Monitoring of Land Cover and Vegetation Changes in Juhugeng Coal Mining Area Based on Multi-Source Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Technical Route
2.3.2. Object-Based Land Cover Information Extraction
2.3.3. Landsat Data-Based Fractional Vegetation Cover Estimation
3. Results and Analysis
3.1. Suitable Parameters for Image Segmentation
3.2. Accuracy Assessment
3.3. Land Cover Change
3.4. Vegetation Cover Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haibin, L.; Zhenling, L. Recycling Utilization Patterns of Coal Mining Waste in China. Resour. Conserv. Recycl. 2010, 54, 1331–1340. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of Trace Elements in Chinese Coals: A Review of Abundances, Genetic Types, Impacts on Human Health, and Industrial Utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Rathore, C.; Wright, R. Monitoring Environmental Impacts of Surface Coal-Mining. Int. J. Remote Sens. 1993, 14, 1021–1042. [Google Scholar] [CrossRef]
- Peng, Y.; He, G.; Zhang, Z.M.; Jiang, W.; Ouyang, Z.; Wang, G. Eco-Environment Dynamic Monitoring and Assessment of Rare Earth Mining Area in Southern Ganzhou Using Remote Sensing. Acta Ecol. Sin. 2016, 36, 1676–1685. [Google Scholar]
- Medinac, F.; Bamford, T.; Hart, M.; Kowalczyk, M.; Esmaeili, K. Haul Road Monitoring in Open Pit Mines Using Unmanned Aerial Vehicles: A Case Study at Bald Mountain Mine Site. Min. Metall. Explor. 2020, 37, 1877–1883. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A Review of UAV Monitoring in Mining Areas: Current Status and Future Perspectives. Int. J. Coal. Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef] [Green Version]
- Padró, J.-C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring Opencast Mine Restorations Using Unmanned Aerial System (UAS) Imagery. Sci. Total Environ. 2018, 657, 1602–1614. [Google Scholar] [CrossRef]
- Johansen, K.; Erskine, P.D.; McCabe, M.F. Using Unmanned Aerial Vehicles to Assess the Rehabilitation Performance of Open Cut Coal Mines. J. Clean. Prod. 2019, 209, 819–833. [Google Scholar] [CrossRef]
- Tong, X.; Liu, X.; Chen, P.; Liu, S.; Luan, K.; Li, L.; Liu, S.; Liu, X.; Xie, H.; Jin, Y.; et al. Integration of UAV-Based Photogrammetry and Terrestrial Laser Scanning for the Three-Dimensional Mapping and Monitoring of Open-Pit Mine Areas. Remote Sens. 2015, 7, 6635–6662. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ma, W.; Su, Q.; Liu, S.; Ge, Y. Remote Sensing Image Registration Based on Local Structural Information and Global Constraint. J. Appl. Rem. Sens. 2019, 13, 016518. [Google Scholar] [CrossRef]
- He, G.; Zhang, Z.; Jiao, W.; Long, T.; Peng, Y.; Wang, G.; Yin, R.; Wang, W.; Zhang, X.; Liu, H.; et al. Generation of Ready to Use (RTU) Products over China Based on Landsat Series Data. Big Earth Data 2018, 2, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Wardlow, B.; Xiang, D.; Hu, S.; Li, D. A Review of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sens. 2019, 11, 489. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W.B.; Goward, S.N. Landsat’s Role in Ecological Applications of Remote Sensing. BioScience 2004, 54, 535. [Google Scholar] [CrossRef]
