Improved General Polarimetric Model-Based Decomposition for Coherency Matrix
Abstract
:1. Introduction
- (1)
- Limited by the number of equations, only the real part of the unknown parameter in the generalized surface scattering model is considered. However, for manmade targets (e.g., urban buildings), their imaginary parts cannot be ignored [40].
- (2)
- In their work, the initial values of the matched model parameters are necessary and dominate the decomposition results. However, inappropriate initial values would lead to local minima model parameter results in solving nonlinear least squares optimization.
- (3)
- (4)
- Model inversion processes are all based on solving nonlinear least squares optimization. The computation and optimum value finding are famous difficulties in nonlinear optimization problem-solving.
- (1)
- The imaginary part of in the generalized surface scattering model is included into the model inversion parameter set by using the constraint condition of minimizing residual.
- (2)
- Ingeniously utilizing the internal relationship in the generic equations composed of coherent matrix elements, the model parameter inversion will be transformed into a linear problem rather than a nonlinear problem. By doing so, the requirement of initial input values can be avoided, and the computational efficiency of model parameter inversion is improved. Moreover, a suitable volume scattering model selected to reduce the number of optimization iterations in Xie’s work [39] was absorbed into the proposed approach, which further improves the computational efficiency.
- (3)
- To solve the under- and overestimated problems in typical areas, a hierarchical decomposition scheme is presented. The key to this scheme is the introduction of a criterion area descriptor [41] to discriminate between urban and nonurban areas. With this discrimination, different areas can apply to different processes. For urban areas, the cross-scattering model [42] is incorporated into the generalized decomposition framework to avoid overestimating problems. For volume scattering-dominated nonurban areas, to avoid underestimation of the volume scattering component, we apply the classic Yamaguchi four-component decomposition method (i.e., Yamaguchi-2005 algorithm) [29] to improve the proportion of its volume scattering component.
2. Review of General Polarimetric Model-Based Decomposition
2.1. Generalized Scattering Models
- (1)
- Volume scattering model
- (2)
- Generalized surface scattering model
- (3)
- Generalized double-bounce scattering model.
- (4)
- Helix scattering model.
2.2. Chen’s Method
3. Improved Generalized Polarimetric Model-Based Decomposition Method
3.1. Cross-Scattering and Generalized Volume Scattering Models
3.2. General Decomposition Framework and Model Inversion Algorithm
3.3. Hierarchical Decomposition Scheme
4. Experimental Results and Analysis
4.1. Decomposition Comparison with AIRSAR Data
4.2. Decomposition Comparison with Radarsat-2 Data
5. Computational Efficiency Analysis and Residual Examination
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
coherency matrix | |
coherent matrix of rotation | |
polarization orientation angle | |
rotation angle with respect to generalized surface scattering model | |
rotation angle with respect to generalized double-bounce scattering model | |
surface scattering model | |
generalized surface scattering model | |
double-bounce scattering model | |
generalized double-bounce scattering model | |
helix scattering model | |
volume scattering model | |
cross-scattering model | |
generalized volume scattering model | |
residual error matrix introduced by model mismatch | |
contribution of the surface scattering to polarization echo power | |
contribution of the double-bounce scattering to polarization echo power | |
contribution of the helix scattering to polarization echo power | |
contribution of the volume scattering to polarization echo power | |
contribution of cross-scattering model to polarization echo power | |
contribution of generalized volume scattering model to polarization echo power | |
