Sentinel-2 Time Series and Classifier Fusion to Map an Aquatic Invasive Plant Species along a River—The Case of Water-Hyacinth
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Workflow
2.2. Study Area
2.3. Target Species
2.4. Occurrence Data
2.5. Remote Sensing Data
2.6. Multi-Algorithm Supervised Classification
3. Results
3.1. Spectral Analysis and Separability of E. crassipes through Time
3.2. Classification Algorithms Performance
3.3. Eichornia crassipes Mapping
4. Discussion
4.1. Eichornia crassipes Spectral Reflectance Patterns
4.2. Predictive Modelling to Detect and Map
4.3. Limitations and Proposed Advances
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaz, A.S.; Kueffer, C.; Kull, C.A.; Richardson, D.M.; Vicente, J.R.; Kühn, I.; Schröter, M.; Hauck, J.; Bonn, A.; Honrado, J.P. Integrating Ecosystem Services and Disservices: Insights from Plant Invasions. Ecosyst. Serv. 2017, 23, 94–107. [Google Scholar] [CrossRef] [Green Version]
- European Commission. European Union Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Thamaga, K.H.; Dube, T. Remote Sensing of Invasive Water Hyacinth (Eichhornia crassipes): A Review on Applications and Challenges. Remote Sens. Appl. Soc. Environ. 2018, 10, 36–46. [Google Scholar] [CrossRef]
- May, L.; Dobel, A.J.; Ongore, C. Controlling Water Hyacinth (Eichhornia crassipes (Mart.) Solms): A Proposed Framework for Preventative Management. Inland Waters 2021, 12, 163–172. [Google Scholar] [CrossRef]
- Cuthbert, R.N.; Pattison, Z.; Taylor, N.G.; Verbrugge, L.; Diagne, C.; Ahmed, D.A.; Leroy, B.; Angulo, E.; Briski, E.; Capinha, C.; et al. Global Economic Costs of Aquatic Invasive Alien Species. Sci. Total Environ. 2021, 775, 145238. [Google Scholar] [CrossRef] [PubMed]
- Janssen, A.B.G.; Hilt, S.; Kosten, S.; de Klein, J.J.M.; Paerl, H.W.; Van de Waal, D.B. Shifting States, Shifting Services: Linking Regime Shifts to Changes in Ecosystem Services of Shallow Lakes. Freshw. Biol. 2021, 66, 1–12. [Google Scholar] [CrossRef]
- Basu, A.; Hazra, A.K.; Chaudhury, S.; Ross, A.B.; Balachandran, S. State of the Art Research on Sustainable Use of Water Hyacinth: A Bibliometric and Text Mining Analysis. Informatics 2021, 8, 38. [Google Scholar] [CrossRef]
- Sabater, S.; Elosegi, A. Balancing Conservation Needs with Uses of River Ecosystems. Acta Biol. Colomb. 2014, 19, 3–10. [Google Scholar] [CrossRef]
- Oficialdegui, F.J.; Zamora-Marín, J.M.; Guareschi, S.; Anastácio, P.M.; García-Murillo, P.; Ribeiro, F.; Miranda, R.; Cobo, F.; Gallardo, B.; García-Berthou, E.; et al. A Horizon Scan Exercise for Aquatic Invasive Alien Species in Iberian Inland Waters. Sci. Total Environ. 2023, 869, 161798. [Google Scholar] [CrossRef]
- Aguiar, F.C.F.; Ferreira, M.T. Plant Invasions in the Rivers of the Iberian Peninsula, South-Western Europe: A Review. Plant Biosyst. 2013, 147, 1107–1119. [Google Scholar] [CrossRef]
- Thamaga, K.H.; Dube, T. Understanding Seasonal Dynamics of Invasive Water Hyacinth (Eichhornia crassipes) in the Greater Letaba River System Using Sentinel-2 Satellite Data. GIScience Remote Sens. 2019, 56, 1355–1377. [Google Scholar] [CrossRef]
- Villamagna, A.M.; Murphy, B.R. Ecological and Socio-Economic Impacts of Invasive Water Hyacinth (Eichhornia crassipes): A Review. Freshw. Biol. 2010, 55, 282–298. [Google Scholar] [CrossRef]
- Hall, S.A.; Bastos, R.; Vicente, J.; Vaz, A.S.; Honrado, J.P.; Holmes, P.M.; Gaertner, M.; Esler, K.J.; Cabral, J.A. A Dynamic Modeling Tool to Anticipate the Effectiveness of Invasive Plant Control and Restoration Recovery Trajectories in South African Fynbos. Restor. Ecol. 2021, 29, e13324. [Google Scholar] [CrossRef]