- Vidal-Macua, J.J.; Nicolau, J.M.; Vicente, E.; Moreno-de las Heras, M. Assessing Vegetation Recovery in Reclaimed Opencast Mines of the Teruel Coalfield (Spain) Using Landsat Time Series and Boosted Regression Trees. Sci. Total Environ. 2020, 717, 137250. [Google Scholar] [CrossRef]
- Erener, A. Remote Sensing of Vegetation Health for Reclaimed Areas of Seyitomer Open Cast Coal Mine. Int. J. Coal Geol. 2011, 86, 20–26. [Google Scholar] [CrossRef]
- Almeida-Filho, R.; Shimabukuro, Y.E. Digital Processing of a Landsat-TM Time Series for Mapping and Monitoring Degraded Areas Caused by Independent Gold Miners, Roraima State, Brazilian Amazon. Remote Sens. Environ. 2002, 79, 42–50. [Google Scholar] [CrossRef]
- Demirel, N.; Düzgün, Ş.; Emil, M.K. Landuse Change Detection in a Surface Coal Mine Area Using Multi-Temporal High-Resolution Satellite Images. Int. J. Min. Reclam. Environ. 2011, 25, 342–349. [Google Scholar] [CrossRef]
- Pagot, E.; Pesaresi, M.; Buda, D.; Ehrlich, D. Development of an Object-oriented Classification Model Using Very High Resolution Satellite Imagery for Monitoring Diamond Mining Activity. Int. J. Remote Sens. 2008, 29, 499–512. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Z.; Wang, Y. Application of Multi-Sensor Image in Monitoring Mining Activities and Related Environment Changes: A Case Study at Daye, Hubei, China. In Proceedings of the Remote Sensing of the Environment: 15th National Symposium on Remote Sensing of China, Guiyan City, China, 19–23 August 2006; p. 62000V. [Google Scholar]
- Charou, E.; Stefouli, M.; Dimitrakopoulos, D.; Vasiliou, E.; Mavrantza, O.D. Using Remote Sensing to Assess Impact of Mining Activities on Land and Water Resources. Mine Water Environ. 2010, 29, 45–52. [Google Scholar] [CrossRef]
- Demirel, N.; Emil, M.K.; Duzgun, H.S. Surface Coal Mine Area Monitoring Using Multi-Temporal High-Resolution Satellite Imagery. Int. J. Coal Geol. 2011, 86, 3–11. [Google Scholar] [CrossRef]
- Blahwar, B.; Srivastav, S.K.; de Smeth, J.B. Use of High-Resolution Satellite Imagery for Investigating Acid Mine Drainage from Artisanal Coal Mining in North-Eastern India. Geocarto Int. 2012, 27, 231–247. [Google Scholar] [CrossRef]
- Chen, L.; Letu, H.; Fan, M.; Shang, H.; Tao, J.; Wu, L.; Zhang, Y.; Yu, C.; Gu, J.; Zhang, N.; et al. An Introduction to the Chinese High-Resolution Earth Observation System: Gaofen-1~7 Civilian Satellites. J. Remote Sens. 2022, 2022, 9769536. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, X.; Niu, R.; Plaza, A. Open-Pit Mine Area Mapping with Gaofen-2 Satellite Images Using U-Net+. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3589–3599. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, Z.; He, G.; Wei, M. An Improved GrabCut Method Based on a Visual Attention Model for Rare-Earth Ore Mining Area Recognition with High-Resolution Remote Sensing Images. Remote Sens. 2019, 11, 987. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Chen, Z.; Zhang, B.; Li, B.; Lu, K.; Lu, L.; Guo, H. Detection of Tailings Dams Using High-Resolution Satellite Imagery and a Single Shot Multibox Detector in the Jing–Jin–Ji Region, China. Remote Sens. 2020, 12, 2626. [Google Scholar] [CrossRef]
