Identifying Urban and Socio-Environmental Patterns of Brazilian Amazonian Cities by Remote Sensing and Machine Learning
Abstract
:1. Introduction
2. Background
3. Study Areas
4. Materials and Methods
4.1. Data Sources
- WPM images from the CBERS-4A satellite: orthorectified images, one panchromatic and one multispectral, dated in 2020. The WPM sensor provides panchromatic and multispectral images simultaneously. The panchromatic images have 2 m of spatial resolution, with a spectral range between 0.45 and 0.90 µm. Multispectral images have a spatial resolution of 8 m, with spectral bands: blue (blue, 0.45–0.52 μm), green (green, 0.52–0.59 μm), red (red, 0.63–0.69 μm), NIR (near infrared, 0.77–0.89 μm). The radiometric resolution of the images is 10 bits. The imaged swath width is 92 km, and the revisit period is 31 days [48];
- Urban land cover classification from the amazonULC package [50]. The amazonULC package is a project that makes land cover classification maps available for some Brazilian Amazonian cities. Imagery from the CBERS-4A satellite’s WPM sensor was used for a classification model that includes the GEOBIA method, data mining strategies, and the Random Forest machine learning algorithm. The maps present the following land cover classes: “Shrub Vegetation”, “Herbaceous Vegetation”, “Water”, “Exposed Ground”, “High Gloss Cover”, “Ceramic Cover”, “Fiber Cement Cover”, “Asphalt Road”, “Terrain Road”, “Cloud” and “Shadow”;
- Digital Elevation Models (DEM) and their derivations: a DEM (elevation), a slope grid (in percentage), and a vertical curvature grid of the relief, obtained from the TOPODATA portal [51]. The images have a spatial resolution of 30 m and a radiometric resolution of 8 bits;
- Road network: road data generated by Volunteered Geographic Information (VGI), extracted from OpenStreetMap [49], available in vector format (line) with different types of roads, bikeways, and pedestrian paths. As it is a VGI source data, the road network has no date information and no elaboration scale;
- Multitemporal GHSL-BUILT image: images from the Global Human Settlement Layer program, with multitemporal information about the built-up area [52]. The Global Land Survey (GLS) Landsat image collection (GLS1975, GLS1990, GLS2000, and Landsat 8) was the basis for this data construction. We used images with 30m spatial resolution, 8 bits radiometric resolution, classified into the following classes: built-up area before 1975, the built-up area between 1975 and 1990, the built-up area between 1990 and 2000, the built-up area between 2000 and 2014, no built-up area, water, and no data;
- Census data: data from the 2010 Demographic Census, provided by the Instituto Brasileiro de Geografia e Estatística (IBGE) [6], available in comma-separated-values (.csv) and aggregated by census sector, in addition to the 2010 and 2020 census tracts, available in shapefile format (.shp).
- QGIS 3.18 [53]: for database preparation and construction of the thematic maps;
- Python Programming Language [54]: for data preparation and mining, classifying clusters, and identifying the USEPs;
- DepthMapX [57]: for the construction of axial maps.
- Figure 3 shows how the different data and software were used to identify the USEPs in the study areas.
4.2. Assessment Criteria
4.2.1. Environmental Dimension
4.2.2. Urban Morphological Dimension
4.2.3. Socioeconomic Dimension
4.3. Creating and Integrating Variables into Cell Grids
4.4. Clustering Process
4.5. Socioeconomic Profiling
4.6. Evaluation
5. Results
5.1. USEPs Identification in Santarém
5.2. Profiling the USEPs in Cametá
5.3. USEPs Identification for Cametá and Field Visit
6. Discussion
6.1. Santarém’s Results
6.2. Cametá’s Results
6.3. Study Limitations and Considerations about the Classification Model
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN-HABITAT. World Cities Report 2022: Envisaging the Future of Cities; UN-HABITAT: Nairobi, Kenya, 2022. [Google Scholar]
- da Trindade, S.-C.C., Jr. Cidades Médias Na Amazônia Oriental: Das Novas Centralidades à Fragmentação Do Território. Rev. Bras. Estud. Urbanos Reg. 2011, 13, 135. [Google Scholar] [CrossRef]
- da Trindade, S.-C.C., Jr. A Cidade Dispersa: Os Novos Espaços de Assentamentos Em Belém e a Reestruturação Metropolitana. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 1998. [Google Scholar]
- Leitão, K.O. A Dimensão Territorial Do Programa de Aceleração Do Crescimento: Um Estudo Sobre o PAC No Estado Do Pará e o Lugar Que Ele Reserva à Amazônia No Desenvolvimento Do País. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2009. [Google Scholar]
- Becker, B.K. Undoing Myths: The Amazon-an Urbanized Forest. Man Biosph. Ser. 1995, 15, 53. [Google Scholar]
- IBGE. Censo Demográfico 2010; IBGE: Rio de Janeiro, Brazil, 2011.
