Study of the Response of Environmental Factors of the Coastal Area in Zhoushan Fishery to Typhoon In-fa Based on Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data
2.2. Reanalysis and Observed Data
2.3. Typhoon In-fa and Study Area
2.4. Estimation of Typhoon Impact Factors
3. Results
3.1. SST Responses before, during, and after In-fa
3.2. SSS Responses before, during, and after In-fa
3.3. Chl-a Responses before, during, and after In-fa
4. Discussion
4.1. The Contribution of the Typhoon to the Change in Typical Environmental Factors
4.1.1. The Mechanism of Typhoon Effect on SST
4.1.2. The Mechanism of Typhoon Effect on SSS
4.1.3. The Mechanism of Typhoon Effect on Chl-a
4.2. The Contribution of Typhoon to Fishery Resources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, J.C.L. Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteorol. Atmos. Phys. 2005, 89, 143–152. [Google Scholar] [CrossRef]
- Ding, P.; Hu, K.; Kong, Y.; Hu, D. Numerical Simulation of Storm-induced Erosion/Deposition in Yangtze Estuary—A Case Study of Typhoon Jelawat. J. Sediment Res. 2003, 6, 18–24. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, T.; Xu, C.; Xie, Q. Upper ocean response to typhoon Kujira (2015) in the South China Sea by multiple means of observation. J. Oceanol. Limnol. 2019, 38, 314–333. [Google Scholar] [CrossRef]
- Pudov, V.D.; Petrichenko, S.A. Trail of a typhoon in the salinity field of the ocean upper layer. Izv. Atmos. Ocean Phys. 2000, 36, 645–650. [Google Scholar]
- Price, J.F. Upper Ocean Response to a Hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Price, J.F.; Morzel, J.; Niiler, P.P. Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res. Ocean. 2008, 113, C07010. [Google Scholar] [CrossRef] [Green Version]
- Chiang, T.L.; Wu, C.R.; Oey, L.Y. Typhoon Kai-Tak: An Ocean’s Perfect Storm. J. Phys. Oceanogr. 2011, 41, 221–233. [Google Scholar] [CrossRef]
- Jiang, X.; Zhong, Z.; Liu, C. The effect of typhoon-induced SST cooling on typhoon intensity: The case of Typhoon Chanchu (2006). Adv. Atmos. Sci. 2008, 25, 1062–1072. [Google Scholar] [CrossRef]
- Wang, J.; Kuang, C.; Chen, K.; Fan, D.; Qin, R.; Han, X. Wave current interaction by Typhoon Fongwong on saline water intrusion and vertical stratification in the Yangtze River Estuary. Estuar. Coast. Shelf Sci. 2022, 279, 108138. [Google Scholar] [CrossRef]
- Wang, Z.; Goodman, L. The evolution of a thin phytoplankton layer in strong turbulence. Cont. Shelf Res. 2010, 30, 104–118. [Google Scholar] [CrossRef]
- Huisman, J.; Pham Thi, N.N.; Karl, D.M.; Sommeijer, B. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 2006, 439, 322–325. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Tang, D. Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff. Mar. Ecol. Prog. Ser. 2007, 333, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Tang, D.; Wang, D. Phytoplankton blooms near the Pearl River Estuary induced by Typhoon Nuri. J. Geophys. Res. Ocean. 2009, 114, 1–9. [Google Scholar] [CrossRef]
- Zhao, H.; Han, G.; Zhang, S.; Wang, D. Two phytoplankton blooms near Luzon Strait generated by lingering Typhoon Parma. J. Geophys. Res. Biogeosci. 2013, 118, 412–421. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S. Estuarine and Coastal Challenges in China. Mar. Geol. Front. 2002, 18, 1–5. [Google Scholar] [CrossRef]