- Schmidt, H.; Glaesser, C. Multitemporal Analysis of Satellite Data and Their Use in the Monitoring of the Environmental Impacts of Open Cast Lignite Mining Areas in Eastern Germany. Int. J. Remote Sens. 1998, 19, 2245–2260. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, Z.; He, W.; Chen, T. Tailings Reservoir Recognition Factors of the High Resolution Remote Sensing Image in Southeastern Hubei. Remote Sens. Nat. Resour. 2012, 24, 154–158. [Google Scholar] [CrossRef]
- Volesky, J. Remote Sensing and Mineral Exploration in the Arabian Shield: The Wadi Bidah Mining District Example. Gondwana Res. 2001, 4, 198–200. [Google Scholar] [CrossRef]
- Mansor, S.B.; Cracknell, A.P.; Shilin, B.V.; Gornyi, V.I. Monitoring of Underground Coal Fires Using Thermal Infrared Data. Int. J. Remote Sens. 1994, 15, 1675–1685. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Chang, H.-C.; Ge, L.; Rizos, C.; Omura, M. Assessment of Radar Interferometry Performance for Ground Subsidence Monitoring Due to Underground Mining. Earth Planets Space 2009, 61, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Liu, M.; Liu, X.; Wang, Y.; Wu, L.; Wang, Z.; Zhu, L. Long-Term Landsat Monitoring of Mining Subsidence Based on Spatiotemporal Variations in Soil Moisture: A Case Study of Shanxi Province, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102447. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Yan, Y.; Li, X.; Chang, H.-C.; Zhang, K.; Rizos, C. Mapping Accumulated Mine Subsidence Using Small Stack of SAR Differential Interferograms in the Southern Coalfield of New South Wales, Australia. Eng. Geol. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Zhang, P.; Hu, Y.; Huang, L. Effects of Vegetation Reclamation on Temperature and Humidity Properties of a Dumpsite: A Case Study in the Open Pit Coal Mine of Heidaigou. Arid. Land Res. Manag. 2015, 29, 375–381. [Google Scholar] [CrossRef]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the Extent of Surface Mining and Reclamation in the Central Appalachians Detected Using a 1976–2006 Landsat Time Series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Xie, L.; Wu, W.; Huang, X.; Ou, P.; Lin, Z.; Zhiling, W.; Song, Y.; Lang, T.; Huangfu, W.; Zhang, Y.; et al. Mining and Restoration Monitoring of Rare Earth Element (REE) Exploitation by New Remote Sensing Indicators in Southern Jiangxi, China. Remote Sens. 2020, 12, 3558. [Google Scholar] [CrossRef]
- Saini, V.; Gupta, R.P.; Arora, M.K. Environmental Impact Studies in Coalfields in India: A Case Study from Jharia Coal-Field. Renew. Sustain. Energy Rev. 2016, 53, 1222–1239. [Google Scholar] [CrossRef]
- Legg, C.A. Applications of Remote Sensing to Environmental Aspects of Surface Mining Operations in the United Kingdom. In Remote Sensing: An Operational Technology for the Mining and Petroleum Industries; Springer: Dordrecht, The Netherlands, 1990; pp. 159–164. ISBN 978-94-010-9746-8. [Google Scholar]