- Corrêa, R.L. Diferenciação Sócio-Espacial, Escala e Práticas Espaciais. Revista Cidades 2007, 4, 62–72. [Google Scholar] [CrossRef]
- IBGE. Tipologia Intraurbana: Espaços de Diferenciação Socioeconômica Nas Concentrações Urbanas Do Brasil; IBGE: Rio de Janeiro, Brazil, 2017.
- Soja, E. Uma Concepção Materialista Da Espacialidade. In Abordagens Políticas da Espacialidade; Becker, B., da Costa, R.H., Silveira, C.B., Eds.; UFRJ: Rio de Janeiro, Brazil, 1983; Volume 1, pp. 22–74. [Google Scholar]
- Santos, M. O Espaço Do Cidadão; Edusp: São Paulo, Brazil, 2007; Volume 8, ISBN 8531409713. [Google Scholar]
- Kurkdjian, M. de L.N. de O. Aplicações de Sensoriamento Remoto Ao Planejamento Urbano. In Simpósio Latino Americano de Sensoriamento Remoto; INPE: Cartajena, Colombia, 1993; pp. 1–15. [Google Scholar]
- Netzband, M.; Stefanov, W.L.; Redman, C. Applied Remote Sensing for Urban Planning, Governance and Sustainability; Springer Science & Business Media: New York, NY, USA, 2007; ISBN 3540680098. [Google Scholar]
- de Almeida, C.M. Aplicação Dos Sistemas de Sensoriamento Remoto Por Imagens e o Planejamento Urbano Regional. Arq. Urb 2010, 1, 98–123. [Google Scholar]
- Weng, Q.; Quattrochi, D.A. Urban Remote Sensing; CRC Press: Boca Raton, FL, USA, 2018; ISBN 1315166615. [Google Scholar]
- Andries, A.; Morse, S.; Murphy, R.; Lynch, J.; Woolliams, E.; Fonweban, J. Translation of Earth Observation Data into Sustainable Development Indicators: An Analytical Framework. Sustain. Dev. 2019, 27, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Kuffer, M.; Pfeffer, K.; Persello, C. Special Issue “Remote-Sensing-Based Urban Planning Indicators”. Remote Sens. 2021, 13, 1264. [Google Scholar] [CrossRef]
- Weil, K.E. Planejamento Empresarial. RAE 1975, 1, 66–67. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, B.D.; Maciel, R.R.; Kampel, M.; de Pinho, C.M.D.; Amaral, S. State-of-the-Art and Framework for Identifying Urban Patterns by Remote Sensing Data. Rev. Bras. Cartogr. 2023, 1, 1–19. [Google Scholar]
- dos Santos, B.D.; de Pinho, C.M.D.; Amaral, S.; Paez, A. USEPs Data. Zenodo 2023, 1. [Google Scholar]
- Brunsdon, C.; Comber, A. Opening Practice: Supporting Reproducibility and Critical Spatial Data Science. J. Geogr. Syst. 2021, 23, 477–496. [Google Scholar] [CrossRef]
- Desjardins, E.; Higgins, C.D.; Páez, A. Examining Equity in Accessibility to Bike Share: A Balanced Floating Catchment Area Approach. Transp. Res. Transp. Environ. 2022, 102, 103091. [Google Scholar] [CrossRef]
- Zhu, X.X.; Qiu, C.; Hu, J.; Shi, Y.; Wang, Y.; Schmitt, M.; Taubenböck, H. The Urban Morphology on Our Planet–Global Perspectives from Space. Remote Sens. Environ. 2022, 269, 112794. [Google Scholar] [CrossRef]