- Guo, W.; Yang, Y.; Gong, Z.; Hu, M. Variation of salitity, PH, dissolved oxygen and COD in Xiamen Bay during typhoon and rainstorm process. Mar. Sci. 2000, 25, 1–5. (In Chinese) [Google Scholar]
- Yu, J.; Tang, D.; Li, Y.; Huang, Z.; Chen, G. Increase in fish abundance during two typhoons in the South China Sea. Adv. Space Res. 2013, 51, 1734–1749. [Google Scholar] [CrossRef]
- Kawabata, Y.; Okuyama, J.; Asami, K.; Okuzawa, K.; Yoseda, K.; Arai, N. Effects of a tropical cyclone on the distribution of hatchery-reared black-spot tuskfish Choerodon schoenleinii determined by acoustic telemetry. J. Fish Biol. 2010, 77, 627–642. [Google Scholar] [CrossRef]
- Lassig, B.R. The effects of a cyclonic storm on coral reef fish assemblages. Environ. Biol. Fishes 1983, 9, 55–63. [Google Scholar] [CrossRef]
- Houde, E.D.; Bichy, J.; Jung, S. Effects of hurricane Isabel on fish populations and communities in Chesapeake Bay. In Proceedings of the Chesapeake Research Consortum, Edgewater, MD, USA, 1 January 2005; pp. 193–199. [Google Scholar]
- Qiu, Y.; Lin, Z.; Wang, Y. Responses of fish production to fishing and climate variability in the northern South China Sea. Prog. Oceanogr. 2010, 85, 197–212. [Google Scholar] [CrossRef]
- Webster, P.J.; Curry, J.A.; Liu, J.; Holland, G.J. Response to Comment on “Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment”. Science 2006, 311, 1713. [Google Scholar] [CrossRef] [Green Version]
- Mendelsohn, R.; Emanuel, K.; Chonabayashi, S.; Bakkensen, L. The impact of climate change on global tropical cyclone damage. Nature Clim. Chang. 2012, 2, 205–209. [Google Scholar] [CrossRef]
- Yu, J.; Tang, D.; Chen, G.; Li, Y.; Huang, Z.; Wang, S. The positive effects of typhoons on the fish CPUE in the South China Sea. Cont. Shelf Res. 2014, 84, 1–12. [Google Scholar] [CrossRef]
- Chuang, L.; Shieh, B.S.; Liu, C.; Lin, Y.; Liang, S. Effects of Typhoon Disturbance on the Abundances of Two Mid-Water Fish Species in a Mountain Stream of Northern Taiwan. Zool. Res. 2008, 47, 564–573. Available online: https://zoolstud.sinica.edu.tw/Journals/47.5/564 (accessed on 14 February 2023).
- Chang, N.; Shiao, J.; Gong, G. Diversity of demersal fish in the East China Sea: Implication of eutrophication and fishery. Cont. Shelf Res. 2012, 47, 42–54. [Google Scholar] [CrossRef]
- Liang, J.; Wang, W.; Xu, H.; Zhou, Y.; Xu, K.; Zhang, H.; Lu, K. Diel and seasonal variation in fish communities in the Zhongjieshan marine island reef reserve. Fish. Res. 2020, 227, 105549. [Google Scholar] [CrossRef]
- Schade, L.; Emanuel, K. The Ocean’s Effect on the Intensity of Tropical Cyclones: Results from a Simple Coupled Atmosphere–Ocean Model. J. Atmos. Sci. 1999, 56, 642–651. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Sun, C.; Wu, X. An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats. Acta Oceanol. Sin. 2014, 33, 90–101. [Google Scholar] [CrossRef]
- Tang, R.; Shen, F.; Ge, J.; Yang, S.; Gao, W. Investigating typhoon impact on SSC through hourly satellite and real-time field observations: A case study of the Yangtze Estuary. Cont. Shelf Res. 2021, 224, 104475. [Google Scholar] [CrossRef]
