First Retrievals of Surface and Atmospheric Properties Using EnMAP Measurements over Antarctica
Abstract
:1. Introduction
2. EnMAP
- Visible–near infrared (VNIR)—operating in the range of 418 nm to 993 nm;
- Short-wave infrared (SWIR)—operating in the range of 902 nm to 2445 nm.
- L1B: top-of-atmosphere radiance; the Level 1B processor converts digital numbers into calibrated at-sensor radiances and applies dark signal, non-linearity, gain-matching, response non-uniformity and straylight corrections as well as radiometric calibration.
- L1C: orthorectified L1B data; the Level 1C processor carries out a direct georeferencing of the L1B product, which accounts for sensor-, satellite-motion-, and terrain-related geometric distortions. The L1C product is an orthorectified single data cube that is resampled and transformed to a map projection system (e.g., the UTM Universal Transverse Mercator projection with WGS84 datum).
- L2A: bottom-of-atmosphere reflectance (atmospherically corrected L1C data) and in case of water surfaces optionally normalized water-leaving reflectance or underwater reflectance. It also includes the correction for thin cirrus, haze, terrain, and adjacency effects. The land product is fully compliant with the CEOS CARD4L guidelines [23].
3. Theory
3.1. Retrieval of Snow Properties
Satellite Snow Product | Abbreviation/Units | Equation | Comments |
---|---|---|---|
Effective absorption length | EAL, mm | L | |
Effective grain diameter | EGD, mm | d = L/κ | κ = 16 |
Specific surface area | SSA, | σ = 6κ/ρL | ρ = 0.917 g is the density of bulk ice |
Broadband albedo Plane BBA Spherical BBA | BBA pBBA sBBA | The values of a, b, and p depend on the spectral ranges used to compute the BBA (see Table 2) | |
Spherical albedo | SA | is the bulk ice absorption coefficient | |
Plane albedo | PA | is given by Equation (4) | |
BOA reflectance | BOAR | is given by Equation (3) |
3.2. Retrieval of Precipitable Water Vapor and Total Ozone Column
4. Application of the Retrieval Algorithm to L1B Top-of-Atmosphere EnMAP Radiance Data
5. The Comparison with Ground Measurements
Instrument | Target | Spectral Range | Reference |
---|---|---|---|
VNIR spectrometer | Spectral albedo, specific surface area | 0.4–1.1 μm | [27] |
Pyranometer | Broadband albedo | 0.35–2.5 μm | [48] |
UV radiometer | Total ozone | 0.300, 0.306, 0.310, 0.314, 0.325, 0.338, and 0.364 μm | [49] |
FTIR spectrometer | Precipitable water vapor | 7.1–100 μm | [50,51,52] |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rees, G.W. Remote Sensing of Snow and Ice; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Tedesco, M. (Ed.) Remote Sensing of the Cryosphere; Wiley Blackwell: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kokhanovsky, A.A. Snow Optics; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Küster, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP spaceborne imaging spectroscopy mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.; Lamare, M.; Di Mauro, B.; Picard, G.; Arnaud, L.; Dumont, M.; Tuzet, F.; Brockmann, C.; Box, J.E. On the reflectance spectroscopy of snow. Cryosphere 2018, 12, 2371–2382. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.A.; Lamare, M.; Danne, O.; Brockmann, C.; Dumont, M.; Picard, G.; Arnaud, L.; Favier, V.; Jourdain, B.; Le Meur, E.; et al. Retrieval of snow properties from the Sentinel-3 Ocean and Land Colour Instrument. Remote Sens. 2019, 11, 2280. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.; Box, J.E.; Vandecrux, B.; Mankoff, K.D.; Lamare, M.; Smirnov, A.; Kern, M. The determination of snow albedo from satellite measurements using fast atmospheric correction technique. Remote Sens. 2020, 12, 234. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.; Vandecrux, B.; Wehrlé, A.; Danne, O.; Brockmann, C.; Box, J.E. An improved retrieval of snow and ice properties using spaceborne OLCI/S-3 spectral reflectance measurements: Updated atmospheric correction and snow impurity load estimation. Remote Sens. 2023, 15, 77. [Google Scholar] [CrossRef]