- Esch, T.; Marconcini, M.; Felbier, A.; Roth, A.; Heldens, W.; Huber, M.; Schwinger, M.; Taubenböck, H.; Müller, A.; Dech, S. Urban Footprint Processor—Fully Automated Processing Chain Generating Settlement Masks From Global Data of the TanDEM-X Mission. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1617–1621. [Google Scholar] [CrossRef] [Green Version]
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A.; et al. Outlining Where Humans Live, the World Settlement Footprint 2015. Sci. Data 2020, 7, 242. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘Local Climate Zone’ Scheme Using Temperature Observations and Model Simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Schiavina, M.; Melchiorri, M.; Pesaresi, M.; Politis, P.; Freire, S.; Maffenini, L.; Florio, P.; Ehrlich, D.; Goch, K.; Tommasi, P. GHSL Data Package 2022; European Commission: Luxembourg, 2022.
- Gonçalves, G.C.; de Oliveira, L.M.; D’Asta, A.P.; Amaral, S. Geoinformação Para a Visbilidade Das Áreas Urbanas de Cidades Amazônicas. Rev. Geoaraguaia 2021, 11, 149–165. [Google Scholar]
- Dal’Asta, A.P.; Brigatti, N.; Amaral, S.; Escada, M.I.S.; Monteiro, A.M.V. Identifying Spatial Units of Human Occupation in the Brazilian Amazon Using Landsat and CBERS Multi-Resolution Imagery. Remote Sens. 2012, 4, 68–87. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, B.D.; de Pinho, C.M.D.; Oliveira, G.E.T.; Korting, T.S.; Escada, M.I.S.; Amaral, S. Identifying Precarious Settlements and Urban Fabric Typologies Based on GEOBIA and Data Mining in Brazilian Amazon Cities. Remote Sens. 2022, 14, 704. [Google Scholar] [CrossRef]
- Cardoso, A.C.D.; Lima, J.J.F.; Ponte, J.P.X.; Ventura, R.D.S.; Rodrigues, R.M. Morfologia Urbana Das Cidades Amazônicas: A Experiência Do Grupo de Pesquisa Cidades Na Amazônia Da Universidade Federal Do Pará. urbe. Rev. Bras. Gestão Urbana 2020, 12, e20190275. [Google Scholar] [CrossRef]
- Indvik, K.B.; Gallo, I.; Quintana, M.; Blanc, F.; do Canto, Ó. Amazon Cities and Sustainable Urban Development; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ): Brasília, Brazil, 2018. [Google Scholar]
- de Abreu, P.V.L.; Lima, J.J.F.; Fischer, L.R.D.C. Aforar, Arrumar e Alinhar: A Atuação Da Câmara Municipal de Belém Na Configuração Urbano-Fundiária Da Cidade Durante o Século XIX. An. Mus. Paul. História Cult. Mater. 2018, 26, e29. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.; Lima, J.J.F. O Plano Urbano Da Villa Do Pinheiro e a Exploração Gomífera Na Amazônia Oriental (1869–1906). In Proceedings of the Anais da 8a Conferência da Rede Lusófona de Morfologia Urbana PNUM 2019, Maringá, Brasil, 21–23 August 2019; Volume 1. [Google Scholar]
- Lima, A.P.C.; Rodrigues, R.M. O Superdimensionamento Da Grelha: Análise de Padrão de Subdivisão Fundiária e Suas Adaptações Aos Usos Do Solo No Núcleo Histórico de Icoaraci, Belém-PA. In Morfologia Urbana: Território, Paisagem e Planejamento, Proceedings of the Anais da 6a Conferência da Rede Lusófona de Morfologia Urbana PNUM 2017, Sintra, Portugal, 24–25 Augest 2017; UFES Vitória: Vitória, Brazil, 2017; pp. 98–108. [Google Scholar]
