A Case Study on the Effect of Atmospheric Density Calibration on Orbit Predictions with Sparse Angular Data
Abstract
:1. Introduction
2. Method: ADM Calibration
- Data: The data used in the study include TLE and angular data.
- Preprocessing: TLE preprocessing involves generating a prior orbit using TLE. Angular data preprocessing first requires outlier detection and removal. Then, the observation values are matched with TLE to identify, which space objects the observation belongs to. Finally, space objects with high-precision, dense distribution, and long duration of angular data are selected as calibration objects, and others are used as validation objects.
- ADM calibration: We use two methods, ADMC and HASDM, respectively. The difference between the two methods is that ADMC requires setting sensitivity coefficients, for example, for DTM78, all coefficients (187) can be selected, or some coefficients can be selected. In our study, we chose non-zero coefficients among all coefficients as sensitive coefficients. Using HASDM requires setting calibration parameters, which refer to the parameters of spherical harmonic functions. Since our obtained angular data are sparse, we only set 13 calibration parameters, and calculate them every three days.
- OD/OP: Orbit determination and prediction are carried out based on angular data of calibration objects and validation objects, respectively, using the original ADM, ADM corrected by HASDM, and ADM corrected by ADMC.
- OP error calculation: The difference between the previous predicted orbit and the reference orbit is calculated using future observation values or future orbits as the reference orbit.
3. Results
3.1. ADM Calibration and Assessment Procedure
3.2. Example OP Errors without ADM Calibration
3.3. Example OP Errors with ADM Calibration
3.4. Example OP Errors of Non-Calibration Object
3.5. Detailed Analysis on the OP Error Reductions on the Calibration and Non-Calibration Objects
3.6. OP Errors for Objects outside the Calibration Region
3.7. Example OP Errors of Objects with Small and Large Ballistic Coefficients
4. Discussion
- (1)
- Accuracy: The ADM correction can effectively improve the accuracy of space object OD and OP. Before correction, the OP error of the ADM may be significant. Correction can provide more accurate OP results.
- (2)
- Near Real-Time: Using monitoring data within a few days (usually 3–7 days) for ADM correction can ensure near real-time corrections.
- (3)
- Feasibility: The ADM correction method has relatively low cost and does not require complex engineering design. Additionally, the method has been previously applied and can meet practical application demands.
- (4)
- Science: The ADM correction method is based on physical principles and calibrated by real measurement data; thus, it boasts a degree of scientific foundation.
- (1)
- Monitoring Data: The ADM correction method requires a certain amount of high-quality monitoring data. Insufficient or poor-quality monitoring data may hinder the correction effect.
- (2)
- OD Accuracy: Establishing an accurate orbit model is necessary for the ADM correction process. Low OD accuracy could lead to error accumulation and affect correction outcomes.
- (3)
- Correction Window: Many factors affect the variation of the ADM, including solar activity and the Earth’s magnetic field. Thus, selecting an appropriate time frame for correction that avoids these interferences is crucial.
- (4)
- Time Length: As the ADM often undergoes annual changes, when selecting a few days (usually 3–7 days) of monitoring data for the correction, historical performance and future variations must be considered simultaneously.
- (1)
- Model accuracy: By correcting the ADM, the accuracy of space debris OP can be improved, enhancing people’s understanding of space debris motion.
- (2)
- Prediction time: The corrected ADM can increase the effectiveness of space debris OP and make it more lasting or transient, thus effectively reducing adverse effects such as misjudgment or missed-events.