- Zawadzki, J.; Przezdziecki, K.; Miatkowski, Z. Determining the Area of Influence of Depression Cone in the Vicinity of Lignite Mine by Means of Triangle Method and LANDSAT TM/ETM plus Satellite Images. J. Environ. Manag. 2016, 166, 605–614. [Google Scholar] [CrossRef]
- Petja, B.; Twumasi, Y.; Tengbeh, G. The Use of Remote Sensing to Detect Asbestos Mining Degradation in Mafefe and Mathabatha, South Africa. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, IEEE, Denver, CO, USA, 31 July–4 August 2006; pp. 1591–1593. [Google Scholar]
- Schmid, T.; Rico, C.; Rodriguez-Rastrero, M.; Sierra, M.; Diaz-Puente, F.; Pelayo, M.; Milian, R. Monitoring of the Mercury Mining Site Almaden Implementing Remote Sensing Technologies. Environ. Res. 2013, 125, 92–102. [Google Scholar] [CrossRef]
- Zhang, Z.; He, G.; Wang, M.; Wang, Z.; Long, T.; Peng, Y. Detecting Decadal Land Cover Changes in Mining Regions Based on Satellite Remotely Sensed Imagery: A Case Study of the Stone Mining Area in Luoyuan County, SE China. Photogram Eng. Remote Sens. 2015, 81, 745–751. [Google Scholar] [CrossRef]
- Willhauck, G. Comparison of Object Oriented Classification Techniques and Standard Image Analysis for the Use of Change Detection between SPOT Multispectral Satellite Images and Aerial Photos. ISPRS J. Photogramm. Remote Sens. 2000, 33, 214–221. [Google Scholar]
- Wang, C.; Chen, T.; Plaza, A. MFE-ResNet: A New Extraction Framework for Land Cover Characterization in Mining Areas. Future Gener. Comput. Syst. 2023, 145, 550–562. [Google Scholar] [CrossRef]
- Hu, J.; Ye, B.; Bai, Z.; Feng, Y. Remote Sensing Monitoring of Vegetation Reclamation in the Antaibao Open-Pit Mine. Remote Sens. 2022, 14, 5634. [Google Scholar] [CrossRef]
- Xiao, J.; Moody, A. A Comparison of Methods for Estimating Fractional Green Vegetation Cover within a Desert-to-Upland Transition Zone in Central New Mexico, USA. Remote Sens. Environ. 2005, 98, 237–250. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Liu, S.; Li, Y.; Xiao, Z.; Yao, Y.; Jiang, B.; Zhao, X.; Wang, X.; Xu, S.; et al. Global Land Surface Fractional Vegetation Cover Estimation Using General Regression Neural Networks From MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4787–4796. [Google Scholar] [CrossRef]
- Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G. Estimating Fractional Vegetation Cover and the Vegetation Index of Bare Soil and Highly Dense Vegetation with a Physically Based Method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Mu, X.; Song, W.; Gao, Z.; McVicar, T.R.; Donohue, R.J.; Yan, G. Fractional Vegetation Cover Estimation by Using Multi-Angle Vegetation Index. Remote Sens. Environ. 2018, 216, 44–56. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional Vegetation Cover Estimation in Arid and Semi-Arid Environments Using HJ-1 Satellite Hyperspectral Data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 506–512. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, T.; Liang, S.; Sun, R. Estimating the Fractional Vegetation Cover from GLASS Leaf Area Index Product. Remote Sens. 2016, 8, 337. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Ding, Y.; Xu, C.; Chen, Y.; Liu, L. Evaluation of the Impact of Crop Residue on Fractional Vegetation Cover Estimation by Vegetation Indices over Conservation Tillage Cropland: A Simulation Study. Int. J. Remote Sens. 2022, 43, 6463–6482. [Google Scholar] [CrossRef]