- Souza, R.D.P.; Galvão, L. Formas Da Produção Habitacional Na “Nova Belém”: Estudo Comparativo Dos Diferentes Tipos de Produção Habitacional Ao Longo Da Av. Augusto Montenegro, Belém (PA) e Suas Tendências de Consolidação. An. XV Enanpur 2013, 15, 1–18. [Google Scholar]
- Ventura Neto, R.D.S. A (Trans) Formação Socioespacial Da Amazônia: Floresta, Rentismo e Periferia. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2017. [Google Scholar]
- Gomes, T.D.V.; Cardoso, A.C.D. Santarém: O Ponto de Partida Para o (Ou de Retorno) Urbano Utopia. Urbe. Rev. Bras. Gestão Urbana 2019, 11, e20170219. [Google Scholar] [CrossRef] [Green Version]
- Swyngedouw, E.; Acselrad, H. Acselrad, H. A Cidade Como Un Híbrido: Natureza, Sociedade, e ‘Urbanizaçao-Cyborg. In A Duração das Cidades–Sustentabilidade e Risco nas Políticas Urbanas; DP&A Editora: Rio de Janeiro, Brazil, 2001. [Google Scholar]
- Cameron, R.W.F.; Blanuša, T.; Taylor, J.E.; Salisbury, A.; Halstead, A.J.; Henricot, B.; Thompson, K. The Domestic Garden—Its Contribution to Urban Green Infrastructure. Urban Urban Green 2012, 11, 129–137. [Google Scholar] [CrossRef]
- Corrêa, R.L. A Periodização Da Rede Urbana Da Amazônia. Rev. Bras. Geogr. 1987, 4, 39–68. [Google Scholar]
- Roosevelt, A. Uma Memória Histórica Da Pesquisa Arqueológica No Brasil (1981–2007). Bol. Mus. Para. Emílio Goeldi. Ciências Hum. 2009, 4, 155–170. [Google Scholar] [CrossRef]
- IBGE, Cidades e Estados. Available online: https://www.ibge.gov.br/cidades-e-estados/pa/santarem.html (accessed on 20 February 2022).
- IBGE. Regiões de Influência Das Cidades 2018; IBGE: Rio de Janeiro, Brazil, 2020.
- Malheiro, B.C.P.; da Trindade Júnior, S.-C.C. Entre Rios, Rodovias e Grandes Projetos: Mudanças e Permanências Em Realidades Urbanas Do Baixo Tocantins (Pará). História Rev. 2009, 14, 6. [Google Scholar]
- Oliveira, K.D. Entre a Várzea e a Terra Firme: Estudos de Espaços de Assentamentos Tradicionais Urbanos Rurais Na Região Do Baixo Tocantis. Master’s Thesis, UFPA, Belém, Brazil, 2020. [Google Scholar]
- BRASIL. Plano Territorial de Desenvolvimento Rural Sustentável Território Águas Emendadas–DF; Ministério do Desenvolvimento Agrário: Brasilia, Brazil, 2006; Volume 1. [Google Scholar]
- LISS Grupo De Pesquisa. Liss Inpe. Available online: https://www.lissinpe.com.br/ (accessed on 2 June 2023).
- INPE. Câmeras Imageadoras CBERS-4A. Available online: http://www.cbers.inpe.br/sobre/cameras/cbers04a.php (accessed on 8 January 2022).
- OSM. OpenStreetMap. Available online: https://www.openstreetmap.org/#map=4/-15.13/-53.19 (accessed on 1 November 2021).
- dos Santos, B.D.; de Pinho, C.M.D.; Amaral, S.; Paez, A. AmazonULC Data Package 2023. Available online: http://10.5281/zenodo.7749057 (accessed on 25 April 2023).