- Pan, J.; Huang, L.; Devlin, A.T.; Lin, H. Quantification of Typhoon-Induced Phytoplankton Blooms Using Satellite Multi-Sensor Data. Remote Sens. 2018, 10, 318. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Jiang, C.; Wu, Z.; Long, Y.; Deng, B.; Liu, X. Numerical Investigation of Fresh and Salt Water Distribution in the Pearl River Estuary during a Typhoon Using a Fully Coupled Atmosphere-Wave-Ocean Model. Water 2019, 11, 646. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.; Tomita, T. Investigating the Effects of Super Typhoon HAGIBIS in the Northwest Pacific Ocean Using Multiple Observational Data. Remote Sens. 2022, 14, 5667. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, J.; Bin, A.; Sun, S.; Zhang, G.; Huang, W.; Wang, G. Assessing responses of phytoplankton to consecutive typhoons by combining Argo, remote sensing and numerical simulation data. Sci. Total Environ. 2021, 790, 148086. [Google Scholar] [CrossRef] [PubMed]
- Groom, S.; Sathyendranath, S.; Ban, Y.; Bernard, S.; Brewin, R.; Brotas, V.; Brockmann, C.; Chauhan, P.; Choi, J. Satellite Ocean Colour: Current Status and Future Perspective. Front. Mar. Sci. 2019, 6, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banzon, V.; Smith, T.M.; Chin, T.M.; Liu, C.Y.; Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 2016, 8, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Le Traon, P.Y.; Reppucci, A.; Fanjul, E.A.; Aouf, L.; Behrens, A.; Belmonte, M.; Bentamy, A.; Bertino, L.; Brando, V.E.; Kreiner, M.B.; et al. From Observation to Information and Users: The Copernicus Marine Service Perspective. Front. Mar. Sci. 2019, 6, 234. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Zhou, M.; Liu, J.; Tang, D.; Zuo, J. HY-1C observations of the impacts of islands on suspended sediment distribution in Zhoushan Coastal Waters, China. Remote Sens. 2020, 12, 1766. [Google Scholar] [CrossRef]
- Liu, X.; Sun, L.; Yang, Y.; Zhou, X.; Chen, T. Cloud and Cloud Shadow Detection Algorithm for Gaofen-4 Satellite Data. Acta Optica Sin. 2019, 39, 438–449. [Google Scholar] [CrossRef]
- Prakash, G.; Deng, L.; Nie, J. Effect of Image Fusion on Vegetation Index Quality—A Comparative Study from Gaofen-1, Gaofen-2, Gaofen-4, Landsat-8 OLI and MODIS Imagery. Remote Sens. Environ. 2020, 12, 1550. [Google Scholar] [CrossRef]
- Cai, L.; Tang, D.; Levy, G.; Liu, D. Remote sensing of the impacts of construction in coastal waters on suspended particulate matter concentration—The case of the Yangtze River delta, China. Int. J. Remote Sens. 2016, 37, 2132–2147. [Google Scholar] [CrossRef]
- Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A multi-scale high-resolution analysis of global sea surface temperature. Remote Sens. Environ. 2017, 200, 154–169. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Yin, X.; Qiao, F. Current Status of Global Ocean Reanalysis Datasets. Adv. Earth Res. 2018, 33, 794–807. (In Chinese) [Google Scholar] [CrossRef]
- Wang, H.; You, Z.; Guo, H.; Zhang, W.; Xu, P.; Ren, K. Quality Assessment of Sea Surface Salinity from Multiple Ocean Reanalysis Products. J. Mar. Sci. Eng. 2023, 11, 54. [Google Scholar] [CrossRef]