- Tu, Y.; Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Zhang, X. Fractional Vegetation Cover Estimation in Heterogeneous Areas by Combining a Radiative Transfer Model and a Dynamic Vegetation Model. Int. J. Digit. Earth 2020, 13, 487–503. [Google Scholar] [CrossRef]
- Karan, S.K.; Kumar, A.; Samadder, S.R. Evaluation of Geotechnical Properties of Overburden Dump for Better Reclamation Success in Mining Areas. Environ. Earth Sci. 2017, 76, 770. [Google Scholar] [CrossRef]
- Swab, R.M.; Lorenz, N.; Byrd, S.; Dick, R. Native Vegetation in Reclamation: Improving Habitat and Ecosystem Function through Using Prairie Species in Mine Land Reclamation. Ecol. Eng. 2017, 108, 525–536. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Li, S. Tempo-Spatial Changes and Main Anthropogenic Influence Factors of Vegetation Fractional Coverage in a Large-Scale Opencast Coal Mine Area from 1992 to 2015. J. Clean. Prod. 2019, 232, 940–952. [Google Scholar] [CrossRef]
- Suo, H.; Huang, Y.; Li, L. Remote Sensing Estimation of Vegetation Coverage in Muli Coal Mine Based on High-Fraction Data. Comput. Eng. Softw. 2019, 40, 153–155. [Google Scholar]
- Wu, C.; Zhang, X.; Wang, Y.; Li, R. Analysis of Vegetation Coverage Extraction and Time-Space Change in Muli Coalfield Based on Landsat Image. Geomat. Spat. Inf. Technol. 2020, 43, 67–72. [Google Scholar]
- Ma, S.; Li, S.; An, P.; Yang, W.; Xin, R. Remote sensing monitoring and quality evaluation for the mine geological environment of the Juhugeng coal mining area in Qinghai Province. Remote Sens. Land Resour. 2015, 27, 139–145. [Google Scholar] [CrossRef]
- He, F.; Liu, R.; Xu, Y.; Qiao, G.; Ke, H. Monitoring and evaluation of mine geological environment in the Muli coal mining area based on remote sensing. Geol. Bull. China 2018, 37, 2251–2259. [Google Scholar]
- Townshend, J.; Justice, C.; Li, W.; Gurney, C.; McManus, J. Global Land Cover Classification by Remote Sensing: Present Capabilities and Future Possibilities. Remote Sens. Environ. 1991, 35, 243–255. [Google Scholar] [CrossRef]
- He, G.; Wang, G.; Long, T.; Peng, Y.; Jiang, W.; Yin, R.; Jiao, W.; Zhang, Z. Opening and Sharing of Big Earth Observation Data: Challenges and Countermeasures. Bull. Chin. Acad. Sci. 2018, 33, 783–790. [Google Scholar]
- Timofeev, R. Classification and Regression Trees (CART) Theory and Applications. Master’s Thesis, Humboldt University, Berlin, Germany, 2004; p. 41. [Google Scholar]
- Otukei, J.R.; Blaschke, T. Land Cover Change Assessment Using Decision Trees, Support Vector Machines and Maximum Likelihood Classification Algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27–S31. [Google Scholar] [CrossRef]