- Valeriano, M.d.M.; Rossetti, D.d.F. Topodata: Brazilian Full Coverage Refinement of SRTM Data. Appl. Geogr. 2012, 32, 300–309. [Google Scholar] [CrossRef]
- Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.; Freire, S.; Halkia, M.; Julea, A.; Kemper, T.; Soille, P.; Syrris, V. Operating Procedure for the Production of the Global Human Settlement Layer from Landsat Data of the Epochs 1975, 1990, 2000, and 2014. Publ. Off. Eur. Union 2016, 1–62. [Google Scholar]
- Team, Q.D. QGIS Geographic Information System 2021. Version Number: 3.18. Available online: https://issues.qgis.org/projects/qgis/wiki/QGIS_Citation_Repository (accessed on 5 June 2023).
- van Rossum, G. Python Reference Manual; Department of Computer Science, Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Körting, T.S.; Garcia Fonseca, L.M.; Câmara, G. GeoDMA—Geographic Data Mining Analyst. Comput Geosci 2013, 57, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Abreu, E.S.; Rosim, S.; Rennó, C.D.; Oliveira, R.D.F.; Jardim, A.C.; Ortiz, J.D.O.; Dutra, L.V. Terrahidro—A Distributed Hydrological System to Delimit Large Basins. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 546–549. [Google Scholar]
- Turner, A. Depthmap: A Program to Perform Visibility Graph Analysis. In Proceedings of the 3rd International Symposium on Space Syntax, Citeseer, Atlanta, 7–11 May 2001; Volume 31, pp. 12–31. [Google Scholar]
- Rennó, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, J.V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND, a New Terrain Descriptor Using SRTM-DEM: Mapping Terra-Firme Rainforest Environments in Amazonia. Remote Sens. Environ. 2008, 112, 3469–3481. [Google Scholar] [CrossRef]
- Braga, B.; Hespanhol, I.; Conejo, J.G.L.; Mierzwa, J.C.; de Barros, M.T.L.; Spencer, M.; Porto, M.; Nucci, N.; Juliano, N.; Eiger, S. Introdução à Engenharia Ambiental: O Desafio do Desenvolvimento Sustentável; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Souza, C.M.M.; Montero, L.S.; Liesenberg, V. Análise de Urbanização Em Áreas Declivosas, Como Uma Das Etapas Da Avaliação Ambiental Estratégica (AAE), Visando o Desenvolvimento Local. In Anais. In Proceedings of the XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, 21–26 April 2007; pp. 21–26. [Google Scholar]
- Galera, R.A.; Brito, C.O.; Campos, F.S.; Antunes, J.S.; Canil, K. Modelo Digital de Curvatura Côncava Para Determinação de Unidades Geotécnicas de Aptidão à Urbanização. In Proceedings of the XVIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, 28–31 May 2017. [Google Scholar]
- Conzen, M.R.G. Alnwick, Northumberland: A Study in Town-Plan Analysis. Trans. Pap. 1960, 3, 122. [Google Scholar] [CrossRef]
- Conzen, M.R.G. Thinking about Urban Form: Papers on Urban Morphology, 1932–1998; Peter Lang: New York, NY, USA, 2004; ISBN 3039102761. [Google Scholar]
- Oliveira, V. Morpho: A Methodology for Assessing Urban Form. Urban Morphol. 2013, 17, 21–33. [Google Scholar] [CrossRef]
- Hillier, B.; Penn, A.; Hanson, J.; Grajewski, T.; Xu, J. Natural Movement: Or, Configuration and Attraction in Urban Pedestrian Movement. Environ. Plann B Plann 1993, 20, 29–66. [Google Scholar] [CrossRef] [Green Version]
- de Medeiros, V.A.S. Urbis Brasiliae Ou Sobre Cidades Do Brasil: Inserindo Assentamentos Urbanos Do País Em Investigações Configuracionais Comparativas. Ph.D. Thesis, Universidade de Brasília, Brasília, Brazil, 2006. [Google Scholar]
