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Abstract: The forest fire burned area is one of the most basic factors used to describe forest fires
and plays a vital role in damage assessment. The development of the NSSI-NDVI vegetation index
triangular space method enables simultaneous calculation of the flammable non-photosynthetic
vegetation (NPV), combustible photosynthetic vegetation (PV), and incombustible bare soil (BS)
fractional cover in forest areas. This can be used to compensate for the calculation method that was
based on NDVI vegetation index only by comparing vegetation cover before and after forest fires, with
the omission of the NPV burned area. To this end, the NSSI-NDVI triangular space shape consistency
before and after forest fires was elucidated through combustion and ash wetting experiments. In
addition, the feasibility of the NSSI-NDVI triangular space method for the accurate calculation of the
post-fire vegetation damage area was verified. Finally, the applicability and accuracy of this research
method were verified based on 10 m spatial resolution satellite hyperspectral images from before and
after the forest fire in Lushan, Sichuan Province, China. The NSSI-NDVI triangular space method
was used to calculate the PV, NPV, and BS coverage simultaneously, and component transformation
was used to calculate the burned area and burned site separately.

Keywords: forest fire; hyperspectral remote sensing; burned area; non-photosynthetic vegetation;
triangular space method

1. Introduction

In many ecosystems, fire is a natural disturbance that helps promote diversity and
natural regeneration [1]. At regional and local scales, fire has significant socio-economic
impacts on life and property [2]. For example, fire affects carbon budgets [3,4] and veg-
etation succession [5], which is also an important driver of land use transformation [6].
As one of the most dominant vegetation types on land, forest plays an important role in
the nature [7]. Unfortunately, forest fires, which occur with great frequency [8] and quite
destructively, are among the threats to valuable forest resources. Forest fires have become a
serious natural danger [9]; therefore, the prevention and control of forest fires and post-fire
assessment are important.

Remote sensing has been extensively used by many researchers to study fire occur-
rence at global, regional, and local scales [10]. Compared to post-fire field measurements,
remote-sensing-based measurement is a more affordable option [11]. It is able to overcome
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the limitations of inconsistent and incomplete temporal–spatial data for wildfire infor-
mation [12], and is especially suitable for monitoring large and topographically complex
landscapes [11]. Currently, estimating the burned area using remote sensing data is mainly
based on spectral indices [13–15] and radiative transfer models (RTM) [16–18]. Chiang et al.
used S3-SLSTR and VIIRS-DNB images to estimate the burned area by spectral indices
including normalized difference vegetation index (NDVI), normalized difference moisture
index (NDWI), and normalized burn ratio (NBR) [19]; dos Santos et al. used the differential
normalized burn ratio (dNBR) and relative differential normalized burn ratio (RdNBR) to
assess fire severity and regeneration [20]. In addition, spectral mixture analysis (SMA), mul-
tiple endmember spectral mixture analysis (MESMA), and linear spectral mixture analysis
(LSMA) have been greatly applied and developed, and the burned area calculation using
these methods has good performance with multiple precision and multi-field data [21,22].

With the application and development of remote sensing technology, in order to
assess land cover and vegetation type changes due to fire [23], more detailed burned area
estimation and mapping has become one of the needs [24]. Forest ecosystems include
photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and bare soil (BS),
as well as water bodies, shade, and some other types of land cover. PV, NPV, and BS
have different spectral features and combustion characteristics [25]. NPV, including forest
fine fuel, is an important parameter in determining forest fire ignition, combustion, and
behavior [26], and it also plays a key role in terms of fire risk and frequency, wind, and
water erosion [27,28]. NPV has been less frequently incorporated in previous studies about
burned area estimation. In contrast, traditional spectral index methods are based mainly
on the vegetation–soil dimidiate pixel model [29], and focus on pre-fire versus post-fire
changes in vegetation. These methods ignore changes in PV and NPV due to variations
in fire severity, which may cause confusion between the original NPV and terrestrial
objects whose traits have changed due to fire drying and therefore exhibit characteristics
of NPV. Thus, the assessment of vegetation loss due to forest fire damage is typically
overestimated [30]. After compensating for the effects of water bodies and shadows, and
based on the idea of mixed PV, NPV, and BS image pixels, Cochrane et al. proposed a
method for detecting and classifying burned forests using the maximum differentiability of
the NPV fraction to distinguish different types of forests [31]. The results show that NPV
is suitable for analyzing forest fires and confirm that NPV can be applied for accurate fire
assessment. Forest fires also cause irregular changes from green vegetation to NPV [32–34]
and BS, indicating the direction and range of fire movement. Combining PV and NPV
for forest fire damage assessment is vital for forest fire prevention and to construct of fire
prediction and early warning systems [35], as well as to help guide the development of
ecosystem restoration projects.

