Estimation of Forest Fire Burned Area by Distinguishing Non-Photosynthetic and Photosynthetic Vegetation Using Triangular Space Method
Abstract
:1. Introduction
2. Methodology
2.1. NPV-BS Separation Index Selection
2.2. Experimental Design and Spectral Measurements
2.2.1. Experimental Design
2.2.2. Spectral Measurements
3. Results
3.1. Laboratory Results
3.1.1. Pre- and Post-Fire NSSI-NDVI Triangular Space
3.1.2. Changes in the Abundance of Each Component Pre- and Post-Fire
3.2. Satellite Image Data Results
3.2.1. Study Area and Data Processing
3.2.2. Component Transformation
3.2.3. Changes in Cover of Each Fractions Pre- and Post-Forest Fire
3.2.4. Estimation of Forest Fire Burned Area by Distinguishing NPV and PV
- (1)
- Estimation of burned area
- (2)
- Accuracy validation
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, L.T.; Brotons, L. Using fire to promote biodiversity. Science 2017, 355, 1264–1265. [Google Scholar] [CrossRef] [PubMed]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Pilar Martin, M.; Vilar, L.; Martinez, J.; Martin, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef]
- Thonicke, K.; Spessa, A.; Prentice, I.C.; Harrison, S.P.; Dong, L.; Carmona-Moreno, C. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: Results from a process-based model. Biogeosciences 2010, 7, 2191. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; van Leeuwen, T.T. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—Part 2: Carbon emissions and the role of fires in the global carbon balance. Geosci. Model Dev. 2015, 8, 1321–1338. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Lewis, S.L.; Edwards, D.P.; Galbraith, D. Increasing human dominance of tropical forests. Science 2015, 349, 827–832. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, Y.; Liu, Z. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can. J. For. Res. 2015, 45, 783–792. [Google Scholar] [CrossRef]
- Dios, J.R.M.D.; Arrue, B.C.; Ollero, A.; Merino, L.; Gomez-Rodriguez, F. Computer vision techniques for forest fire perception. Image Vision Comput. 2008, 26, 550–562. [Google Scholar] [CrossRef]
- Kolaric, D.; Skala, K.; Dubravic, A. Integrated system for forest fire early detection and management. Period Biol. 2008, 110, 205–211. [Google Scholar]
- Daldegan, G.A.; Roberts, D.A.; Ribeiro, F.D.F. Spectral mixture analysis in Google Earth Engine to model and delineate fire scars over a large extent and a long time-series in a rainforest-savanna transition zone. Remote Sens. Environ. 2019, 232, 111340. [Google Scholar] [CrossRef]
- Chuvieco, E. Global Impacts of Fire. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–10. [Google Scholar]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; Garcia, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Arnett, J.T.T.R.; Coops, N.C.; Daniels, L.D.; Falls, R.W. Detecting forest damage after a low-severity fire using remote sensing at multiple scales. Int. J. Appl. Earth Obs. 2015, 35, 239–246. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X.L.; Takeda, K. Temporal dependence of burn severity assessment in Siberian larch (Larix sibirica) forest of northern Mongolia using remotely sensed data. Int. J. Wildland Fire 2016, 25, 685–698. [Google Scholar] [CrossRef]
- Fernandez-Manso, A.; Quintano, C. Evaluating Landsat ETM+ emissivity-enhanced spectral indices for burn severity discrimination in Mediterranean forest ecosystems. Remote Sens. Lett. 2015, 6, 302–310. [Google Scholar] [CrossRef]