- do Carmo, C.L.; Junior, A.A.R.; Nogueira, A.D. Aplicações Da Sintaxe Espacial No Planejamento Da Mobilidade Urbana. Ciência Eng. 2013, 22, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J. Morte e Vida de Grandes Cidades, 3rd ed.; WMF Martins Fontes: São Paulo, Brazil, 2011; ISBN 978-85-7827-421-4. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, B.D.; Amaral, S.; de Pinho, C.M.D.; Paéz, A. Adapting Socioeconomic Indicators And Identifying Intra-Urban Typologies in Santarém—PA. In Proceedings of the Anais do XX Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brazil, 2–5 April 2023; pp. 1941–1944. [Google Scholar]
- D’Antona, Á.; Bueno, M.D.C.; Dagnino, R. Using Regular Grids for Spatial Distribution of Census Data for Population and Environment Studies in Brazil. In Proceedings of the Population Association of America Annual Meeting Program 2011, Washington, DC, USA, 31 March–2 April 2011. [Google Scholar]
- dos Santos, B.D.; de Pinho, C.M.D.; de Jesus, T.B. Níveis de Consolidação de Assentamentos Precários A Partir de Dados de Sensoriamento Remoto. In Proceedings of the XIX Simpósio Brasileiro de Sensoriamento Remoto; Santos, Brazil, 14–17 April 2019, INPE: São José dos Campos, Brazil, 2019; pp. 3224–3227. [Google Scholar]
- Gonçalves, G. Identificação de Assentamentos Precários Na Região Do Grande ABC: Uma Abordagem Estatística; Trabalho de Conclusão de Curso, UFABC: Santo André, Brazil, 2018. [Google Scholar]
- CDHU. Ufabc Desenvolvimento e Aplicação de Metodologia Para Identificação, Caracterização e Dimensionamento de Assentamentos Precários; CDHU: São Bernardo do Campo, Brazil, 2018.
- Feitosa, F.D.F.; Vasconcelos, V.V.; de Pinho, C.M.D.; da Silva, G.F.G.; da Silva Gonçalves, G.; Danna, L.C.C.; Lisboa, F.S. IMMerSe: An Integrated Methodology for Mapping and Classifying Precarious Settlements. Appl. Geogr. 2021, 133, 102494. [Google Scholar] [CrossRef]
- Feitosa, F.D.F.; da Cunha, L.F.B.; Gonçalves, G.D.S.; da Silva, G.F.G.; Simões, P.R. Modelagem para a identificação de núcleos urbanos informais: Uma proposta metodológica. In Núcleos Urbanos Informais: Abordagens Territoriais da Irregularidade Fundiária E da Precariedade Habitacional; Krause, C., Denaldi, R., Eds.; Editora Instituto de Pesquisa Econômica Aplicada (Ipea): Brasília, Brazil, 2022; Volume 4, pp. 114–144. ISBN 978-65-5635-044-8. [Google Scholar]
- Tobler, W.R. Geographical Filters and Their Inverses. Geogr. Anal. 1969, 1, 234–253. [Google Scholar] [CrossRef]
- Murtagh, F.; Contreras, P. Algorithms for Hierarchical Clustering: An Overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 86–97. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- da Cunha, L.F.B.; Feitosa, F.D.F.; Paez, A.; de Pinho, C.M.D. Exploring the Diversity of Informal Settlements in Brazil: A Clustering Approach to Qualitative Field Survey Data. In Proceedings of the Simpósio Brasileiro de Geoinformática (GEOINFO); São José dos Campos, Brazil, 30 November 2022, Rosim, S., Santos, L.B.L., Pereira, M.D.A., Eds.; Instituto Nacional de Pesquisas Espaciais (INPE): São José dos Campos, Brazil, 2022; pp. 63–73. [Google Scholar]
- Huang, Z. Extensions to the K-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Min Knowl Discov 1998, 2, 283–304. [Google Scholar] [CrossRef]
- de Vos, N. Kmodes Categorical Clustering Library 2021. Available online: http://pypi.org/project/kmodes/ (accessed on 24 February 2023).