total power | |
descriptor to discriminate between urban and nonurban areas | |
threshold for discriminating between urban and nonurban areas | |
volume scattering power in the Yamaguchi-2005 algorithm |
References
- Jansen, R.W.; Sletten, M.A.; Ainsworth, T.L.; Raj, R.G. Multi-channel Synthetic Aperture Radar Based Classification of Maritime Scenes. IEEE Access 2020, 8, 127440–127449. [Google Scholar] [CrossRef]
- Wang, Q.; Doulgeris, A.P.; Eltoft, T. Physics-Aware Training Data to Improve Machine Learning for Sea Ice Classification from Sentinel-1 SAR Scenes. In Proceedings of the IGARSS 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 4992–4995. [Google Scholar]
- Fan, H.; Quan, S.; Dai, D.; Wang, X.; Xiao, S. Refined Model-Based and Feature-Driven Extraction of Buildings from PolSAR Images. Remote Sens. 2019, 11, 1379. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, Q.; Wu, G.; Chen, J.; Liang, S. The impacts of buildings orientation on polarimetric orientation angle estimation and model-based decomposition for multi-look polarimetric SAR data in urban areas. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5520–5532. [Google Scholar] [CrossRef]
- Atwood, D.K.; Thirion-Lefevre, L. Polarimetric phase and implications for urban classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1278–1289. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy-based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- van Zyl, J.J. Application of Cloude’s target decomposition theorem to polarimetric imaging radar data. In Radar Polarimetry; SPIE: Bellingham, WA, USA, 1993; Volume 1748, pp. 184–212. [Google Scholar]
- Touzi, R. Target scattering decomposition in terms of roll-invariant target parameters. IEEE Trans. Geosci. Remote Sens. 2007, 45, 73–84. [Google Scholar] [CrossRef]
- Paladini, R.; Famil, L.F.; Pottier, E.; Martorella, M.; Berizzi, F.; Mese, E.D. Lossless and sufficient Ψ-invariant decomposition of random reciprocal target. IEEE Trans. Geosci. Remote Sens. 2012, 55, 3487–3501. [Google Scholar] [CrossRef]
- Freeman, A. Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2583–2592. [Google Scholar] [CrossRef]
- Wang, W.; Ji, Y.; Lin, X. A novel fusion-based ship detection method from Pol-SAR images. Sensors 2015, 15, 25072–25089. [Google Scholar] [CrossRef]
- Xiang, D.; Tang, T.; Hu, C.; Fan, Q.; Su, Y. Built-up area extraction from PolSAR imagery with model-based decomposition and polarimetric coherence. Remote Sens. 2016, 8, 685. [Google Scholar] [CrossRef] [Green Version]
- Quan, S.; Zhang, T.; Wang, W.; Kuang, G.; Wang, X.; Zeng, B. Exploring Fine Polarimetric Decomposition Technique for Built-up Area Monitoring. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5204719. [Google Scholar] [CrossRef]
- Shibayama, T.; Yamaguchi, Y.; Yamada, H. Polarimetric scattering properties of landslides in forested areas and the dependence on the local incidence angle. Remote Sens. 2015, 7, 15424–15442. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-S.; Grunes, M.; Ainsworth, T.; Du, L.-J.; Schuler, D.; Cloude, S. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2249–2258. [Google Scholar]
- Pallotta, L.; Tesauro, M. Screening Polarimetric SAR Data via Geometric Barycenters for Covariance Symmetry Classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4002905. [Google Scholar] [CrossRef]
- Famil, L.F.; Pottier, E.; Lee, J.S. Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2332–2342. [Google Scholar] [CrossRef]
- Shimoni, M.; Borghys, D.; Heremans, R. Fusion of PolSAR and PolInSAR data for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 169–180. [Google Scholar] [CrossRef]
- Qi, Z.; Yeh, A.G.-O.; Li, X.; Lin, Z. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sens. Environ. 2012, 118, 21–39. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Astola, H. Land cover and soil type mapping from spaceborne POLSAR data at L-band with probabilistic neural network. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5256–5270. [Google Scholar] [CrossRef]