- Pádua, L.; Antão-Geraldes, A.M.; Sousa, J.J.; Rodrigues, M.Â.; Oliveira, V.; Santos, D.; Miguens, M.F.P.; Castro, J.P. Water Hyacinth (Eichhornia crassipes) Detection Using Coarse and High Resolution Multispectral Data. Drones 2022, 6, 47. [Google Scholar] [CrossRef]
- Datta, A.; Maharaj, S.; Prabhu, G.N.; Bhowmik, D.; Marino, A.; Akbari, V.; Rupavatharam, S.; Sujeetha, J.A.R.P.; Anantrao, G.G.; Poduvattil, V.K.; et al. Monitoring the Spread of Water Hyacinth (Pontederia crassipes): Challenges and Future Developments. Front. Ecol. Evol. 2021, 9, 631338. [Google Scholar] [CrossRef]
- Kleinschroth, F.; Winton, R.S.; Calamita, E.; Niggemann, F.; Botter, M.; Wehrli, B.; Ghazoul, J. Living with Floating Vegetation Invasions. Ambio 2021, 50, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Mukarugwiro, J.A.; Newete, S.W.; Adam, E.; Nsanganwimana, F.; Abutaleb, K.; Byrne, M.J. Mapping Spatio-Temporal Variations in Water Hyacinth (Eichhornia crassipes) Coverage on Rwandan Water Bodies Using Multispectral Imageries. Int. J. Environ. Sci. Technol. 2021, 18, 275–286. [Google Scholar] [CrossRef]
- State, P. Erratum Regarding Missing Declaration of Competing Interest Statements in Previously Published Articles. Remote Sens. Appl. Soc. Environ. 2021, 21, 100453. [Google Scholar] [CrossRef]
- Karouach, F.; Ben Bakrim, W.; Ezzariai, A.; Sobeh, M.; Kibret, M.; Yasri, A.; Hafidi, M.; Kouisni, L. A Comprehensive Evaluation of the Existing Approaches for Controlling and Managing the Proliferation of Water Hyacinth (Eichhornia crassipes): Review. Front. Environ. Sci. 2022, 9, 767871. [Google Scholar] [CrossRef]
- Silva, T.S.F.; Costa, M.P.F.; Melack, J.M.; Novo, E.M.L.M. Remote Sensing of Aquatic Vegetation: Theory and Applications. Environ. Monit. Assess. 2008, 140, 131–145. [Google Scholar] [CrossRef]
- Rowan, G.S.L.; Kalacska, M. A Review of Remote Sensing of Submerged Aquatic Vegetation for Non-specialists. Remote Sens. 2021, 13, 623. [Google Scholar] [CrossRef]
- Wang, P.; Bayram, B.; Sertel, E. A Comprehensive Review on Deep Learning Based Remote Sensing Image Super-Resolution Methods. Earth Sci. Rev. 2022, 232, 104110. [Google Scholar] [CrossRef]
- Dash, J.P.; Hartley, R.; Watt, M.S.; Paul, T.S.H.; Morgenroth, J. Taking a Closer Look at Invasive Alien Plant Research: A Review of the Current State, Opportunities, and Future Directions for UAVs. Methods Ecol. Evol. 2020, 10, 2020–2033. [Google Scholar] [CrossRef] [Green Version]
- Elkind, K.; Sankey, T.T.; Munson, S.M.; Aslan, C.E. Invasive Buffelgrass Detection Using High-Resolution Satellite and UAV Imagery on Google Earth Engine. Remote Sens. Ecol. Conserv. 2019, 5, 318–331. [Google Scholar] [CrossRef]
- Martin, F.M.; Müllerová, J.; Borgniet, L.; Dommanget, F.; Breton, V.; Evette, A. Using Single- and Multi-Date UAV and Satellite Imagery to Accurately Monitor Invasive Knotweed Species. Remote Sens. 2018, 10, 1662. [Google Scholar] [CrossRef] [Green Version]
- Holden, P.B.; Rebelo, A.J.; New, M.G. Mapping Invasive Alien Trees in Water Towers: A Combined Approach Using Satellite Data Fusion, Drone Technology and Expert Engagement. Remote Sens. Appl. Soc. Environ. 2021, 21, 100448. [Google Scholar] [CrossRef]
- Thuiller, W.; Georges, D.; Robin, E.; Breiner, F.; Engler, R.; Breiner, F. Package “biomod2” Type Package Title Ensemble Platform for Species Distribution Modeling; R Foundation: Vienna, Austria, 2020. [Google Scholar]
- Georges, D.; Engler, R.; Breiner, F.; Georges, M.D.; Thuiller, C.W. Package ‘Biomod2′ February; R Foundation: Vienna, Austria, 2003. [Google Scholar]