- (3)
- Adaptability: In future space activities, with the continuous promotion of new technology, more types and more complex space debris may appear. Therefore, correcting the ADM will help better adapt to future space debris OP requirements.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Apogee altitude |
ADM | Atmospheric mass density model |
ADMC | Atmospheric mass density model coefficient |
BC | Ballistic coefficient |
CHAMP | Challenging mini-satellite payload |
DTM | Drag temperature model |
EUV | Extreme ultraviolet. |
Exp | Experiment |
FUV | Far ultraviolet. |
LDEF | Long Duration Exposure Facility |
GNSS | Global navigation satellite system |
GRACE | Gravity recovery and climate experiment |
HASDM | High accuracy satellite drag model |
INC | Inclination |
J71 | Jacchia 1971 |
JB | Jacchia Bowman |
LEO | Low-Earth orbit |
MSIS | Mass spectrometer incoherent scatter radar |
NORAD | North American Aerospace Defense Command |
NRLMSISE | Naval research laboratory mass spectrometer and incoherent scatter radar extended |
OD | Orbit determination |
OP | Orbit prediction |
PA | Perigee altitude |
RMS | Root mean square |
RMSE | Root mean square error |
SGP4 | Simple general perturbation 4 |
SLR | Satellite laser ranging |
SMM | Solar maximum mission |
SOHO | Solar and heliospheric observatory |
TIEGCM | The thermosphere–ionosphere–electrodynamics general circulation model |
TLE | Two-line element |
References
- Puente, C.; Saenz-Nuno, M.A.; Villa-Monte, A.; Olivas, J.A. Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions. Mathematics 2021, 9, 2040. [Google Scholar] [CrossRef]
- Strugarek, D.; Sosnica, K.; Arnold, D.; Jaggi, A.; Zajdel, R.; Bury, G. Satellite laser ranging to GNSS-based Swarm orbits with handling of systematic errors. GPS Solut. 2022, 26, 140. [Google Scholar] [CrossRef]
- Najder, J.; Sosnica, K. Quality of Orbit Predictions for Satellites Tracked by SLR Stations. Remote Sens. 2021, 13, 1377. [Google Scholar] [CrossRef]
- Kelso, T.S. Analysis of the iridium 33 cosmos 2251 collision. In Proceedings of the AAS Space Flight Mechanics Meeting, Savannah, Georgia, 8–12 February 2009. [Google Scholar]
- Pirovano, L.; Armellin, R.; Siminski, J.; Flohrer, T. Differential algebra enabled multi-target tracking for too-short arcs. Acta Astronaut. 2021, 182, 310–324. [Google Scholar] [CrossRef]
- Sang, J.; Bennett, J.C.; Smith, C. Experimental results of debris orbit predictions using sparse tracking data from Mt. Stromlo. Acta Astronaut. 2014, 102, 258–268. [Google Scholar] [CrossRef]
- Levit, C.; Marshall, W. Improved orbit predictions using two-line elements. Adv. Space Res. 2011, 47, 1107–1115. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Lin, C. Research on Enhanced Orbit Prediction Techniques Utilizing Multiple Sets of Two-Line Element. Aerospace 2023, 10, 532. [Google Scholar] [CrossRef]
- Paul, S.N.; Licata, R.J.; Mehta, P.M. Advanced ensemble modeling method for space object state prediction accounting for uncertainty in atmospheric density. Adv. Space Res. 2023, 71, 2535–2549. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, B.; Meng, X.; Tang, X.; Yan, F.; Zhang, X.; Bai, W.; Du, Q.; Wang, X.; Cai, Y.; et al. Analysis of Orbital Atmospheric Density from QQ-Satellite Precision Orbits Based on GNSS Observations. Remote Sens. 2022, 14, 3873. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Tian, J.; Yin, Z.; Liu, M.; Zheng, W. Atmospheric Density Inversion Based on Swarm-C Satellite Accelerometer. Appl. Sci. 2023, 13, 3610. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Zheng, W.; Ge, L.; Tian, J.; Liu, Y.; Yang, B.; Liu, S. Evaluation of Empirical Atmospheric Models Using Swarm-C Satellite Data. Atmosphere 2022, 13, 294. [Google Scholar] [CrossRef]
- Jacchia, L. Revised Static Models of the Thermosphere and Exosphere with Empircial Temperature Profiles; Jacchia, L.G., Ed.; Smithsonian Inatitution Astrophysical Observatory Cambridge: Massachusetts, MA, USA, 1971; pp. 80–90. [Google Scholar]
- Bowman, B.R.; Tobiska, W.K.; Marcos, F.A.; Valladares, C. The JB2006 empirical thermospheric density model. J. Atmos. Sol. Terr. Phys. 2008, 70, 774–793. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, SIA-15. [Google Scholar] [CrossRef]