In this paper, we acquired spectral reflectance of NPV, PV, and burned ash through
combustion experiments, and analyzed the scatter distribution of varied targets in the
NSSI-NDVI triangular space. The NSSI-NDVI triangular space variability of the mixed
pixels pre- and post-fire was elucidated, and the feasibility of the NSSI-NDVI triangular
space method for accurate calculation of post-fire vegetation damage area was verified.
In addition, based on the Zhuhai-1 satellite hyperspectral data (OHS) with 10 m spatial
resolution, a component transformation was constructed pre- and post-fire. Whether the fire
process contains PV converted to NPV, the area is divided into the burned area (containing
PV converted to NPV, and BS, NPV converted to BS) and burned site (only the increased
part of BS). Both burned area and burned site are vital for systematic monitoring and
comprehensive control of forest fires. However, they have varying levels of significance for
assessing fire size and actual damage. The forest fire burned area is the affected area where
the fire was extinguished after the surface fire [36,37]. It is the most basic descriptor of forest
fires [38], and accurately estimating and mapping of its area is essential for quantifying
carbon budgets [39–41]. On the other hand, the forest burn site is the post-fire damaged
area that has burned down completely [42]. It contributes to assessing the impacts and
losses of fire [23,43].
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In addition, the NSSI-NDVI triangular space method was used to perform image pixel
unmixing to calculate the pre- and post-fire PV, NPV, and BS coverage of the study area
simultaneously. This enables an accurate estimation of forest fire burned area and burned
site by distinguishing PV from NPV. Finally, the applicability and accuracy of the study
method was verified.

2. Methodology
2.1. NPV-BS Separation Index Selection

We use the triangular space method [44] to distinguish NPV from PV. Compared with
the traditional vegetation index reflectance estimation [45], measuring the relative coverage
of PV, NPV, and BS can be more useful to estimate the loss caused by fire [46], which may
lead to a better assessment of forest fire severity and damage.

Relying on two near-infrared bands, Jia Tian et al. [47] constructed the NPV-Soil
Separation Index (NSSI) for NPV and BS separation. The NSSI was devised to capture the
spectral difference between NPV and BS around 820 nm. Considering the design of the
Zhuhai-1 OHS sensor and optimizing the band selection, the reflectance (R) of band 27
(centered at 865 nm) and band 22 (centered at 776 nm) of Zhuhai-1 OHS satellite group 03
are used to calculate the NSSI:

NSSIOHS =
R865 − R776

R865 + R776
(1)

Using the pixel unmixing algorithm, the PV, NPV, and BS coverage of each pixel is
calculated based on the following algorithm [48]:

fNPV + fPV + fBS = 1
NDVIM = fNPV × NDVINPV + fBS × NDVIBS + fPV × NDVIPV

NSSIM = fNPV × NSSINPV + fBS × NSSIBS + fPV × NSSIPV

(2)

where fNPV , fPV , and fBS are the coverage of the three endmembers to be solved; NDVINPV ,
NDVIBS, NDVIPV , and NDVIM are the NDVI values for the three endmembers and the
hybrid pixel, respectively; and NSSINPV , NSSIBS, NSSIPV , and NSSIM are the NSSI values
of the three endmembers and the hybrid pixel, respectively.

