature | DEM | Surface curvature affects runoff and flooding |
Sand Content (%) | LUCAS topsoil database | Affects the runoff and infiltration rate |
Clay Content (%) | LUCAS topsoil database | Affects the runoff and infiltration rate |
Silt Content (%) | LUCAS topsoil database | Affects the runoff and infiltration rate |
Flood-Related Variable | Significance | Tolerance | VIF |
---|---|---|---|
Elevation | 0.224 | 0.2615 | 3.8237 |
Distance from River Network | 0.128 | 0.8776 | 1.1394 |
Land Cover | 0.092 | 0.9856 | 1.0145 |
Lithology | 0.056 | 0.8722 | 1.1464 |
Slope Angle | 0.043 | 0.5015 | 1.9938 |
Topographic Position Index | 0.035 | 0.6984 | 1.4317 |
Sand Content (%) | 0.023 | 0.5031 | 1.9872 |
Clay Content (%) | 0.016 | 0.6708 | 1.4905 |
Silt Content (%) | 0.010 | 0.6920 | 1.4449 |
Topographic Water Index | 0.006 | 0.6153 | 1.6251 |
Plan Curvature | 0.000 | 0.6231 | 1.6047 |
Profile Curvature | 0.000 | 0.7471 | 1.3383 |
Modified Fournier Index | 0.000 | 0.2879 | 3.4731 |
Hyper Parameter | GB | DLLN | 1D-CNN |
---|---|---|---|
Epoch | - | - | 200 |
Batch size | - | - | 32 |
Dropout | - | - | 0.5 |
Optimization algorithm | - | RMSprop | RMSprop |
Number of hidden layers | - | 3 | - |
Number of neurons | - | 64 | - |
Activation function | - | ReLU | ReLU |
Transfer function | - | Sigmoid | - |
Learning rate | 0.1 | - | - |
Number of trees | 150 | - | - |
Maximum depth of trees | 6 | - | - |
Flood Susceptibility Probability | LR | NB | GB | DLNN | 1D-CNN |
---|---|---|---|---|---|
<0.25 Very low susceptibility | 1.79 | 3.26 | 2.20 | 1.45 | 0.86 |
0.26–0.50 Low susceptibility | 6.09 | 9.67 | 5.12 | 4.09 | 7.46 |
0.51–0.75 Moderate susceptibility | 14.80 | 10.24 | 15.14 | 10.86 | 12.40 |
0.76–0.90 High susceptibility | 33.69 | 30.03 | 21.82 | 29.42 | 31.20 |
>0.91 Very high susceptibility | 43.63 | 46.80 | 55.72 | 46.35 | 48.08 |
Models | AUC (Train/Test) | SE (Train/Test) | 95% CL (Train/Test) |
---|---|---|---|
CNN | 0.937/0.924 | 0.0113/0.0187 | 0.903 to 0.966/0.874 to 0.954 |
LR | 0.920/0.904 | 0.0121/0.0201 | 0.894 to 0.941/0.859 to 0.938 |
NB | 0.899/0.872 | 0.0135/0.0231 | 0.870 to 0.923/0.823 to 0.912 |
GB | 0.960/0.877 | 0.0084/0.0226 | 0.940 to 0.975/0.829 to 0.916 |
DLNN | 0.930/0.899 | 0.0107/0.0206 | 0.901 to 0.950/0.853 to 0.934 |
CNN-GB | CNN-LR | CNN-NB | CNN-DLNN | |
---|---|---|---|---|
Difference between areas | 0.0129 | 0.0447 | 0.0394 | 0.0177 |
Standard Error c | 0.0136 | 0.0150 | 0.0142 | 0.00987 |
95% Confidence Interval | −0.0137 to 0.0395 | 0.0153 to 0.0741 | 0.0116 to 0.0672 | −0.00164 to 0.0370 |
z statistic | 0.953 | 2.979 | 2.777 | 1.793 |
Significance level | p = 0.341 | p = 0.003 | p = 0.005 | p = 0.073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsangaratos, P.; Ilia, I.; Chrysafi, A.-A.; Matiatos, I.; Chen, W.; Hong, H. Applying a 1D Convolutional Neural Network in Flood Susceptibility Assessments—The Case of the Island of Euboea, Greece. Remote Sens. 2023, 15, 3471. https://doi.org/10.3390/rs15143471
Tsangaratos P, Ilia I, Chrysafi A-A, Matiatos I, Chen W, Hong H. Applying a 1D Convolutional Neural Network in Flood Susceptibility Assessments—The Case of the Island of Euboea, Greece. Remote Sensing. 2023; 15(14):3471. https://doi.org/10.3390/rs15143471
Chicago/Turabian StyleTsangaratos, Paraskevas, Ioanna Ilia, Aikaterini-Alexandra Chrysafi, Ioannis Matiatos, Wei Chen, and Haoyuan Hong. 2023. "Applying a 1D Convolutional Neural Network in Flood Susceptibility Assessments—The Case of the Island of Euboea, Greece" Remote Sensing 15, no. 14: 3471. https://doi.org/10.3390/rs15143471
APA StyleTsangaratos, P., Ilia, I., Chrysafi, A. -A., Matiatos, I., Chen, W., & Hong, H. (2023). Applying a 1D Convolutional Neural Network in Flood Susceptibility Assessments—The Case of the Island of Euboea, Greece. Remote Sensing, 15(14), 3471. https://doi.org/10.3390/rs15143471