- Emmert, J.T.; Drob, D.P.; Picone, J.M.; Siskind, D.E.; Jones, M., Jr.; Mlynczak, M.G.; Bernath, P.F.; Chu, X.; Doornbos, E.; Funke, B.; et al. NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities. Earth Space Sci. 2021, 8, 31. [Google Scholar] [CrossRef]
- Bruinsma, S.; Boniface, C. The operational and research DTM-2020 thermosphere models. J. Space Weather Space Clim. 2021, 11, 15. [Google Scholar] [CrossRef]
- Vallado, D.A.; Finkleman, D. A critical assessment of satellite drag and atmospheric density modeling. Acta Astronaut. 2014, 95, 141–165. [Google Scholar] [CrossRef]
- Bruinsma, S.; Boniface, C.; Sutton, E.K.; Fedrizzi, M. Thermosphere modeling capabilities assessment: Geomagnetic storms. J. Space Weather Space Clim. 2021, 11, 10. [Google Scholar] [CrossRef]
- Roelke, E.; McMahon, J.W.; Braun, R.D.; Hattis, P.D. Atmospheric Density Estimation Techniques for Aerocapture. J. Spacecr. Rocket. 2023, 60, 942–956. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, D.; Zhang, H.; Tang, G. A Novel Tightly-Coupled SINS/RCNS Integrated Navigation Method Considering Atmospheric Density Error. IEEE Trans. Instrum. Meas. 2023, 72, 8503011. [Google Scholar] [CrossRef]
- Marcos, F.A.; Kendra, M.J.; Griffin, J.M.; Bass, J.N.; Larson, D.R.; Liu, J.J. Precision low Earth orbit determination using atmospheric density calibration. J. Astronaut. Sci. 1998, 46, 395–409. [Google Scholar] [CrossRef]
- Mehta, P.M.; Walker, A.C.; Sutton, E.K.; Godinez, H.C. New density estimates derived using accelerometers on board the CHAMP and GRACE satellites. Space Weather 2017, 15, 558–576. [Google Scholar] [CrossRef]
- Doornbos, E.; Klinkrad, H.; Visser, P. Use of two-line element data for thermosphere neutral density model calibration. Adv. Space Res. 2008, 41, 1115–1122. [Google Scholar] [CrossRef]
- Storz, M.F.; Bowman, B.R.; Branson, M.J.I.; Casali, S.J.; Tobiska, W.K. High accuracy satellite drag model (HASDM). Adv. Space Res. 2005, 36, 2497–2505. [Google Scholar] [CrossRef]
- Tobiska, W.K.; Bowman, B.R.; Bouwer, S.D.; Cruz, A.; Wahl, K.; Pilinski, M.D.; Mehta, P.M.; Licata, R.J. The SET HASDM Density Database. Space Weather Int. J. Res. Appl. 2021, 19, e2020SW002682. [Google Scholar] [CrossRef]
- Licata, R.J.; Mehta, P.M.; Tobiska, W.K.; Huzurbazar, S. Machine-Learned HASDM Thermospheric Mass Density Model With Uncertainty Quantification. Space Weather Int. J. Res. Appl. 2022, 20, e2021SW002915. [Google Scholar] [CrossRef]
- Sang, J.; Zhang, K. A New Concept of Real Time Improvement of Atmospheric Mass Density Models and Its Validation Using CHAMP GPS-Derived Precision Orbit Data. J. Glob. Position. Syst. 2010, 9, 104–111. [Google Scholar]
- Sutton, E.K.; Cable, S.B.; Lin, C.S.; Qian, L.Y.; Weimer, D.R. Thermospheric basis functions for improved dynamic calibration of semi-empirical models. Space Weather Int. J. Res. Appl. 2012, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Perez, D.; Bevilacqua, R. Neural Network based calibration of atmospheric density models. Acta Astronaut. 2015, 110, 58–76. [Google Scholar] [CrossRef]
- Lei, X.; Li, Z.; Du, J.; Chen, J.; Sang, J.; Liu, C. Identification of uncatalogued LEO space objects by a ground-based EO array. Adv. Space Res. 2021, 67, 350–359. [Google Scholar] [CrossRef]
- Emmert, J. Thermospheric mass density: A review. Adv. Space Res. 2015, 56, 773–824. [Google Scholar] [CrossRef]
Object No. | NORAD ID | INC | PA | AA | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4814 | 81 | 448 | 485 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
2 | 13153 | 81 | 455 | 459 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
3 | 14819 | 82 | 477 | 499 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
4 | 16326 | 83 | 518 | 534 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
5 | 16881 | 83 | 524 | 547 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
6 | 19046 | 98 | 533 | 587 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
7 | 26034 | 98 | 537 | 553 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