2.2. Experimental Design and Spectral Measurements
2.2.1. Experimental Design

In this paper, a total of three experiments were conducted. Two of them are PV and
NPV simulated combustion experiments, and the third is the ash of NPV and PV wetting
experiment.

Simulated combustion experiments are designed to investigate the changes of PV
reflectance spectra caused by the fire process how to change NSSI-NDVI triangular space,
and the influence of the post-forest fire traces on the calculation of three-component abun-
dance. Different types of PV and NPV were selected for the fire simulation experiments as
samples to simulate the process of the forest gradually igniting from the ignition point and
spreading to eventually form burned area. Finally, we obtained and classified PV, NPV fire
samples with different burning levels, ash with different grain sizes, etc.

In addition, the ash of NPV and PV wetting process was simulated by combining
the characteristics that make the ash easily get wetted after the occurrence of forest fires.
According to the difference in particle size of the ash produced by the fire simulation
experiment, they were divided into three groups, and the surface was sprayed with water
in mist five times (on the one hand, to simulate the actual rain in nature, and on the other
hand, to make the surface water more uniform) (Figure 1). Then, wet fire samples with
equal proportional increases in water content were obtained.
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Figure 1. Schematic diagram of different particle size fire ash with wetting experiment.

2.2.2. Spectral Measurements

Spectral data of typical NPV, BS, and PV were obtained from the international common
feature spectral library or laboratory spectral measurements. The spectral measurement
samples of typical vegetation and NPV were obtained from field sampling or simulation
experiments. The samples were measured in a dark room using an ASD Illuminator
Reflectance Lamp for the experiment in the room unchanged. The ASD Fieldspec 4 spectro-
radiometer was equipped with a 5◦ field-of-view fore optic, and the optic was mounted
10 cm above the sample. Five measurements were made for each sample after the white
reference panel calibration, and the average value was obtained. Finally, the measured
spectra were processed with splice correction. The BS samples were selected from the
ISRIC-ICRAF soil VNIR spectral library because of the insignificant changes in the spectral
characteristics of BS before and after fire. Five spectra collected in China were selected,
and these spectral curves were measured in the lab between 400 nm and 2500 nm at 10 nm
intervals.

As shown in Figure 2, the fire ash with different particle sizes in the water addition
experiment had obvious absorption peaks near 1900 nm. As the level of water addition
increases, the reflectance of the fire ash after the water addition changes less. The water
addition experiment shows that the amount of water addition has little effect on the spectral
characteristics of the ash due to the small magnitude.

The spectral curves (Figure 3) during the combustion process showed that the dark-
ened black leaves after the fire lost chlorophyll. The lamellar structure of the leaves was
largely destroyed, and the NIR reflectance was low. The reflectance of the full spectrum of
the fire ash were low, and the spectral curves of the overfired black leaves and the black
burned area were different, and there were also differences in the spectra of the gray and
black burned area.
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3. Results
3.1. Laboratory Results
3.1.1. Pre- and Post-Fire NSSI-NDVI Triangular Space

Based on the spectral information collected by the ASD spectroradiometer, the spectral
indices of each sample were calculated, and the NSSI-NDVI triangular space was estab-
lished (Figure 4) to observe its distribution characteristics. It was found that post-fire, the
PV and BS in the original background were not considered, and triangular features were
also formed as far as the fire process was concerned. The NSSI-NDVI triangular space still
existed (triangular space still existed), indicating the applicability of using the triangular
space method to extract post-fire coverage.
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sample spectra: (A–F) are representative samples in the experiment (legend for names), and their
appearance, such as color, and other morphology correlate with their distribution in the left triangle
(Triangles) are NSSI-NDVI triangle features of samples (green for pre-fire, orange for post-fire).