- Wang, T.; Liu, G.; Gao, L.; Zhu, L.; Li, D. Biological responses to nine powerful typhoons in the East China Sea. Reg. Environ. Chang. 2017, 17, 465–476. [Google Scholar] [CrossRef]
- Cai, L.; Tang, R.; Yan, X.; Zhou, Y.; Jiang, J.; Yu, M. The spatial-temporal consistency of chlorophyll-a and fishery resources in the water of the Zhoushan archipelago revealed by high resolution remote sensing. Front. Mar. Sci. 2022, 9, 2053. [Google Scholar] [CrossRef]
- Price, J.F.; Sanford, T.B.; Forristall, G.Z. Forced Stage Response to a Moving Hurricane. J. Phys. Oceanogr. 1994, 24, 233–260. [Google Scholar] [CrossRef]
- Zhao, H.; Shao, J.; Han, G.; Yang, D.; Lv, J. Influence of Typhoon Matsa on Phytoplankton Chlorophyll-a in the Northwest Pacific Ocean Offshore and Alongshore. PLoS ONE 2015, 10, e0137863. [Google Scholar] [CrossRef]
- Han, G.; Ma, Z.; Chen, N. Hurricane Igor impacts on the stratification and phytoplankton bloom over the Grand Banks. J. Mar. Syst. 2012, 100, 19–25. [Google Scholar] [CrossRef]
- Yin, W.; Ma, Y.; Wang, D.; He, S.; Huang, D. Surface Upwelling off the Zhoushan Islands, East China Sea, from Himawari-8 AHI Data. Remote Sens. 2022, 14, 3261. [Google Scholar] [CrossRef]
- Yang, X.; Tang, D. Location of sea surface temperature cooling induced by typhoon in the South China Sea. J. Trop. Oceanogr. 2010, 29, 26–31. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 2003, 42, 1–20. [Google Scholar] [CrossRef]
- Guo, X.; Miyazawa, Y.; Yamagata, T. The Kuroshio Onshore Intrusion along the Shelf Break of the East China Sea: The Origin of the Tsushima Warm Current. J. Phys. Oceanogr. 2006, 36, 2205–2231. [Google Scholar] [CrossRef]
- Lin, J.; Yan, Q.; Zhu, J.; Gong, F. Analysis of thermocline and hypoxia off the Changjiang Estuary in late summer. J. Fish. Chn. 2014, 38, 1747–1757. (In Chinese) [Google Scholar]
- Yuan, J.; Liu, C. Improved scheme of axisymmetric typhoon bogus model its impact on numerical simulation of No. 0425 Typhoon. J. Trop. Meteorol. 2007, 13, 181–184. [Google Scholar]
- Yang, Y.; Xian, T.; Sun, L.; Fu, Y.; Xun, S. Impacts of sequential typhoons on sea surface temperature and sea surface height in September 2008. Acta Oceanol. Sin. 2012, 34, 71–78. (In Chinese) [Google Scholar]
- Sheng, J.; Zhai, X.; Greatbatch, R. Numerical study of the storm-induced circulation on the Scotian Shelf during Hurricane Juan using a nested-grid ocean model. Prog. Oceanogr. 2006, 70, 233–254. [Google Scholar] [CrossRef]
- Wu, R.; Li, C. Upper ocean response to the passage of two sequential typhoons. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 132, 68–79. [Google Scholar] [CrossRef]
- Ding, Z. Influences of wind on vertical structures of temperature and salinity, and upwelling off Zhejiang coast in summer. Chin. J. Oceanol. Limnol. 1985, 3, 109–117. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Wu, R.; Chen, D.; Zhang, D.; Shang, X.; Wang, Y.; Song, X.; Jin, W.; Yu, L.; et al. Sea surface current response patterns to tropical cyclones. J. Mar. Syst. 2020, 208, 103345. [Google Scholar] [CrossRef]