8 | 28738 | 97 | 523 | 542 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
9 | 33323 | 98 | 587 | 622 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
10 | 34839 | 97 | 468 | 509 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 36119 | 97 | 478 | 483 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
12 | 38997 | 97 | 442 | 460 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
13 | 40925 | 97 | 461 | 478 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
14 | 41461 | 98 | 434 | 684 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
15 | 6350 | 51 | 496 | 516 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 10095 | 76 | 565 | 620 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
17 | 11267 | 83 | 591 | 612 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
18 | 13068 | 81 | 530 | 561 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
19 | 13154 | 81 | 544 | 600 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
20 | 22286 | 83 | 591 | 619 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
21 | 37182 | 97 | 471 | 477 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
22 | 39227 | 98 | 552 | 554 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
23 | 39771 | 98 | 577 | 600 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
Experiment Number | Calibration Date (in September 2017) | Number of Calibration Objects | Number of Non-Calibration Objects |
---|---|---|---|
1 | 1–3 | 21 | 13 |
2 | 4–6 | 17 | 6 |
3 | 13–15 | 18 | 11 |
4 | 19–21 | 14 | 9 |
5 | 22–24 | 23 | 13 |
6 | 25–27 | 17 | 9 |
OP Time (Days) | Exp 1 | Exp 2 | Exp 3 | Exp 4 | Exp 5 | Exp 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | |
1 | - | - | 41 | 53 | - | - | 35 | 39 | 60 | 72 | 62 | 63 |
2 | 66 | 53 | - | - | 59 | 68 | 51 | 61 | 54 | 60 | 65 | 46 |
3 | 70 | 40 | 51 | 47 | 57 | 75 | 47 | 51 | 62 | 74 | 44 | 32 |
4 | 68 | 33 | - | - | 59 | 68 | 46 | 51 | 64 | 70 | - | - |
5 | 88 | 27 | - | - | 55 | 66 | 47 | 45 | 66 | 62 | - | - |
6 | 76 | 27 | 45 | 43 | 73 | 79 | 60 | 73 | 74 | 67 | - | - |
7 | 93 | 17 | 61 | 52 | 49 | 57 | 54 | 58 | - | - | - | - |
OP Time (Days) | Exp 1 | Exp 2 | Exp 3 | Exp 4 | Exp 5 | Exp 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | |
1 | - | - | 9 | 8 | - | - | 37 | 51 | 48 | 60 | 33 | 36 |
2 | 63 | 52 | - | - | 41 | 43 | 23 | 29 | 49 | 49 | 43 | 31 |
3 | 61 | 31 | 34 | 27 | - | - | 21 | 28 | 44 | 51 | 45 | 28 |
4 | 51 | 34 | - | - | 38 | 40 | 74 | 76 | 55 | 54 | - | - |
5 | 53 | 30 | - | - | 72 | 68 | 67 | 79 | 37 | 48 | - | - |
6 | 30 | 0 | 76 | 58 | 56 | 60 | 87 | 91 | 35 | 43 | - | - |
7 | 54 | 24 | 43 | 34 | 85 | 99 | 88 | 90 | - | - | - | - |
OP Time Span (Days) | Exp 1 | Exp 2 | Exp 3 | Exp 4 | Exp 5 | Exp 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | ADMC | HASDM | |
1 | - | - | −3 | −7 | - | - | 9 | −4 | 14 | 15 | 51 | 36 |
2 | 28 | 26 | - | - | 26 | 30 | 32 | 24 | 28 | 25 | 52 | 22 |
3 | 27 | 17 | 21 | 21 | 44 | 33 | 37 | 28 | 28 | 26 | 38 | 39 |
4 | 91 | 23 | - | - | 60 | 51 | 43 | 35 | 32 | 32 | - | - |
5 | 63 | 46 | - | - | 47 | 38 | 43 | 37 | 39 | 31 | - | - |
6 | 46 | 25 | 23 | 16 | 50 | 41 | 50 | 35 | 22 | 24 | - | - |
7 | 13 | 6 | 26 | 23 | 36 | 28 | 44 | 31 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Sang, J.; Li, Z.; Liu, C. A Case Study on the Effect of Atmospheric Density Calibration on Orbit Predictions with Sparse Angular Data. Remote Sens. 2023, 15, 3128. https://doi.org/10.3390/rs15123128
Chen J, Sang J, Li Z, Liu C. A Case Study on the Effect of Atmospheric Density Calibration on Orbit Predictions with Sparse Angular Data. Remote Sensing. 2023; 15(12):3128. https://doi.org/10.3390/rs15123128
Chicago/Turabian StyleChen, Junyu, Jizhang Sang, Zhenwei Li, and Chengzhi Liu. 2023. "A Case Study on the Effect of Atmospheric Density Calibration on Orbit Predictions with Sparse Angular Data" Remote Sensing 15, no. 12: 3128. https://doi.org/10.3390/rs15123128
APA StyleChen, J., Sang, J., Li, Z., & Liu, C. (2023). A Case Study on the Effect of Atmospheric Density Calibration on Orbit Predictions with Sparse Angular Data. Remote Sensing, 15(12), 3128. https://doi.org/10.3390/rs15123128