- Victoriano, R.; Paez, A.; Carrasco, J.-A. Time, Space, Money, and Social Interaction: Using Machine Learning to Classify People’s Mobility Strategies through Four Key Dimensions. Travel Behav. Soc. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Cardoso, A.C.D.; de Melo, A.C.; Gomes, T.D.V. O Urbano Contemporâneo Na Fronteira de Expansão Do Capital: Padrões de Transformações Espaciais Em Seis Cidades Do Pará, Brasil. Rev. Morfol. Urbana 2016, 4, 5–28. [Google Scholar] [CrossRef]
- Tourinho, H.L.Z. Estrutura Urbana de Cidades Médias Amazônicas: Análise Considerando a Articulação Das Escalas Interurbana e Intraurbana. Ph.D. Thesis, UFPE, Recife, Brazil, 2011. [Google Scholar]
- Cardoso, A.C.D.; Lima, J.J.F. Tipologias e Padrões de Ocupação Urbana Na Amazônia Oriental: Para Que e Para Quem, 1st ed.; UFPA: Belém, Brazil, 2006. [Google Scholar]
- IBGE. Aglomerados Subnormais 2019: Classificação Preliminar e Informações de Saúde Para o Enfrentamento à COVID-19; IBGE: Rio de Janeiro, Brazil, 2020.
- Kuffer, M.; Pfeffer, K.; Sliuzas, R. Slums from Space—15 Years of Slum Mapping Using Remote Sensing. Remote Sens. 2016, 8, 455. [Google Scholar] [CrossRef] [Green Version]
Assessment Criteria | Description |
---|---|
Adapted Axial Maps | We applied adapted axial maps of integration and choice on a regional scale using a 50 km buffer around the study area. The metrics were developed using the Access base, consisting of the road network and perennial rivers. Rivers were represented by a hexagonal grid with 500 m and 2 km hexagons. The following parameters were used: Number of bins—16, Metrics—choice, integration, node count, and total depth, Radius—500 m, 1 km, 5 km, and all accesses. |
Ratio area to perimeter of the block | Jacobs [68] states that short block lengths lead to more diversity of use along the streets and make it easier for the population to move around, fostering diversity of use of buildings. |
Roofing Class Area | The area of the High Gloss, Ceramic, and Fiber cement roofing classes identifies areas with a higher or lower proportion of roof types among settlements and areas of higher or lower building density. |
Built-up Area Period | We use the built-up area period to reflect the urban palimpsest, which refers to overlapping periods of construction reflecting the ideologies that guided land use over time. The urban form shows the record of civil and public actions. The period of the area was obtained from the GHS-BUILT Multi-temporal database [52]. |
Percentage of Block with Built-up Area | Identifies areas of higher and lower building density. |
Road Coverage Class Area | The area of Asphalt and Terrain Road coverage classes identifies the proportion and type of roads in settlements. |
Textural Metrics | Textural metrics obtained from Gray Level Co-occurrence Matrices (GLCMs) [69] are used by several authors to identify urban differences at the local scale. |
Assessment Criteria | Description |
---|---|
Percentage of households with inadequate sewage disposal | We adopted the following as inadequate: the landfilling of garbage on the property; thrown garbage in empty lots, rivers, lakes, seas, or other destinations without collection. |
Percentage of households with inadequate water supply | We adopted the following as inadequate: the existence of households without a toilet; the disposal to a rudimentary septic tank; the disposal to a ditch; the disposal to a river, lake, sea, or other destinations without collection. |
Percentage of households with adequate garbage disposal | We adopted the following as inadequate: water supply by well or spring outside the property (or village), rainwater stored in a way other than in cisterns, and supply only by tank trucks. |
Total people per household | Number of people divided by the number of households |
Average monthly income of private households | Total monthly household income divided by the total number of residences. |
Young Dependency Ratio | Total young population (under 15 years old) divided by the economically active population (between 15 and 65 years old). |
Old Dependency Ratio | Total elderly population (over 65 years old) divided by economically active population (between 15 and 65 years old). |
Sex Ratio | Total male population divided by the total female population |
Household heads who are over 10 years old and literate | Population responsible for the household over 10 and literate. |