- Dozier, J. Snow reflectance from Lansat 4 Thematic Mapper. IEEE Trans. Geosci. Remote Sens. 1984, 17, 1213–1221. [Google Scholar]
- Boudelles, B.; Fily, M. Snow grain—Size determination from Landsat imagery over Terre Adelie, Antarctica. Ann. Glaciol. 1993, 17, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Nolin, A.W.; Dozier, J. Estimating snow grain size using AVIRIS data. Remote Sens. Environ. 1993, 44, 231–238. [Google Scholar] [CrossRef]
- Green, R.O.; Dozier, J.; Roberts, D.; Painter, T. Spectral snow-reflectance models for grain size and liquid water fraction in melting snow for the solar-reflected spectrum. Ann. Glaciol. 2002, 34, 71–73. [Google Scholar] [CrossRef] [Green Version]
- Zege, E.P.; Katsev, I.L.; Malinka, A.V.; Prikhach, A.S.; Heygster, G.; Wiebe, H. Algorithm for retrieval of the effective snow grain size and pollution amount from satellite measurements. Remote Sens. Environ. 2011, 115, 2674–2685. [Google Scholar] [CrossRef]
- Bohn, N.; Painter, T.H.; Thompson, D.R.; Carmon, N.; Susiluoto, J.; Turmon, M.J.; Helmlinger, M.C.; Green, R.O.; Cook, J.M.; Guanter, L. Optimal estimation of snow and ice surface parameters from imaging spectroscopy measurements. Remote Sens. Environ. 2021, 264, 112613. [Google Scholar] [CrossRef]
- Warren, S.G.; Brandt, R.; Grenfell, T.G. Visible and near infrared absorption spectrum of ice from transmission of solar radiation into snow. Appl. Opt. 2006, 45, 5320–5334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storch, T.; Honold, H.-P.; Chabrillat, S. The EnMAP imaging spectroscopy mission towards operations. Remote Sens. Environ. 2023, 294, 113632. [Google Scholar] [CrossRef]
- Vandecrux, B.; Box, J.E.; Wehrlé, A.; Kokhanovsky, A.A.; Picard, G.; Niwano, M.; Hörhold, M.; Faber, A.-K.; Steen-Larsen, H.C. The determination of the snow optical grain diameter and snowmelt area on the Greenland Ice Sheet using spaceborne optical observations. Remote Sens. 2022, 14, 932. [Google Scholar] [CrossRef]
- Vandecrux, B.; Kokhanovsky, A.; Picard, G.; Box, J. pySICE: A Python Package for the Retrieval of Snow Surface Properties from Sentinel 3 OLCI Reflectances, Version 2.1; Zenodo: Meyrin, Switzerland, 2022. [Google Scholar] [CrossRef]
- Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy: Principles and Applications; Springer: Weinheim, Germany, 2008; p. 597. [Google Scholar]
- Tomasi, C.; Petkov, B.; Benedetti, E.; Valenziano, L.; Vitale, V. Analysis of a 4 year radiosonde data set at Dome C for characterizing temperature and moisture conditions of the Antarctic atmosphere. J. Geophys. Res. 2011, 116, D15304. [Google Scholar] [CrossRef] [Green Version]
- Ricaud, P.; Griogioni, P.; Zbuinden, R. Review of tropospheric temperature, absolute humidity and integrated water vapour from the HAMSTRAD radiometer installed at Dome C, Antartctica, 2009–2014. Antarct. Sci. 2015, 27, 598–616. [Google Scholar] [CrossRef] [Green Version]
- Negusini, M.; Petkov, B.H.; Tornatore, V.; Barindelli, S.; Martelli, L.; Sarti, P.; Tomasi, C. Water vapour assessment using GNSS and radiosondes over polar regions and estimation of climatological trends from long-term time series analysis. Remote Sens. 2021, 13, 4871. [Google Scholar] [CrossRef]