In terms of endmember movement, the PV that still retained the characteristics of PV
after drying after the experiment was still located at the right vertex of the triangle. While
the fire ash with larger particle size interspersed with unburned PV moved to the location
of the NPV endmember. As the particle size of the fire ash gradually became finer, and
closer to the BS endmember location, the ash of different particle sizes moved from the
NPV endmember to the BS endmember location along the line connecting the NPV and
BS endmembers, from large to small. The triangle after the overall experiment showed
a shift to the left and upward. The component conversion was from PV to BS, moving
counterclockwise inside the triangle. In terms of index value changes, the NSSI values
of the fire ash after water addition are all small and converge to the endmember as BS,
while the NSSI values of the BS before burning are also small, with only a slight difference



Remote Sens. 2023, 15, 3115 7 of 18

in NDVI (NDVI values of the BS pre-fire are larger than NDVI values of the fire ash).
From the distribution position, the pre-fire BS is at the lower left position of the triangular
space, while the fire ash produced by the fire process, regardless of the wetness, are also
gathered at the lower left position of the triangle. This reflects the greatest characteristic
of the fire process: the increase in BS. This aggregation feature triggered consideration
of the relationship between the movement of the components in the fire process and laid
the foundation for using the algebraic relationship of the component coverage pre- and
post-fire to find the changes. In addition, the experiment also found that the PV, NPV,
and BS with different combustion degrees were distributed longitudinally in the NSSI
direction, and the differences in their NSSI values could be used to extract areas with
different combustion degrees (burned area and burned site separation).

3.1.2. Changes in the Abundance of Each Component Pre- and Post-Fire

Fuel characteristics can have different effects on fire head intensity and spread rate [49,50].
The water content of fine fuel (belonging to NPV) determines the ease of burning fuel [51–53].
Due to the different combustion characteristics, NPV with low water content is more
flammable when exposed to fire, whereas healthy PV with high water content is less
flammable. NPV is the first to burn in a fire and ignites PV. With long burning times,
both PV and NPV are transformed into gray-black BS with no clear reflectance spectrum
corresponding to terrestrial objects. Burning time is short and ignition may be incomplete
(leading to baked PV), but the heat leads to the loss of the original pigments and yellowing,
dehydration, and wilting. In the end, PV is transformed into NPV.

We combine the concepts of forest burn site and burn area and introduce NPV into
our fire studies. In this paper, burned sites represent the area where the original fractional
terrestrial object type is completely burnt by the fire, and burned area is defined as areas
where both PV and NPV are converted to BS. Similarly, the burned area represents the area
where the original fractional terrestrial object coverage is changed by burning in the fire.
In addition to the area of the burned site, the burned area also includes areas where PV
converted to NPV. The interconversion of terrestrial objects decreases each type of land
coverage for different reasons, whereas an increase in land coverage originates from the
conversion of different types of land coverage (Figure 5). This phenomenon is responsible
for the difference in land coverage fractions due to the fire and the transformation between
fractions.
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3.2. Satellite Image Data Results
3.2.1. Study Area and Data Processing

The study area is the Lushan Mountain range and its surroundings in Xichang City
(102◦16′E–102◦20′E, 27◦47′N–27◦52′N) of Liangshan County, Sichuan Province, China.
The Lushan Mountain range (Figure 6) has an elevation of 2317 m, and the topogra-
phy is generally high in the east and low in the west, high in the south and low in the
north. Purple and anthropogenic soils are the most dominant soil types [54]. It has a
subtropical highland monsoon climate with abundant precipitation from May to October,
which makes the forest cover of Lushan reach extremely high elevations. The region is
rich in subtropical dry evergreen broad-leaved forests and evergreen coniferous forests
(Cyclobalanopsis glaucoides Schotky) and has developed a complete tree and grassland layer
mainly with a scrub layer. Due to the large daily temperature difference, small annual tem-
perature difference, less snow and ice, more sunshine, moderate heat and cold in Lushan,
PV and NPV coverage do not undergo significant seasonal variations. NPV, PV, and BS are
unevenly distributed throughout the state of Liangshan County, Sichuan Province, which
corresponds to the topography of the area and the distribution of each category. Overall, BS
coverage is greater at the central and eastern edges of Liangshan Prefecture, whereas NPV
is widely distributed in the northeast and southwest. NPV and PV form a north–south
spaced cross-distribution zone in the northwest. The fire occurred in the main part of the
Lushan Mountain range, which is in the middle of the region in the north–south direction.
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(post-fire), (d) False-color composite map of the mountain area (post-fire).
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At 15:51 on 30 March 2020, a hill fire broke out in Xichang City, Liangshan Prefecture,
Sichuan Province, China. Due to high winds, the fire spread from the point of origin to the
scenic area of the Lushan Mountains and quickly started burning the frontal body of the
Lushan Mountains. Influenced by the changing wind direction, the fire produced multiple
fire lines in different directions with low controllability and difficult rescue conditions. The
combustion burn was not fully extinguished until 12:01 a.m. on 2 April 2020. This forest
fire caused huge casualties and loss of forest area and is an important case for research into
forest fire protection.