- Chuvieco, E.; Riano, D.; Danson, F.M.; Martin, P. Use of a radiative transfer model to simulate the postfire spectral response to burn severity. J. Geophys. Res.-Biogeol. 2006, 111, G000143. [Google Scholar] [CrossRef] [Green Version]
- De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sens. Environ. 2007, 108, 422–435. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E. GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ. 2009, 113, 554–562. [Google Scholar] [CrossRef]
- Chiang, S.H.; Ulloa, N.I. Mapping and Tracking Forest Burnt Areas in the Indio Maiz Biological Reserve Using Sentinel-3 SLSTR and VIIRS-DNB Imagery. Sensors 2019, 19, 5423. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, S.M.B.; Bento-Goncalves, A.; Franca-Rocha, W.; Baptista, G. Assessment of Burned Forest Area Severity and Postfire Regrowth in Chapada Diamantina National Park (Bahia, Brazil) Using dNBR and RdNBR Spectral Indices. Geosciences 2020, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Lentile, L.B.; Smith, A.M.S.; Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Lewis, S.A.; Robichaud, P.R. Remote sensing for prediction of 1-year post-fire ecosystem condition. Int. J. Wildland Fire 2009, 18, 594–608. [Google Scholar] [CrossRef] [Green Version]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing-A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. 2014, 26, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.J.; Burke, I.C.; Goetz, A.F.H.; Kaufmann, M.R.; Kindel, B.C. Assessing spatial patterns of forest fuel using AVIRIS data. Remote Sens. Environ. 2006, 102, 318–327. [Google Scholar] [CrossRef]
- Wang, S. Fuel Spatial Distribution and Potential Fire Behavior of Major Coniferous Forests in Southwest Sichuan, China; Beijing Forestry University: Beijing, China, 2016. [Google Scholar]
- Elmore, A.J.; Asner, G.P.; Hughes, R.F. Satellite monitoring of vegetation phenology and fire fuel conditions in Hawaiian drylands. Earth Interact. 2005, 9, 1–21. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Zou, X.; Han, L.; Zong, M. A Review on Estimating Fractional Cover of Non-photosynthetic Vegetation by Using Remote Sensing. Remote Sens. Technol. Appl. 2018, 33, 1–9. [Google Scholar]
- Jia, K.; Li, Y.W.; Liang, S.L.; Wei, X.Q.; Yao, Y.J. Combining Estimation of Green Vegetation Fraction in an Arid Region from Landsat 7 ETM+ Data. Remote Sens. 2017, 9, 1121. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Weisberg, P.J.; Bristow, N.A. Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: Comparison of vegetation indices and spectral mixture analysis. Remote Sens. Environ. 2012, 119, 62–71. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Souza, C.M. Linear mixture model classification of burned forests in the Eastern Amazon. Int. J. Remote Sens. 1998, 19, 3433–3440. [Google Scholar] [CrossRef]
- Li, X.D.; Zhang, H.Y.; Yang, G.B.; Ding, Y.L.; Zhao, J.J. Post-Fire Vegetation Succession and Surface Energy Fluxes Derived from Remote Sensing. Remote Sens. 2018, 10, 1000. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.D.; Harrington, C.A.; Terry, T.A. Harvest residue and competing vegetation affect soil moisture, soil temperature, N availability, and Douglas-fir seedling growth. For. Ecol. Manag. 2005, 205, 333–350. [Google Scholar] [CrossRef]
- Schillinger, W.F.; Young, D.L.; Kennedy, A.C.; Paulitz, T.C. Diverse no-till irrigated crop rotations instead of burning and plowing continuous wheat. Field Crops Res. 2010, 115, 39–49. [Google Scholar] [CrossRef]