- Bachmann, M.; Alonso, K.; Carmona, E.; Gerasch, B.; Habermeyer, M.; Holzwarth, S.; Krawczyk, H.; Langheinrich, M.; Marshall, D.; Pato, M.; et al. The CEOS CARD4L Conform EnMAP L2A ‘Land’ Product. In Proceedings of the 12th EARSeL Workshop on Imaging Spectroscopy, Potsdam, Germany, 22–24 June 2022. [Google Scholar]
- Fontenla, J.N.; Harder, J.; Livingston, W.; Snow, M.; Woods, T. High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res. Atmos. 2011, 116, D20. [Google Scholar] [CrossRef]
- Zege, E.P.; Ivanov, A.P.; Katsev, I.L. Image Transfer through Light Scattering Media; Springer: Berlin, Germany, 1991. [Google Scholar]
- Warren, S.G.; Brandt, R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res. Atmos. 2008, 113, D14220. [Google Scholar] [CrossRef]
- Picard, G.; Libois, Q.; Arnaud, L. Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow. Cryosphere 2016, 10, 2655–2672. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Liang, S.; Liu, Q.; He, T.; Liu, S.; Li, X. Mapping surface broadband albedo from satellite observations: A review of literatures on algorithms and products. Remote Sens. 2015, 7, 990–1020. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Takano, Y.; Liou, K.-N.; Yang, P.; Li, Q.; Chen, F. Impact of snow grain shape and black carbon-snow internal mixing on snow optical properties: Parameterizations for climate models. J. Clim. 2017, 30, 19–36. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. Scaling constant and its determination from simultaneous measurements of light reflection and methane adsorption by snow samples. Opt. Lett. 2006, 31, 3282–3284. [Google Scholar] [CrossRef] [PubMed]
- Kokhanovsky, A.A.; Iodice, F.; Lelli, L.; Zschaege, A.; De Quattro, N.; Gasbarra, D.; Retscher, C. Retrieval of total ozone column using high spatial resolution top-of-atmosphere measurements by OLCI/S-3 in the ozone Chappuis absorption band over bright underlying surfaces. J. Quant. Spectrosc. Radiat. Transf. 2021, 276, 107903. [Google Scholar] [CrossRef]
- Libois, Q.; Picard, G.; Dumont, M.; Arnaud, L.; Sergent, C.; Pougatch, E.; Sudul, M.; Vial, D. Experimental determination of the absorption enhancement parameter of snow. J. Glaciol. 2014, 60, 714–724. [Google Scholar] [CrossRef] [Green Version]
- Carlsen, T.; Birnbaum, G.; Ehrlich, A.; Freitag, J.; Heygster, G.; Istomina, L.; Kipfstuhl, S.; Orsi, A.; Schäfer, M.; Wendisch, M. Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica. Cryosphere 2017, 11, 2727–2741. [Google Scholar] [CrossRef] [Green Version]
- Kerbrat, M.; Pinzer, B.; Huthwelker, T.; Gäggeler, H.W.; Ammann, M.; Schneebeli, M. Measuring the specific surface area of snow with X-ray tomography and gas adsorption: Comparison and implications for surface smoothness. Atmos. Chem. Phys. 2008, 8, 1261–1275. [Google Scholar] [CrossRef] [Green Version]
- Cauchy, A. Memeoire sur la Rectification des Courbes et la Quadrature des Surfaces; Cambridge University Press: Cambridge, UK, 1832. [Google Scholar]
- Kokhanovsky, A.A. Broadband albedo of snow. Front. Environ. Sci. Inform. Remote Sens. 2021, 9, 757575. [Google Scholar] [CrossRef]
- Six, D.; Fily, M.; Blarel, L.; Goloub, P. First aerosol optical thickness measurements at Dome C (East Antarctica), summer season 2003–2004. Atmos. Environ. 2005, 39, 5041–5050. [Google Scholar] [CrossRef]
- Grenfell, T.C.; Warren, S.G.; Mullen, P.C. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res. Earth Surf. 1994, 99, 18669–18684. [Google Scholar] [CrossRef]
- Gallet, J.-C.; Domine, F.; Zender, C.; Picard, G. Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm. Cryosphere 2009, 3, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Carmagnola, C.M.; Domine, F.; Dumont, M.; Wright, P.; Strellis, B.; Bergin, M.; Dibb, J.; Picard, G.; Libois, Q.; Arnaud, L.; et al. Snow spectral albedo at Summit, Greenland: Measurements and numerical simulations based on physical and chemical properties of the snowpack. Cryosphere 2013, 7, 1139–1160. [Google Scholar] [CrossRef] [Green Version]