Zhuhai-1 satellite hyperspectral imagery (OHS) contains 32 spectral bands in the
wavelength range 400–1000 nm, with a spectral resolution of 5–7 nm and a spatial resolution
of 10 m. The joint observation network consisting of four satellites covers the globe once
every two days, which allows it to quickly and accurately image fire-burned areas and
provide fresh monitoring data for estimating fire areas [55]. This study uses two scenes of
OHS hyperspectral images collected on 15 March 2020 (pre-fire) and 2 April 2020 (post-fire).

The Zhuhai-1 hyperspectral (OHS) data were preprocessed by using radiation calibra-
tion, atmospheric correction, and image clipping. Figure 7 shows the pre- and post-fire
preprocessed false-color composite image of the study area.
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3.2.2. Component Transformation

According to abundance variation characteristics of each component of the mixed
image element described in the previous section, the original terrestrial objects (mainly
vegetation cover and coverage in mountain fires) changed in areas, whether passed
through by the fire or in the burned areas. Fire impacts on vegetation are not binary
(burned/unburned) [12]; among them, the changes in the burned area are manifested
mainly by the conversion of the original PV to NPV. Thus, the green photosynthetic char-
acteristics of the original PV are destroyed by the fire, with leaf pigment reduction and
desiccation (when leaves are scorched) [12], which are often manifested as dryness, shrink-
age, etc. Based on the reduction in the leaf area index when leaves are burned [12], the
change in the burned site is mainly manifested as the change of the original PV and NPV
to BS, often manifested as scorching and blackening. The burned area includes the burned
site. The BS component is not greatly affected by the fire [56], while the PV and NPV
were altered to varying degrees pre- and post-fire. Based on this, the pre- and post-fire
component transformation is derived (Figure 8).
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Figure 8. Pre-and post-fire component transformation.

Among them, B, N, and P are the BS, NPV, and PV that are in a more stable state and
do not change pre- and post-fire, respectively; the corresponding lowercase letter represents
that component after the change; the corner mark at the bottom right corner represents
which other component the change component is transformed from. Combined with the
pre-fire and post-fire component transformation, using geospatial analysis and other means,
we can extract the changes of each category and count the area. The overfire area mainly
includes bp, np, and bn, while the fire traces do not include np.

3.2.3. Changes in Cover of Each Fractions Pre- and Post-Forest Fire

The overall technical approach includes data preprocessing, calculation of coverage
of each pixel fraction, and pre- and post-fire comparison of image characteristics, as well
as an estimate of burned area. We compare pre- and post-fire images from both the study
area and the mountain area, with detailed comparisons of the coverage and differences in
each fraction.