- Mouta, N.; Silva, R.; Pais, S.; Alonso, J.M.; Gonçalves, J.F.; Honrado, J.; Vicente, J.R. ‘The Best of Two Worlds’—Combining Classifier Fusion and Ecological Models to Map and Explain Landscape Invasion by an Alien Shrub. Remote Sens. 2021, 13, 3287. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A Platform for Ensemble Forecasting of Species Distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Fernandes, R.F.; Vicente, J.R.; Georges, D.; Alves, P.; Thuiller, W.; Honrado, J.P. A Novel Downscaling Approach to Predict Plant Invasions and Improve Local Conservation Actions. Biol. Invasions 2014, 16, 2577–2590. [Google Scholar] [CrossRef]
- Huang, C.; Asner, G. Applications of Remote Sensing to Alien Invasive Plant Studies. Sensors 2009, 9, 4869. [Google Scholar] [CrossRef] [Green Version]
- Janssens, N.; Schreyers, L.; Biermann, L.; Van Der Ploeg, M.; Bui, T.K.L.; Van Emmerik, T. Rivers Running Green: Water Hyacinth Invasion Monitored from Space. Environ. Res. Lett. 2022, 17, 044069. [Google Scholar] [CrossRef]
- Rowan, G.; Kalacska, M. Remote Sensing of Submerged Aquatic Vegetation: An Introduction and Best Practices Review. Available online: https://www.researchgate.net/publication/343210031_Remote_sensing_of_submerged_aquatic_vegetation_an_introduction_and_best_practices_review (accessed on 3 May 2023).
- Fawad, M.; Jamal, A. Water Hyacinth: Utilization and Impact on Diversity. Black Sea J. Agric. 2019, 2, 58–62. [Google Scholar]
- García-De-lomas, J.; Dana, E.D.; Borrero, J.; Yuste, J.; Corpas, A.; Boniquito, J.M.; Castilleja, F.J.; Martínez, J.M.; Rodríguez, C.; Verloove, F. Rapid Response to Water Hyacinth (Eichhornia crassipes) Invasion in the Guadalquivir River Branch in Seville (Southern Spain). Manag. Biol. Invasions 2022, 13, 724–736. [Google Scholar] [CrossRef]
- Falquina, R.; De, A.; Cabos, W.; Sein, D.; Gallardo, C. Impact of Ocean-Atmosphere Coupling on Present and Future Köppen-Geiger Climate Classification in Europe. Atmos. Res. 2022, 275, 106223. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. REGULATION (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the Prevention and Management of the Introduction and Spread of Invasive Alien Species. Off. J. Eur. Union 2014, 2014, 35–55. [Google Scholar]
- Strange, E.F.; Landi, P.; Hill, J.M.; Coetzee, J.A. Modeling Top-down and Bottom-up Drivers of a Regime Shift in Invasive Aquatic Plant Stable States. Front. Plant Sci. 2019, 10, 889. [Google Scholar] [CrossRef] [PubMed]
- Otieno, D.; Nyaboke, H.; Nyamweya, C.S.; Odoli, C.O.; Aura, C.M.; Outa, N.O. Water Hyacinth (Eichhornia crassipes) Infestation Cycle and Interactions with Nutrients and Aquatic Biota in Winam Gulf (Kenya), Lake Victoria. Lakes Reserv. Res. Manag. 2022, 27, e12391. [Google Scholar] [CrossRef]
- Richards, J.H.; Lee, D.W. Light Effects on Leaf Morphology in Water Hyacinth (Eichhornia crassipes). Am. J. Bot. 1986, 73, 1741–1747. [Google Scholar] [CrossRef]
- Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-Resolution of Sentinel-2 Images: Learning a Globally Applicable Deep Neural Network. ISPRS J. Photogramm. Remote Sens. 2018, 146, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of Biophysical Variables in Vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Thakur, S.; Mondal, I.; Ghosh, P.B.; Das, P.; De, T.K. A Review of the Application of Multispectral Remote Sensing in the Study of Mangrove Ecosystems with Special Emphasis on Image Processing Techniques. Spat. Inf. Res. 2020, 28, 39–51. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for Geological Applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Mucheye, T.; Haro, S.; Papaspyrou, S.; Caballero, I. Water Quality and Water Hyacinth Monitoring with the Sentinel-2A/B Satellites in Lake Tana (Ethiopia). Remote Sens. 2022, 14, 4921. [Google Scholar] [CrossRef]