- Green, A.E.; Wagner, J.C.; Mann, A. Analytic spectral functions for atmospheric transmittance calculations. Appl. Opt. 1988, 27, 2266–2272. [Google Scholar] [CrossRef] [PubMed]
- Pierluissi, J.H.; Maragoudakis, C.E.; Tehrani-Mohaved, F. New LOWTRAN band model for water vapor. Appl. Opt. 1989, 28, 3792–3795. [Google Scholar] [CrossRef] [PubMed]
- Cachorro, V.E.; Antuña-Sanchez, J.C.; de Frutos, A.M. SSolar-GOA v1.0: A simple, fast, and accurate Spectral solar radiative transfer for clear skies. Geosci. Model Dev. 2022, 15, 1689–1712. [Google Scholar] [CrossRef]
- Walden, V.P.; Roth, W.L.; Stone, R.S.; Halter, B. Radiometric validation of the Atmospheric Infrared Sounder over the Antarctic Plateau. J. Geophys. Res. 2006, 111, D09S03. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.A.; Lamare, M.; Rozanov, V.V. Retrieval of the total ozone over Antarctica using Sentinel-3 ocean and land color instrument. J. Quant. Spectrosc. Radiat. Transf. 2020, 251, 107045. [Google Scholar] [CrossRef]
- Serdyuchenko, A.; Gorshelev, V.; Weber, M.; Chehade, W.; Burrows, J.P. High spectral resolution ozone absorption cross-sections—Part 2: Temperature dependence. Atmos. Meas. Tech. 2014, 7, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Picard, G.; Dumont, M.; Lamare, M.; Tuzet, F.; Larue, F.; Pirazzini, R.; Arnaud, L. Spectral albedo measurements over snow-covered tilted terrain: Theory and slope effect corrections. Cryosphere 2020, 14, 1497–1517. [Google Scholar] [CrossRef]
- Lanconelli, C.; Lupi, A.; Mazzola, M.; Petkov, B.; Busetto, M.; Viola, A.; Vitale, V.; Salvatori, R.; Esposito, G.; Salzano, R. Spectral and Broadband Snow Albedo Measurements at Dome-C and Ny-Ålesund. 2014. Available online: https://www.isac.cnr.it/~radiclim/bsrn2014/userfiles/downloads/TALKS/Lanconelli_TueA.pdf (accessed on 6 June 2023).
- Tomasi, C.; Petkov, B.H. Spectral calculations of Rayleigh-scattering optical depth at Arctic and Antarctic sites using a two-term algorithm. J. Geophys. Res. Atmos. 2015, 120, 9514–9538. [Google Scholar] [CrossRef] [Green Version]
- Fiorucci, L.; Muscari, G.; Bianchi, C.; Di Girolamo, P.; Esposito, F.; Grieco, G.; Summa, D.; Bianchini, G.; Palchetti, L.; Cacciani, M.; et al. Measurements of low amounts of precipitable water vapor by mm-wave spectroscopy: An intercomparison with radiosonde, Raman Lidar and FTIR data. J. Geophys. Res. 2008, 113, D14314. [Google Scholar] [CrossRef]
- Bianchini, G.; Palchetti, L.; Muscari, G.; Fiorucci, I.; Di Girolamo, P.; Di Iorio, T. Water vapor sounding with the far infrared Refir-Pad spectroradiometer from a high-altitude ground-based station during the Ecowar campaign. J. Geophys. Res. 2011, 116, D02310. [Google Scholar] [CrossRef] [Green Version]
- Bianchini, G.; Castagnoli, F.; Di Natale, G.; Palchetti, L. A Fourier transform spectroradiometer for ground-based remote sensing of the atmospheric downwelling long-wave radiance. Atmos. Meas. Tech. 2019, 12, 619–635. [Google Scholar] [CrossRef] [Green Version]
- Broeke, M.V.D.; Reijmer, C.; Van De Wal, R. Surface radiation balance in Antarctica as measured with automatic weather stations. J. Geophys. Res. Atmos. 2004, 109, D09103. [Google Scholar]
- Pirazzini, R. Surface albedo measurements over Antarctic sites in summer. J. Geophys. Res. Earth Surf. 2004, 109, D20118. [Google Scholar] [CrossRef]
- Kuipers Munneke, P.; Reijmer, C.H.; Broeke, M.R.V.D.; König-Langlo, G.; Stammes, P.; Knap, W.H. Analysis of clear-sky Antarctic snow albedo using observations and radiative transfer modeling. J. Geophys. Res. Earth Surf. 2008, 113, D17118. [Google Scholar] [CrossRef] [Green Version]