The triangular persistence proves the triangular space method, which can be applied
to extract the coverage of each component both pre-fire and post-fire. Before the three-
fractional extraction of the study area, we removed the disturbing features to avoid the
influence of post-fire image residual smoke and other effects. We used the NDWI [57]
to extract pre-fire information about the water bodies in the study area. The digitally
extracted vectors were used to remove the water bodies to avoid having the water bodies
disturb the study. The water bodies were removed by masking the pre-fire and post-fire
images according to the extent of the fire. After water removal, we also extracted the three
pre-and post-fire land fractions (PV, NPV, BS) images. This strategy mainly involves index
calculation, triangular space construction, and linear pixel unmixing. The final extraction
results include three fractional coverages: NPV, PV, and BS. Triangular space construction
here uses NSSI and NDVI, and their scatter plots and endmember selection appear in
Figures 9 and 10, showing the pre- and post-fire extraction and composition.
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Figure 10. Three fractional results pre- and post- 3 0 March 2020 fire in Xichang: (a) Map of study
area showing three land fractions on 15 March 2020 (pre-fire), (b) Map of study area showing three
land fractions on 2 April 2020 (post-fire). (The map named composition is a composite of the other
three fractions: r:NPV, g:PV, b:BS, the black vector range is the range of the extracted part of the
mountain behind).

To better understand the fire-induced changes in distribution and coverage of each
land fraction, the endmembers of each fraction are extracted according to the triangular
space method and unmixed via linear hybrid pixel unmixing. The percentage of each
fraction is then counted (Table 1). The results of the coverage comparison show that the
NPV coverage in the study area significantly decreases, the PV coverage decreases, and the
BS coverage increases after the fire.

Table 1. Comparison of pre-and post-fire coverage in the study area.

Comparison of Pre- and Post-Fire Fractional Coverage
in Xichang City, Sichuan Province, 30 March 2020 (Study Area)

NPV PV BS

Fractional
coverage

15 March 2020 36.0% 29.6% 34.4%

2 April 2020 30.0% 26.6% 43.4%

Difference −6.0% −3.0% 9.0%
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Temporal limitations of OHS data meant that they were not available closer to the
time of the fire. To determine whether differences in the data were caused by vegetation
growth and other factors within 15 days of the fire, we compared Sentinel-2 MSI data from
15 March 2020 and from 30 March 2020. The results show that minimal changes in the
morphology and endmember in the constructed NSSI-NDVI scatter results, and the normal
phenological effects are negligible compared with the extent of disturbance of vegetation
cover at the fire site. We thus used OHS 15-day data to characterize the vegetation cover of
the study area pre-fire. It is not possible to quantitatively estimate how vegetation growth
and other factors modify each fraction in the study area during the fire. Thus, we only
extracted the burned area and burned site area from the fractional change, and do not
discuss this in depth.

The comparison is further tuned to obtain the coverage situation after excluding
terrestrial objects, which is more in line with the real situation, and the changes of each
land fraction in the mountain area pre- and post-fire are determined (Table 2). The results
of this land coverage comparison show that the pre- and post-fire changes in each land
fraction in the mountain area are basically consistent with the changes in each land fraction
in the study area. All results show a significant decrease in NPV coverage, a decrease in
PV coverage, and an increase in BS coverage, which indicates that NPV and PV tends to
convert to BS. However, comparing the two different ranges in the study area (i.e., study
area versus mountain area), the fractional reduction in NPV coverage is greater in the
mountain area where disturbing terrestrial objects are removed, whereas the fractional
reduction in PV coverage decreases. Overall, more NPV converts to BS than does PV.

Table 2. Comparison of pre-and post-fire coverage in mountain area.

Comparison of Pre-and Post-Fire Fire Fractional Coverage
in Xichang City, Sichuan Province, 30 March 2020 (Mountain Area)

NPV PV BS

Fractional
coverage

15 March 2020 39.0% 24.0% 37.0%

2 April 2020 29.6% 21.5% 48.9%

Difference −9.4% −2.5% 11.9%

3.2.4. Estimation of Forest Fire Burned Area by Distinguishing NPV and PV

(1) Estimation of burned area

Using the pre-fire and post-fire component transformation (Section 3.2.1), the pre- and
post-fire coverage of each component is used as an input source. To calculate the pre-fire
and post-fire changes of each category using spatial analysis and other means, and the
changes are updated and the area is counted.