- Hong, S.-H.; Kim, H.-O.; Wdowinski, S.; Feliciano, E. Evaluation of polarimetric SAR decomposition for classifying wetland vegetation types. Remote Sens. 2015, 7, 8563–8585. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Dierking, W.; Zhang, J.; Meng, J. Polarimetric decomposition method for ice in the bohai sea using C-band PolSAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 47–66. [Google Scholar] [CrossRef]
- Hajnsek, I.; Pottier, E.; Cloude, S.R. Inversion of surface parameters from polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 2003, 41, 727–744. [Google Scholar] [CrossRef]
- Hajnsek, I.; Jagdhuber, T.; Schon, H.; Papathanassiou, K.P. Potential of estimating soil moisture under vgetation cover by means of PolSAR. IEEE Trans. Geosci. Remote Sens. 2009, 47, 442–454. [Google Scholar] [CrossRef] [Green Version]
- Jagdhuber, T.; Hajnsek, I.; Papathanassiou, K.P. An iterative generalized hybrid decomposition for soil moisture retrieval under vegetation cover using fully polarimetric SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3911–3922. [Google Scholar] [CrossRef]
- Chen, S.-W.; Li, Y.-Z.; Wang, X.-S.; Xiao, S.-P.; Sato, M. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives. IEEE Trans. Signal Process. 2014, 31, 79–89. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Sato, A.; Boerner, W.M.; Sato, R.; Yamada, H. Four-component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [Google Scholar] [CrossRef]
- Sato, A.; Yamaguchi, Y.; Singh, G.; Park, S.-E. Four-component scattering power decomposition with extended volume scattering model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 166–170. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y.; Park, S.E. General four-component scattering power decomposition with unitary transformation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3014–3022. [Google Scholar] [CrossRef]
- Fan, H.; Quan, S.; Dai, D.; Wang, X.; Xiao, S. Seven-Component Model-Based Decomposition for PolSAR Data with Sophisticated Scattering Models. Remote Sens. 2019, 11, 2802–2813. [Google Scholar] [CrossRef] [Green Version]
- Quan, S.; Xiang, D.; Wang, W.; Xiong, B.; Kuang, G. Scattering Feature-Driven Super pixel Segmentation for Polarimetric SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 99, 2173–2183. [Google Scholar] [CrossRef]
- Ainsworth, T.L.; Wang, Y.; Lee, J.S. Model-Based Polarimetric SAR Decomposition: An L1 Regularization Approach. IEEE Trans. Geosci. Remote Sens. 2021, 99, 5208013. [Google Scholar] [CrossRef]
- Chen, S.-W.; Wang, X.-S.; Xiao, S.-P.; Sato, M. General polarimetric model-based decomposition for coherency matrix. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1843–1855. [Google Scholar] [CrossRef]
- Xie, Q.H.; Ballester-Berman, J.D.; Lopez-Sanchez, J.M.; Zhu, J.; Wang, C. Monte Carlo simulation tests for general polarimetric model-based decomposition method from the perspective of quantitative application. In Proceedings of the 11th European Conference on Synthetic Aperture Radar (EUSAR2016), Hamburg, Germany, 6–9 June 2016; p. 977. [Google Scholar]
- Xie, Q.; Ballester-Berman, J.D.; Lopez-Sanchez, J.M.; Zhu, J.; Wang, C. Quantitative Analysis of Polarimetric Model-Based Decomposition Methods. Remote Sens. 2016, 8, 977–991. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Ballester-Berman, J.D.; Lopez-Sanchez, J.M.; Zhu, J.; Wang, C. On the use of generalized volume scattering models for the improvement of general polarimetric model-based decomposition. Remote Sens. 2017, 9, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.; Lang, H.; Tao, Y.; Huang, L.; Pei, Z. Four-Component Model-Based Decomposition for Ship Targets Using PolSAR Data. Remote Sens. 2017, 9, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Quan, S.; Xiong, B.; Xiang, D.; Kuang, G. Derivation of the Orientation Parameters in Built-Up Areas: With Application to Model-Based Decomposition. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4714–4730. [Google Scholar] [CrossRef]