- Rouse, W.; Haas, R.H. Monitoring Vegetation Systems in the Great Plains with Erts. In Third Earth Resources Technology Satellite-1 Symposium; NASA: Washington, DC, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Gutman, G.; Ignatov, A. The Derivation of the Green Vegetation Fraction from NOAA/AVHRR Data for Use in Numerical Weather Prediction Models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of Surface Coal Mining and Land Reclamation on Soil Properties: A Review. Earth-Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
Id | Satellite | Date |
---|---|---|
1 | SPOT 4 | 15 June 2004 |
2 | SPOT 4 | 4 May 2009 |
3 | SPOT 4 | 10 November 2012 |
4 | GF-1 | 12 December 2013 |
5 | GF-1 | 16 November 2016 |
6 | GF-6 | 15 August 2019 |
7 | GF-1 | 3 June 2021 |
Object Features | Feature | Formula |
---|---|---|
Layer Values | mean | |
brightness | ||
stddev | ||
Geometry | length/width | |
shape index | ||
Texture | homogeneity | |
contrast | ||
entropy | ||
stddev |
Parameter | Setting Value | Target Ground Object |
---|---|---|
Scale | 780~950 | pristine area, water |
400~530 | coal storage, water (with small area, probably polluted), open pits, tailing deposits | |
180~360 | restoration area, roads, buildings, area under a cover | |
Shape | 0.3 | - |
Compactness | 0.5 | - |
(a) Producer’s and user’s accuracy of mapped cover class in 2004, 2009, 2012, and 2013 | ||||||||||||||||||||||||
2004 | 2009 | 2012 | 2013 | |||||||||||||||||||||
Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | User’s Accuracy | |||||||||||||||||
Buildings | 99.9 | 99.9 | 66.7 | 99.9 | 95.0 | 82.6 | 89.5 | 94.4 | ||||||||||||||||
Coal storage | - | - | 99.9 | 99.9 | 92.3 | 92.3 | 90.9 | 66.7 | ||||||||||||||||
Open pits | 80.8 | 87.5 | 77.8 | 93.3 | 81.8 | 91.5 | 78.2 | 93.7 | ||||||||||||||||
Pristine area | 99.0 | 99.0 | 99.1 | 96.9 | 96.5 | 95.4 | 98.4 | 95.0 | ||||||||||||||||
Roads | 71.4 | 99.9 | 77.8 | 99.9 | 38.5 | 55.6 | 87.5 | 66.7 | ||||||||||||||||
Tailings | 92.3 | 60.0 | 83.6 | 83.6 | 89.7 | 83.4 | 87.0 | 81.1 | ||||||||||||||||
Water | 66.7 | 99.9 | 84.6 | 78.6 | 73.3 | 73.3 | 80.0 | 88.9 | ||||||||||||||||
(b) Producer’s and user’s accuracy of mapped cover class in 2016, 2019, and 2021 | ||||||||||||||||||||||||
2016 | 2019 | 2021 | ||||||||||||||||||||||
Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | User’s Accuracy | |||||||||||||||||||
Buildings | 84.8 | 84.8 | 82.8 | 82.8 | 94.1 | 94.1 | ||||||||||||||||||
Coal storage | 99.9 | 92.0 | 92.0 | 92.0 | 99.9 | 92.0 | ||||||||||||||||||
Cover | - | - | 85.7 | 81.8 | 87.5 | 99.9 | ||||||||||||||||||
Open pit | 72.8 | 81.7 | 74.0 | 89.8 | 75.0 | 91.0 | ||||||||||||||||||
Pristine area | 96.0 | 88.6 | 95.7 | 96.2 | 94.3 | 86.7 | ||||||||||||||||||
Restoration | 55.6 | 83.3 | 72.3 | 85.0 | 58.1 | 94.3 | ||||||||||||||||||
Roads | 91.7 | 84.6 | 99.9 | 72.7 | 58.8 | 62.5 | ||||||||||||||||||
Tailings | 80.3 | 78.7 | 88.1 | 74.6 | 92.5 | 74.7 | ||||||||||||||||||
Water | 69.0 | 90.9 | 82.8 | 77.4 | 87.5 | 94.6 |
2004 | 2009 | 2012 | 2013 | 2016 | 2019 | 2021 | |
---|---|---|---|---|---|---|---|
OA | 0.98 | 0.95 | 0.90 | 0.89 | 0.84 | 0.86 | 0.85 |