- Varga, T.A.; Asner, G.P. Hyperspectral and lidar remote sensing of fire fuels in Hawaii Volcanoes National Park. Ecol. Appl. 2008, 18, 613–623. [Google Scholar] [CrossRef]
- Xuan, H. Research on Fire Monitoring with High Time and High Spatial Resolution Based on Multi-Source Remote Sensing Data; University of Electronic Science and Technology of China: Chengdu, China, 2020. [Google Scholar]
- Morton, D.C.; DeFries, R.S.; Nagol, J.; Souza, C.M.; Kasischke, E.S.; Hurtt, G.C.; Dubayah, R. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sens. Environ. 2011, 115, 1706–1720. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.L.; Li, Z.Y.; Yi, H.R.; Chen, E.X.; Pang, Y. Studying On Burned Scar Mapping Using ENVISAT-MERIS Data. Remote Sens. Technol. Appl. 2008, 1, 1–6. [Google Scholar]
- Chuvieco, E.; Lizundia-Loiola, J.; Pettinari, M.L.; Ramo, R.; Padilla, M.; Tansey, K.; Mouillot, F.; Laurent, P.; Storm, T.; Heil, A.; et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 2018, 10, 2015–2031. [Google Scholar] [CrossRef] [Green Version]
- Noojipady, P.; Morton, D.C.; Macedo, M.N.; Victoria, D.C.; Huang, C.Q.; Gibbs, H.K.; Bolfe, E.L. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 2017, 12, 025004. [Google Scholar] [CrossRef]
- Urbanski, S.P.; Reeves, M.C.; Corley, R.E.; Silverstein, R.P.; Hao, W.M. Contiguous United States wildland fire emission estimates during 2003–2015. Earth Syst. Sci. Data 2018, 10, 2241–2274. [Google Scholar] [CrossRef] [Green Version]
- Li, S. Extraction of Forest Burned Area Based on Stacked ConvLSTM and Remote Sensing Image Time Series; University of Chinese Academy of Science: Beijing, China, 2021. [Google Scholar]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1361. [Google Scholar] [CrossRef] [Green Version]
- Guerschman, J.P.; Hill, M.J.; Renzullo, L.J.; Barrett, D.J.; Marks, A.S.; Botha, E.J. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ. 2009, 113, 928–945. [Google Scholar] [CrossRef]
- Vila, J.P.S.; Barbosa, P. Post-fire vegetation regrowth detection in the Deiva Marina region (Liguria-Italy) using Landsat TM and ETM plus data. Ecol. Model. 2010, 221, 75–84. [Google Scholar] [CrossRef]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Tian, J.; Su, S.S.; Tian, Q.J.; Zhan, W.F.; Xi, Y.B.; Wang, N. A novel spectral index for estimating fractional cover of non-photosynthetic vegetation using near-infrared bands of Sentinel satellite. Int. J. Appl. Earth Obs. 2021, 101, 102361. [Google Scholar] [CrossRef]
- Yue, J.B.; Tian, Q.J. Estimating fractional cover of crop, crop residue, and soil in cropland using broadband remote sensing data and machine learning. Int. J. Appl. Earth Obs. 2020, 89, 102089. [Google Scholar] [CrossRef]
- Shu, L.; Wang, M.; Tian, X.; Zhang, X.; Dai, X.a. Calculation and Description of Forest Fire Behavior Characters. Sci. Silvae Sin. 2004, 40, 179–183. [Google Scholar]
- Liu, Z.-H.; Chang, Y.; He, H.-S.; Hu, Y.-M.; Wang, W.-J. Effects of different forest fuel treatments on potential forest fire regimes in Great Xing’an Mountains: A simulation study. Shengtaixue Zazhi 2009, 28, 1462–1469. [Google Scholar]
- Qin, X.L.; Zhang, Z.H.; Yi, H.R.; Ji, P. A Methodology to Predict the Moisture of Forest Fuels. Fire Saf. Sci. 2001, 10, 159. [Google Scholar]