- Sun, L.; Li, Y.; Yang, Y.; Wu, Q.; Chen, X.; Li, Q.; Li, Y.; Xian, T. Effects of super typhoons on cyclonic ocean eddies in the western North Pacific: A satellite data-based evaluation between 2000 and 2008. J. Geophys. Res. Atmos. 2014, 119, 5585–5598. [Google Scholar] [CrossRef]
- Gong, X.; Shi, J.; Gao, H.; Yao, X. Steady-state solutions for subsurface chlorophyll maximum in stratified water columns with a bell-shaped vertical profile of chlorophyll. Biogeosciences 2015, 12, 905–919. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.B.; Nolasco, R.; Dubert, J.; Moita, T.; Peliz, Á. Surface temperature, chlorophyll and advection patterns during a summer upwelling event off central Portugal. Cont. Shelf Res. 2009, 29, 759–774. [Google Scholar] [CrossRef]
- Zhou, W.; Yin, K.; Harrison, P.J.; Lee, J.H.W. The influence of late summer typhoons and high river discharge on water quality in Hong Kong waters. Estuar. Coast. Shelf Sci. 2012, 111, 35–47. [Google Scholar] [CrossRef]
- Pennock, J.R. Chlorophyll distributions in the Delaware estuary: Regulation by light-limitation. Estuar. Coast. Shelf Sci. 1985, 21, 711–725. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Cooper, C.M.; Schiebe, F.R. The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon Lake, Mississippi. Remote Sens. Environ. 1990, 33, 137–148. [Google Scholar] [CrossRef]
- Díez-Minguito, M.; Swart, H.E. Relationships Between Chlorophyll-a and Suspended Sediment Concentration in a High-Nutrient Load Estuary: An Observational and Idealized Modeling Approach. J. Geophys. Res. Ocean. 2020, 125, e2019JC015188. [Google Scholar] [CrossRef]
- Mukherjee, S.; Chaudhuri, A.; Sen, S.; Homechaudhuri, S. Effect of Cyclone Aila on estuarine fish assemblages in the Matla River of the Indian Sundarbans. J. Trop. Ecol. 2012, 28, 405–415. [Google Scholar] [CrossRef]
- Bierman, P.; Lewis, M.; Ostendorf, B.; Tanner, J. A Review of Methods for Analysing Spatial and Temporal Patterns in Coastal Water Quality. Ecol. Indic. 2009, 11, 103–114. [Google Scholar] [CrossRef]
- Huot, Y.; Babin, M.; Bruyant, F.; Grob, C.; Twardowski, M.S.; Claustre, H. Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies? Biogeosci. Discuss. 2007, 4, 707–745. [Google Scholar] [CrossRef] [Green Version]
- Bacher, C.; Grant, J.; Fang, J.; Zhu, M.; Besnard, M. Modeling the effect of food depletion on scallop growth in Sungo Bay (China). Aquat. Living Resour. 2003, 16, 10–24. [Google Scholar] [CrossRef]
- Switzer, T.S.; Winner, B.L.; Dunham, N.M.; Whittington, J.A.; Thomas, M. Influence of sequential hurricanes on nekton communities in a Southeast Florida estuary: Short-term effects in the context of historical variations in freshwater inflow. Estuaries Coasts 2006, 29, 1011–1018. [Google Scholar] [CrossRef]
- Lin, L.; Shen, J.; Zhang, J.; Wu, H. Storm surge of Typhoon Saomai and its effect on the stow net fishing. Mar. Environ. Res. 2007, 105, 537–540. (In Chinese) [Google Scholar]
- Simon, N.S. Nitrogen cycling between sediment and the shallow-water column in the transition zone of the Potomac River and Estuary. II. The role of wind-driven resuspension and adsorbed ammonium. Estuar. Coast. Shelf Sci. 1989, 26, 483–497. [Google Scholar] [CrossRef]