- Kuipers Munnike, P. Snow, Ice and Solar Radiation. Ph.D. Thesis, Institute for Marine and Atmospheric Research, Utrecht, The Netherlands, 2009. [Google Scholar]
- Yamanouchi, T. Variations of incident solar flux and snow albedo on the solar zenith angle and cloud cover, at Mizuho Station, Antarctica. J. Meteorol. Soc. Jpn. 1983, 61, 879–893. [Google Scholar] [CrossRef] [Green Version]
- Picard, G.; Libois, Q.; Arnaud, L.; Vérin, G.; Dumont, M. Development and calibration of an automatic spectral albedometer to estimate near-surface snow SSA time series. Cryosphere 2016, 10, 1297–1316. [Google Scholar] [CrossRef] [Green Version]
- Gallet, J.C.; Domine, F.; Arnaud, L.; Picard, G.; Savarino, J. Vertical profiles of the specific surface area of the snow at Dome C, Antarctica. Cryosphere 2011, 4, 631–649. [Google Scholar] [CrossRef] [Green Version]
- Gay, M.; Fily, M.; Genthon, C.; Frezzotti, M.; Oerter, H.; Winther, J.-G. Snow grain size measurements in Antarctica. J. Glaciol. 2002, 48, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Petkov, B.; Vitale, V.; Tomasi, C.; Bonafè, U.; Scaglione, S.; Flori, D.; Santaguida, R.; Gausa, M.; Hansen, G.; Colombo, T. Narrow-band filter radiometer for ground-based measurements of global UV solar irradiance and total ozone. Appl. Opt. 2006, 45, 4383–4395. [Google Scholar] [CrossRef] [PubMed]
- Stamnes, K.; Slusser, J.; Bowen, M. Derivation of total ozone abundance and cloud effects from spectral irradiance measurements. Appl. Opt. 1991, 30, 4418–4426. [Google Scholar] [CrossRef] [PubMed]
- Madronich, S. UV radiation in the natural and perturbed atmosphere. In Environmental Effects of UV (Ultraviolet) Radiation; Tevini, M., Ed.; Lewis: Boca Raton, FL, USA, 1993; pp. 17–69. [Google Scholar]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Pereira, K.C.; Boukabara, S.; Brown, P.D. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Arioli, S.; Picard, G.; Arnaud, L.; Favier, V. Dynamics of the snow grain size in a windy coastal area of Antarctica from continuous in-situ spectral albedo measurements. Cryosphere 2023, 17, 2323–2342. [Google Scholar] [CrossRef]
BBA | a | b | |
Spectral range: 0.3–0.7 μm | 0 | 1 | 7.86 × 10−5 |
Spectral range: 0.7–2.5 μm | 0.2335 | 0.6600 | 3.27 × 10−2 |
Spectral range: 0.3–0.25 μm | 0.5721 | 0.3612 | 2.35 × 10−2 |
Parameter | Average Value | Standard Deviation | CV (%) |
---|---|---|---|
Effective grain diameter, mm | 0.1429 | 0.0078 | 5.5 |
pBBA (0.3–2.5 μm) | 0.8291 | 0.0015 | 0.2 |
SSA, /kg | 45.93 | 2.51 | 5.5 |
TOC, DU | 193.67 | 13.98 | 7.2 |
PWV, mm | 0.172 | 0.0058 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokhanovsky, A.A.; Brell, M.; Segl, K.; Bianchini, G.; Lanconelli, C.; Lupi, A.; Petkov, B.; Picard, G.; Arnaud, L.; Stone, R.S.; et al. First Retrievals of Surface and Atmospheric Properties Using EnMAP Measurements over Antarctica. Remote Sens. 2023, 15, 3042. https://doi.org/10.3390/rs15123042
Kokhanovsky AA, Brell M, Segl K, Bianchini G, Lanconelli C, Lupi A, Petkov B, Picard G, Arnaud L, Stone RS, et al. First Retrievals of Surface and Atmospheric Properties Using EnMAP Measurements over Antarctica. Remote Sensing. 2023; 15(12):3042. https://doi.org/10.3390/rs15123042
Chicago/Turabian StyleKokhanovsky, Alexander A., Maximillian Brell, Karl Segl, Giovanni Bianchini, Christian Lanconelli, Angelo Lupi, Boyan Petkov, Ghislain Picard, Laurent Arnaud, Robert S. Stone, and et al. 2023. "First Retrievals of Surface and Atmospheric Properties Using EnMAP Measurements over Antarctica" Remote Sensing 15, no. 12: 3042. https://doi.org/10.3390/rs15123042