Kappa | 0.84 | 0.86 | 0.86 | 0.85 | 0.79 | 0.82 | 0.81 |
(a) 2004–2009 land cover transition matrix | |||||||||
Buildings | Coal Storage | Open Pits | Pristine Area | Tailings | Water | Total | |||
Buildings | 0.015 | 0 | 0 | 0.000 | 0.005 | 0 | 0.020 | ||
Open pits | 0.007 | 0.020 | 1.410 | 0.070 | 0.341 | 0 | 1.848 | ||
Pristine area | 0.078 | 0.097 | 2.956 | 131.169 | 3.932 | 4.066 | 142.298 | ||
Tailings | 0 | 0 | 0.546 | 0.076 | 0.236 | 0.060 | 0.918 | ||
Water | 0.003 | 0 | 0 | 2.190 | 0.048 | 1.342 | 3.583 | ||
Total | 0.103 | 0.117 | 4.912 | 133.505 | 4.563 | 5.468 | 148.667 | ||
(b) 2009–2012 land cover transition matrix | |||||||||
Buildings | Coal Storage | Open Pits | Tailings | Pristine Area | Water | Total | |||
Buildings | 0.045 | 0 | 0.029 | 0.003 | 0.037 | 0.010 | 0.124 | ||
Coal storage | 0 | 0.091 | 0.020 | 0.006 | 0 | 0 | 0.117 | ||
Open pits | 0.003 | 0 | 4.427 | 0.203 | 0.298 | 0.008 | 4.938 | ||
Tailings | 0.087 | 0.234 | 1.163 | 2.662 | 0.392 | 0.076 | 4.615 | ||
Pristine area | 0.608 | 0.113 | 5.317 | 10.521 | 111.473 | 4.560 | 132.591 | ||
Water | 0.004 | 0 | 0.240 | 0.295 | 3.205 | 1.705 | 5.448 | ||
Total | 0.747 | 0.438 | 11.196 | 13.690 | 115.405 | 6.358 | 147.833 | ||
(c) 2012–2013 land cover transition matrix | |||||||||
Buildings | Coal Storage | Open Pits | Tailings | Pristine Area | Water | Total | |||
Buildings | 0.450 | 0 | 0.016 | 0.173 | 0.123 | 0.000 | 0.763 | ||
Coal storage | 0.000 | 0.295 | 0.000 | 0.149 | 0.006 | 0 | 0.451 | ||
Open pits | 0.018 | 0.033 | 10.509 | 0.320 | 0.385 | 0.038 | 11.302 | ||
Tailings | 0.558 | 0.087 | 1.580 | 10.830 | 0.712 | 0.049 | 13.817 | ||
Pristine area | 0.326 | 0.001 | 3.121 | 5.450 | 105.576 | 0.885 | 115.360 | ||
Water | 0.009 | 0 | 0.111 | 0.312 | 4.691 | 1.211 | 6.335 | ||
Total | 1.363 | 0.416 | 15.338 | 17.233 | 111.493 | 2.184 | 148.026 | ||
(d) 2013–2016 land cover transition matrix | |||||||||
Buildings | Coal Storage | Open Pits | Restoration | Tailings | Pristine Area | Water | Total | ||
Buildings | 0.814 | 0.002 | 0.020 | 0 | 0.313 | 0.223 | 0.001 | 1.373 | |
Coal storage | 0.001 | 0.366 | 0.024 | 0.002 | 0.019 | 0.002 | 0 | 0.415 | |
Open pits | 0.020 | 0.054 | 12.243 | 0 | 1.558 | 0.790 | 0.770 | 15.435 | |
Tailings | 0.436 | 0.341 | 0.553 | 0.778 | 13.409 | 1.671 | 0.194 | 17.382 | |
Pristine area | 0.322 | 0.003 | 1.092 | 0.022 | 3.049 | 106.117 | 1.344 | 111.950 | |
Water | 0.005 | 0 | 0.035 | 0.014 | 0.087 | 0.841 | 1.233 | 2.215 | |
Total | 1.598 | 0.766 | 13.967 | 0.816 | 18.435 | 109.645 | 3.542 | 148.770 | |
(e) 2016–2019 land cover transition matrix | |||||||||
Buildings | Coal Storage | Cover | Open Pits | Restoration | Tailings | Pristine Area | Water | Total | |
Buildings | 0.823 | 0.004 | 0.027 | 0.008 | 0.123 | 0.306 | 0.138 | 0.005 | 1.434 |
Coal storage | 0.000 | 0.674 | 0.031 | 0.005 | 0.008 | 0.042 | 0.000 | 0 | 0.762 |
Open pits | 0.005 | 0.003 | 0.042 | 11.283 | 0.329 | 0.609 | 0.930 | 0.611 | 13.813 |
Restoration | 0.000 | 0.004 | 0 | 0 | 0.770 | 0.002 | 0.008 | 0.014 | 0.798 |