USEP WPM RGB (3, 2, 1) | Pattern Description |
---|---|
USEP-1: Riverside. This pattern is characterized by a built-up area along the waterfront with high connectivity and infrastructure for navigation. Most of the area is occupied by the land class “water.” | |
USEP-2: Medium-density. This pattern is located on the periphery of Santarém’s urban area with low integration and accessibility. It has medium building density and rectangular-shaped blocks with buildings that have fiber cement roofs. The area has a significant herbaceous vegetation cover, which presents about 35% of the cell, and is situated at an average slope of 5.3%. | |
USEP-3: Periurban. This pattern is situated far from the center of Santarém, usually bordering highways or close to the river, presenting moderate accessibility. It has low building density and no specific observed roofing type. The area has the highest vegetation cover among the identified patterns, with shrubs and herbaceous vegetation accounting for over 40% of the area. It is located at an elevation of 13.5 m and features the steepest slope among the identified patterns, measuring 6.4%. | |
USEP-4: High integration. This pattern is located in central areas close to the Santarém waterfront, boasting highly integrated access routes and well-maintained asphalt roads. It has small, densely built blocks with a regular shape and a high proportion of buildings with fiber cement roofs. The area is situated on flat terrain, with a slight slope of 4.3%, and features large warehouses, suggesting commercial and logistic activities in the region. | |
USEP-5: Main roads. This pattern pertains to the primary interconnecting highways in the wider region outside of Santarém’s city center. This pattern features both asphalt and dirt road access, with the highest level of connectivity and integration. In general, the area closer to the urbanized zone exhibits regular, densely built blocks, whereas building density and conformity decrease closer to rural areas. | |
USEP-6: High-density informal. This pattern is located on the periphery of downtown Santarém, with expansion largely guided by highways. Access is moderately integrated, with most of the roads being dirt roads. This pattern exhibits medium regularity and high-density blocks, with block sizes varying between 100 and 220 m in length. It features a high proportion of buildings with fiber cement roofs, but buildings with ceramic tops are also present. It has no vegetation within the blocks, situated on flat terrain, with the highest average elevation (16 m) among the identified patterns. The high building density, irregular block shapes, and unpaved streets suggest an informal settlement type. | |
USEP-7: Housing complex. This pattern describes a recent housing complex located far from the city center, built after 2010, in areas that were recently converted from rural to urban use. Access to these areas is poorly integrated, and the roads are paved. The developments in this class consist of regular, large blocks with high construction density. The buildings are generally small and lack backyards, featuring ceramic roofs, with some exceptions that have high-gloss roofs. This pattern is situated in areas of low elevation, on flat terrain with no slope. Vegetation within the blocks is absent. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, B.D.; de Pinho, C.M.D.; Páez, A.; Amaral, S. Identifying Urban and Socio-Environmental Patterns of Brazilian Amazonian Cities by Remote Sensing and Machine Learning. Remote Sens. 2023, 15, 3102. https://doi.org/10.3390/rs15123102
dos Santos BD, de Pinho CMD, Páez A, Amaral S. Identifying Urban and Socio-Environmental Patterns of Brazilian Amazonian Cities by Remote Sensing and Machine Learning. Remote Sensing. 2023; 15(12):3102. https://doi.org/10.3390/rs15123102
Chicago/Turabian Styledos Santos, Bruno Dias, Carolina Moutinho Duque de Pinho, Antonio Páez, and Silvana Amaral. 2023. "Identifying Urban and Socio-Environmental Patterns of Brazilian Amazonian Cities by Remote Sensing and Machine Learning" Remote Sensing 15, no. 12: 3102. https://doi.org/10.3390/rs15123102
APA Styledos Santos, B. D., de Pinho, C. M. D., Páez, A., & Amaral, S. (2023). Identifying Urban and Socio-Environmental Patterns of Brazilian Amazonian Cities by Remote Sensing and Machine Learning. Remote Sensing, 15(12), 3102. https://doi.org/10.3390/rs15123102