- Xiao, S. Research on Modelling of Surface Dead Fuel Moisture Content of Main Forest Types in Xishan Mountain of Beijing; Beijing Forestry University: Beijing, China, 2015. [Google Scholar]
- Lifang, M. Research on Moisture Prediction of Forest-Floor Fuel; Beijing Forestry University: Beijing, China, 2011. [Google Scholar]
- Hong, L.; LI, W.C.; OuYang, Y.; Zhang, J.H.; Zhang, T.J.; Li, Y.G.; Huang, H.X.; Huang, Y.; Li, F.; Chen, M.; et al. Exploration and ractice of the compilation of ecological geology series maps based on geological formations research, mountainous region in Southwest China—Exemplified by Qionghai-Lushan area, western margin of Yangtze Block. Acta Geol. Sin. 2022, 1–16. [Google Scholar]
- Hang, J.; Qian, Y.Y.; Zheng, S.A.; He, H.Q. Analysis of advantages of Gaofen satellite and other commercial remote sensing data applications in key industries. Dual Use Technol. Prod. 2022, 4–9. [Google Scholar]
- Quintano, C.; Fernandez-Manso, A.; Fernandez-Manso, O.; Shimabukuro, Y.E. Mapping burned areas in Mediterranean countries using spectral mixture analysis from a uni-temporal perspective. Int. J. Remote Sens. 2006, 27, 645–662. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martín, M.P. Cartografía de Grandes Incendios Forestales en la Península Ibérica a Partir de Imágenes NOAA-AVHRR; CSIC: Madri, Spain, 1998. [Google Scholar]
- Prewitt, J.M.S.; Mendelsohn, M.L. Analysis of cell images. Ann. N. Y. Acad. Sci. 1966, 128, 1035. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Tian, J.; Tian, Q.; Wang, X.; Li, Q. Using NDVI-NSSI feature space for simultaneous estimation of fractional cover of non-photosynthetic vegetation and photosynthetic vegetation. Int. J. Appl. Earth Obs. 2023, 118, 103282. [Google Scholar] [CrossRef]
Comparison of Pre- and Post-Fire Fractional Coverage in Xichang City, Sichuan Province, 30 March 2020 (Study Area) | ||||
---|---|---|---|---|
NPV | PV | BS | ||
Fractional coverage | 15 March 2020 | 36.0% | 29.6% | 34.4% |
2 April 2020 | 30.0% | 26.6% | 43.4% | |
Difference | −6.0% | −3.0% | 9.0% |
Comparison of Pre-and Post-Fire Fire Fractional Coverage in Xichang City, Sichuan Province, 30 March 2020 (Mountain Area) | ||||
---|---|---|---|---|
NPV | PV | BS | ||
Fractional coverage | 15 March 2020 | 39.0% | 24.0% | 37.0% |
2 April 2020 | 29.6% | 21.5% | 48.9% | |
Difference | −9.4% | −2.5% | 11.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yan, J.; Tian, Q.; Li, X.; Tian, J.; Zhu, C.; Li, Q. Estimation of Forest Fire Burned Area by Distinguishing Non-Photosynthetic and Photosynthetic Vegetation Using Triangular Space Method. Remote Sens. 2023, 15, 3115. https://doi.org/10.3390/rs15123115
Wang X, Yan J, Tian Q, Li X, Tian J, Zhu C, Li Q. Estimation of Forest Fire Burned Area by Distinguishing Non-Photosynthetic and Photosynthetic Vegetation Using Triangular Space Method. Remote Sensing. 2023; 15(12):3115. https://doi.org/10.3390/rs15123115
Chicago/Turabian StyleWang, Xiaoqiong, Jun Yan, Qingjiu Tian, Xianyi Li, Jia Tian, Cuicui Zhu, and Qianjing Li. 2023. "Estimation of Forest Fire Burned Area by Distinguishing Non-Photosynthetic and Photosynthetic Vegetation Using Triangular Space Method" Remote Sensing 15, no. 12: 3115. https://doi.org/10.3390/rs15123115
APA StyleWang, X., Yan, J., Tian, Q., Li, X., Tian, J., Zhu, C., & Li, Q. (2023). Estimation of Forest Fire Burned Area by Distinguishing Non-Photosynthetic and Photosynthetic Vegetation Using Triangular Space Method. Remote Sensing, 15(12), 3115. https://doi.org/10.3390/rs15123115