Tailings | 0.065 | 0.148 | 0.263 | 1.610 | 2.350 | 12.269 | 1.320 | 0.136 | 18.162 |
Pristine area | 0.156 | 0.005 | 0.038 | 0.381 | 0.061 | 2.068 | 105.313 | 0.870 | 108.893 |
Water | 0.034 | 0.000 | 0.017 | 0.212 | 0.002 | 0.096 | 1.225 | 1.917 | 3.504 |
Total | 1.084 | 0.839 | 0.419 | 13.500 | 3.643 | 15.393 | 108.934 | 3.552 | 147.366 |
(f) 2019–2021 land cover transition matrix | |||||||||
Buildings | Coal Storage | Cover | Open Pits | Restoration | Tailings | Pristine Area | Water | Total | |
Buildings | 0.554 | 0.006 | 0 | 0.004 | 0.036 | 0.269 | 0.175 | 0.011 | 1.056 |
Coal storage | 0.005 | 0.762 | 0 | 0.012 | 0.050 | 0.005 | 0.002 | 0 | 0.835 |
Cover | 0.004 | 0.010 | 0.004 | 0.024 | 0.062 | 0.236 | 0.073 | 0.000 | 0.414 |
Open pits | 0.006 | 0.001 | 0.264 | 9.594 | 2.048 | 0.545 | 0.347 | 0.577 | 13.381 |
Restoration | 0.004 | 0.020 | 0 | 0.137 | 3.294 | 0.096 | 0.041 | 0.008 | 3.600 |
Tailings | 0.079 | 0.142 | 0.082 | 0.628 | 0.861 | 12.183 | 1.057 | 0.239 | 15.272 |
Pristine area | 0.100 | 0.031 | 0.006 | 0.180 | 0.267 | 0.955 | 104.231 | 2.957 | 108.727 |
Water | 0.004 | 0 | 0.001 | 0.105 | 0.067 | 0.062 | 0.578 | 2.637 | 3.455 |
Total | 0.757 | 0.972 | 0.358 | 10.685 | 6.683 | 14.352 | 106.504 | 6.431 | 146.741 |
Class | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
---|---|---|---|---|---|---|---|---|---|---|
0–20% | 27.48 | 29.62 | 20.93 | 29.49 | 25.86 | 27.72 | 28.59 | 23.55 | 22.21 | 27.21 |
20–40% | 39.51 | 39.04 | 22.17 | 42.08 | 30.59 | 40.35 | 44.19 | 27.56 | 26.10 | 26.67 |
40–60% | 32.98 | 31.29 | 49.24 | 28.32 | 43.39 | 31.91 | 27.20 | 47.71 | 50.90 | 45.96 |
60–100% | 0.03 | 0.05 | 7.66 | 0.10 | 0.15 | 0.02 | 0.02 | 1.18 | 0.78 | 0.16 |
Class | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
0–20% | 26.02 | 28.00 | 27.40 | 26.96 | 28.66 | 26.36 | 24.95 | 25.96 | 20.56 | |
20–40% | 26.83 | 27.06 | 29.65 | 30.48 | 32.20 | 32.19 | 25.48 | 33.00 | 23.72 | |
40–60% | 42.26 | 40.30 | 42.43 | 42.39 | 39.03 | 40.89 | 45.35 | 40.78 | 49.21 | |
60–100% | 4.89 | 4.64 | 0.52 | 0.18 | 0.11 | 0.55 | 4.22 | 0.27 | 6.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, F.; He, G.; Wang, G.; Zhang, Z.; Peng, Y. Monitoring of Land Cover and Vegetation Changes in Juhugeng Coal Mining Area Based on Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 3439. https://doi.org/10.3390/rs15133439
Hong F, He G, Wang G, Zhang Z, Peng Y. Monitoring of Land Cover and Vegetation Changes in Juhugeng Coal Mining Area Based on Multi-Source Remote Sensing Data. Remote Sensing. 2023; 15(13):3439. https://doi.org/10.3390/rs15133439
Chicago/Turabian StyleHong, Fangzhou, Guojin He, Guizhou Wang, Zhaoming Zhang, and Yan Peng. 2023. "Monitoring of Land Cover and Vegetation Changes in Juhugeng Coal Mining Area Based on Multi-Source Remote Sensing Data" Remote Sensing 15, no. 13: 3439. https://doi.org/10.3390/rs15133439
APA StyleHong, F., He, G., Wang, G., Zhang, Z., & Peng, Y. (2023). Monitoring of Land Cover and Vegetation Changes in Juhugeng Coal Mining Area Based on Multi-Source Remote Sensing Data. Remote Sensing, 15(13), 3439. https://doi.org/10.3390/rs15133439