- Cai, J.; Jiao, C.; Mekonnen, M.; Legesse, S.A.; Ishikawa, K.; Wondie, A.; Sato, S. Water Hyacinth Infestation in Lake Tana, Ethiopia: A Review of Population Dynamics. Limnology 2023, 24, 51–60. [Google Scholar] [CrossRef]
- Bayable, G.; Cai, J.; Mekonnen, M.; Legesse, S.A.; Ishikawa, K.; Imamura, H.; Kuwahara, V.S. Detection of Water Hyacinth (Eichhornia crassipes) in Lake Tana, Ethiopia, Using Machine Learning Algorithms. Water 2023, 15, 880. [Google Scholar] [CrossRef]
- Potgieter, L.J.; Shrestha, N.; Cadotte, M.W. Prioritizing Sites for Terrestrial Invasive Alien Plant Management in Urban Ecosystems. Ecol. Solut. Evid. 2022, 3, e12160. [Google Scholar] [CrossRef]
- Tucker, A.J.; Chadderton, W.L.; Annis, G.; Davidson, A.D.; Hoffman, J.; Bossenbroek, J.; Hensler, S.; Hoff, M.; Jensen, E.; Kashian, D.; et al. A Framework for Aquatic Invasive Species Surveillance Site Selection and Prioritization in the Us Waters of the Laurentian Great Lakes. Manag. Biol. Invasions 2020, 11, 607–632. [Google Scholar] [CrossRef]
- Faraway, J.J. Generalized Linear Models. In International Encyclopedia of Education, 3rd ed.; Peterson, P., Baker, E., McGaw, B., Eds.; Elsevier: Oxford, UK, 2010; pp. 178–183. [Google Scholar] [CrossRef]
- Hadad, H.R.; Mufarrege, M.M.; Di Luca, G.A.D.; Maine, M.A. Salinity and PH Effects on Floating and Emergent Macrophytes in a Constructed Wetland. Water Sci. Technol. 2018, 2017, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Ade, C.; Khanna, S.; Lay, M.; Ustin, S.L.; Hestir, E.L. Genus-Level Mapping of Invasive Floating Aquatic Vegetation Using Sentinel-2 Satellite Remote Sensing. Remote Sens. 2022, 14, 3013. [Google Scholar] [CrossRef]
Classification Algorithm | TSS | ROC | KAPPA | |||
---|---|---|---|---|---|---|
Average | Standard Deviation | Average | Standard Deviation | Average | Standard Deviation | |
RF | 0.777 | 0.146 | 0.697 | 0.135 | 0.891 | 0.091 |
GLM | 0.846 | 0.121 | 0.747 | 0.132 | 0.956 | 0.041 |
FDA | 0.674 | 0.224 | 0.639 | 0.151 | 0.885 | 0.116 |
ANN | 0.787 | 0.142 | 0.698 | 0.128 | 0.913 | 0.081 |
MAX.2 | 0.831 | 0.092 | 0.734 | 0.138 | 0.957 | 0.032 |
CTA | 0.628 | 0.157 | 0.571 | 0.139 | 0.830 | 0.079 |
Classification Algorithm | Testing | Cutoff | Sensitivity | Specificity |
---|---|---|---|---|
KAPPA | 0.826 | 518 | 78.94 | 99.49 |
TSS | 0.932 | 279 | 97.36 | 95.85 |
ROC | 0.992 | 283 | 97.36 | 96.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouta, N.; Silva, R.; Pinto, E.M.; Vaz, A.S.; Alonso, J.M.; Gonçalves, J.F.; Honrado, J.; Vicente, J.R. Sentinel-2 Time Series and Classifier Fusion to Map an Aquatic Invasive Plant Species along a River—The Case of Water-Hyacinth. Remote Sens. 2023, 15, 3248. https://doi.org/10.3390/rs15133248
Mouta N, Silva R, Pinto EM, Vaz AS, Alonso JM, Gonçalves JF, Honrado J, Vicente JR. Sentinel-2 Time Series and Classifier Fusion to Map an Aquatic Invasive Plant Species along a River—The Case of Water-Hyacinth. Remote Sensing. 2023; 15(13):3248. https://doi.org/10.3390/rs15133248
Chicago/Turabian StyleMouta, Nuno, Renato Silva, Eva M. Pinto, Ana Sofia Vaz, Joaquim M. Alonso, João F. Gonçalves, João Honrado, and Joana R. Vicente. 2023. "Sentinel-2 Time Series and Classifier Fusion to Map an Aquatic Invasive Plant Species along a River—The Case of Water-Hyacinth" Remote Sensing 15, no. 13: 3248. https://doi.org/10.3390/rs15133248
APA StyleMouta, N., Silva, R., Pinto, E. M., Vaz, A. S., Alonso, J. M., Gonçalves, J. F., Honrado, J., & Vicente, J. R. (2023). Sentinel-2 Time Series and Classifier Fusion to Map an Aquatic Invasive Plant Species along a River—The Case of Water-Hyacinth. Remote Sensing, 15(13), 3248. https://doi.org/10.3390/rs15133248