- Oyadomari, J.K.; Auer, N.A. Transport and growth of larval cisco (Coregonus artedi) in the Keweenaw Current region of Lake Superior. Can. J. Fish. Aquat. Sci. 2008, 65, 1447–1458. [Google Scholar] [CrossRef]
- Zhang, Z. The relationship between typhoons and fisheries. J. Aquac. 1992, 3, 29–30. (In Chinese) [Google Scholar]
- Yu, J.; Chen, B.; Chen, Z.; Huang, Z. Theimpacts of typhoon “Kai-tak” on fishery in west Guangdong fishing ground. Mar. Environ. Res. 2015, 34, 411–419. [Google Scholar] [CrossRef]
- Greenwood, M.F.D.; Stevens, P.W.; Matheson, R.E. Effects of the 2004 hurricanes on the fish assemblages in two proximate southwest Florida estuaries: Change in the context of interannual variability. Estuaries Coast. 2006, 29, 985–996. [Google Scholar] [CrossRef]
Type | Band No. | Spectral Range (µm) | Spatiotemporal Resolution (m) | Width (km) | Revisit Time (s) |
---|---|---|---|---|---|
Near-Infrared (VINR) | B1 (Pan) | 0.45–0.90 | 50 | 400 | 20 |
B2 (Blue) | 0.45–0.52 | ||||
B3 (Green) | 0.52–0.60 | ||||
B4 (Red) | 0.63–0.69 | ||||
B5 (NIR) | 0.76–0.90 | ||||
Middle Infrared (MWIR) | B6 (MWIR) | 3.5–4.1 | 400 |
Field (Units) | Dataset | Data Source | Spatiotemporal Resolution | Recourses |
---|---|---|---|---|
SST (°C) | MUR-SST | NASA JPL PO. DAAC | 2 km/1 d | https://registry.opendata.aws/mur (accessed on 29 October 2022). |
SSS (psu) | HYCOM GOFS 3.0 | HYCOM | 0.08°/3 h | https://www.hycom.org/ (accessed on 8 November 2022) |
Chl-a (μg/L) | OCEANCOLOUR_GLO_BGC_L4_MY_009_104 | CMEMS | 4 km/1 d | https://data.marine.copernicus.eu/ (accessed on 18 November 2022) |
10 m u/v components of wind (m/s) | ERA5 | ECMWF | 0.25°/1 h | https://marine.copernicus.eu/ (accessed on 15 October 2022) |
Total precipitation (m/d) | ERA5 | ECMWF | 0.25°/1 h | https://marine.copernicus.eu/ (accessed on 24 November 2022) |
Ocean current (m/s) | HYCOM GOFS 3.0 | HYCOM | 0.08°/1 h | https://www.hycom.org/ (accessed on 28 November 22) |
Topography (m) | ETOPO1 | NOAA/NGDC | 1 arc-min | http://www.ngdc.noaa.gov/mgg/global/global.html (accessed on 12 September 2022) |
Typhoon (lat/lon) | DWRZP | Typhoon track | -- | https://typhoon.slt.zj.gov.cn/default.aspx (accessed on 31 August 2022) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, R.; Cai, L.; Yan, X.; Ye, X.; Xu, Y.; Yin, J. Study of the Response of Environmental Factors of the Coastal Area in Zhoushan Fishery to Typhoon In-fa Based on Remote Sensing. Remote Sens. 2023, 15, 3349. https://doi.org/10.3390/rs15133349
Tang R, Cai L, Yan X, Ye X, Xu Y, Yin J. Study of the Response of Environmental Factors of the Coastal Area in Zhoushan Fishery to Typhoon In-fa Based on Remote Sensing. Remote Sensing. 2023; 15(13):3349. https://doi.org/10.3390/rs15133349
Chicago/Turabian StyleTang, Rong, Lina Cai, Xiaojun Yan, Xiaomin Ye, Yuzhu Xu, and Jie Yin. 2023. "Study of the Response of Environmental Factors of the Coastal Area in Zhoushan Fishery to Typhoon In-fa Based on Remote Sensing" Remote Sensing 15, no. 13: 3349. https://doi.org/10.3390/rs15133349
APA StyleTang, R., Cai, L., Yan, X., Ye, X., Xu, Y., & Yin, J. (2023). Study of the Response of Environmental Factors of the Coastal Area in Zhoushan Fishery to Typhoon In-fa Based on Remote Sensing. Remote Sensing, 15(13), 3349. https://doi.org/10.3390/rs15133349