First, the burned area is extracted. This includes the part converted by the fire from
PV to NPV and from PV to BS and the part that converted from NPV to BS. The burn
area includes the completely burned area, that is, the burned site but excludes the area
converted from PV to NPV. The increase in BS is included. See Figure 11a for the portion of
PV reduction (np + bp). The portion of PV changed to BS is shown in Figure 11b: the area is
763 ha (bp). In addition, the portion of PV changed to NPV (np) is shown in Figure 11c: the
area of change is 594.6 ha. The decrease in NPV is 504.5 ha, as shown in Figure 11d. The
total burn area is 1862.1 ha (np + bp + bp). The area of the burn site is 1267.5 ha (bp + bp).
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(2) Accuracy validation

Since the existing burn area index (BAI) does well at extracting the area of a single
category (i.e., the burn area) and fails to distinguish the area of burned area and the area of
the burn site at the same time, the accuracy of the burned area obtained herein is verified
by comparing it with the area extracted when using the BAI [58]. In this work, we use the
bimodal histogram method [59] for threshold segmentation. The final threshold is 72.3
(Figure 12), and the segmentation is carried out with this value.
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Extracting the burn area by applying the BAI to the post-fire mountain area gives
the results shown in Figure 13a, which show that the burn area is the bright area. After
threshold selection, the extracted burn area appears as shown in Figure 13b, with an area of
1867.6 ha. Comparing the two extraction results shows that the error area is 5.5 ha, which
is only 0.078% of the total area. This result further demonstrates the accuracy of post-fire
coverage extraction using the triangular space method.
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4. Discussion and Conclusions

In both the fire simulation experiments and the fire ash wetting experiments, the trian-
gular space exists. It demonstrates that the triangular space method can be used to estimate
fractional coverage before and after fire. Based on the transformation characteristics of pre-
and post-fire component coverage and the transformation model, the part that has changed
through the firing process is extracted, and then the affected area is calculated. The results
produce an estimated forest fire burned area of 1862.1 ha, and 1867.6 ha estimated from the
BAI, leaving an error area of only 0.078% of the total area. These results demonstrate the
accuracy of the proposed method.

This work estimates NPV, PV, and BS fractional cover of Zhuhai-1 satellite hyper-
spectral data (OHS) by applying the NSSI-NDVI triangular space method. The pre- and
post-fire land categories are extracted from the data sensed on 30 March 2020 centered in
Lushan, Sichuan Province. The comparison reveals that the pre-and post-fire difference in
PV, NPV, and BS characterizes the forest fire loss and leads to accurate calculations of the
burned area. The changes in NPV cover characterize a portion of the completely burned
area, which accounts for 68% of the burned area. Thus, the extracted area of the burn site
is 1267.5 ha, so the proposed method allows the burn site to be distinguished from the
burn area.

The method can be applied to areas with different vegetation types and climates, and
it meets a variety of satellite data requirements. The NSSI [47] index selected for the con-
struction of the triangular space, which have the potential to be applied on Sentinel-2A/B
and Sentinel-3 data, covering varied vegetation types. The index is designed to meet the
needs of data used in the band 750–900 nm. The method has also been applied to the study
of time-series data in southeastern China [60], and the study area involved in this paper
has spanned nearly 20 degrees of latitude with good results.

The results of this study unveil new research directions. The fractional variations
in the coverage of NPV, PV, and BS caused by forest fires, including dynamic fractional
changes in direction and change ratio, reveal the changes caused by forest fires. These
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results should be studied with temperature, wind speed, wind direction, and etc. So that
the spread direction and speed of fire may be related to specific land covers and/or other
factors. The integrity of fire burning can also be explored in relation to wind, topographic
slope, pre-fire biomass load and structure, and water content. In addition, vegetation type
significantly affects the detection of fire severity, and, due to the flammable nature of NPV,
its coverage is associated with the risk and severity of fire. This can be combined with the
distribution and coverage of NPV to establish wildfire warnings, and to map fire intensity
and trends based on remote sensing images.
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