- Xiang, D.L.; Ban, Y.F.; Yi, S. Model-based decomposition with cross scattering for polarimetric SAR urban areas. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2496–2500. [Google Scholar] [CrossRef]
- An, W.; Cui, Y.; Yang, J. Three-Component Model-Based Decomposition for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2732–2739. [Google Scholar]
- Antropov, O.; Rauste, Y.; Hame, T. Volume scattering modeling in POLSAR decompositions: Study of ALOS PALSAR data over boreal forest. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3838–3848. [Google Scholar] [CrossRef]
- Duan, D.F.; Wang, Y. An Improved Algorithm to Delineate Urban Targets with Model-Based Decomposition of PolSAR Data. Remote Sens. 2017, 9, 1037. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Yang, L.; Danielson, P.; Homer, C.; Fry, J.; Xian, G. A comprehensive change detection method for updating the national land cover database to circa 2011. Remote Sens. Environ. 2013, 132, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.; Tang, T.; Ban, Y.; Su, Y.; Kuang, G. Unsupervised polarimetric SAR urban area classification based on model-based decomposition with cross scattering. ISPRS J. Photogramm. Remote Sens. 2016, 116, 86–100. [Google Scholar] [CrossRef]
Areas | Methods | (%) | (%) | (%) | (%) | (%) |
---|---|---|---|---|---|---|
Patch A (shrub/scrub) | G4U method | 11.11 | 22.46 | 60.18 | 6.25 | -- |
GMD-GVSM method | 16.25 | 21.61 | 56.19 | 5.95 | -- | |
Chen’s method | 20.01 | 26.77 | 47.29 | 5.92 | -- | |
Proposed method | 3.85 | 14.72 | 72.59 | 6.33 | 2.51 | |
Patch B (SOB) | G4U method | 39.72 | 27.36 | 26.09 | 6.83 | -- |
GMD-GVSM method | 42.73 | 21.06 | 28.59 | 7.63 | -- | |
Chen’s method | 35.01 | 33.15 | 24.27 | 7.57 | -- | |
Proposed method | 40.73 | 41.88 | 5.50 | 7.89 | 4.01 | |
Patch C (LOB) | G4U method | 26.63 | 20.41 | 45.21 | 7.76 | -- |
GMD-GVSM method | 32.22 | 17.46 | 42.38 | 7.94 | -- | |
Chen’s method | 30.25 | 25.72 | 36.14 | 7.89 | -- | |
Proposed method | 23.52 | 34.84 | 19.78 | 8.24 | 13.62 | |
Patch D (ocean) | G4U method | 8.93 | 75.87 | 13.26 | 1.94 | -- |
GMD-GVSM method | 16.88 | 60.72 | 17.34 | 5.06 | -- | |
Chen’s method | 15.24 | 70.45 | 7.66 | 6.64 | -- | |
Proposed method | 6.61 | 84.56 | 2.73 | 6.11 | 0.01 |
Areas | Methods | (%) | (%) | (%) | (%) | (%) |
---|---|---|---|---|---|---|
Patch A (Forest) | G4U method | 25.60 | 12.77 | 52.75 | 8.88 | -- |
GMD-GVSM method | 24.30 | 16.60 | 50.42 | 8.67 | -- | |
Chen’s method | 24.70 | 22.81 | 43.86 | 8.64 | -- | |
Proposed method | 20.52 | 13.52 | 52.15 | 8.96 | 4.85 | |
Patch B (SOB) | G4U method | 53.93 | 25.86 | 13.86 | 6.35 | -- |
GMD-GVSM method | 54.18 | 25.22 | 13.53 | 7.06 | -- | |
Chen’s method | 51.76 | 28.32 | 14.43 | 7.21 | -- | |
Proposed method | 47.76 | 31.01 | 9.54 | 7.32 | 4.36 | |
Patch C (LOB) | G4U method | 17.33 | 15.23 | 57.92 | 9.51 | -- |
GMD-GVSM method | 26.61 | 19.49 | 48.16 | 9.74 | -- | |
Chen’s method | 25.72 | 24.31 | 40.37 | 9.60 | -- | |
Proposed method | 19.43 | 30.04 | 19.76 | 10.05 | 20.71 | |
Patch D (ocean) | G4U method | 0.01 | 95.549 | 2.61 | 1.88 | -- |
GMD-GVSM method | 3.96 | 94.30 | 1.13 | 0.61 | -- | |
Chen’s method | 11.25 | 88.15 | 0.35 | 0.25 | -- | |
Proposed method | 0.80 | 96.35 | 1.03 | 1.82 | 0.00 |
Methods | Data Sets | Time Consumption per Pixel (s) | |
---|---|---|---|
GMD-GVSM | AIRSAR | ||
Chen | |||
Proposed | |||
GMD-GVSM | Radarsat-2 | ||
Chen | |||
Proposed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, Y.; Liu, X.; Xing, S.; Lv, H.; Wu, G. Improved General Polarimetric Model-Based Decomposition for Coherency Matrix. Remote Sens. 2023, 15, 2899. https://doi.org/10.3390/rs15112899
Li Y, Liu Y, Liu X, Xing S, Lv H, Wu G. Improved General Polarimetric Model-Based Decomposition for Coherency Matrix. Remote Sensing. 2023; 15(11):2899. https://doi.org/10.3390/rs15112899
Chicago/Turabian StyleLi, Yongzhen, Yemin Liu, Xinghua Liu, Shiqi Xing, Hanfeng Lv, and Guoqing Wu. 2023. "Improved General Polarimetric Model-Based Decomposition for Coherency Matrix" Remote Sensing 15, no. 11: 2899. https://doi.org/10.3390/rs15112899
APA StyleLi, Y., Liu, Y., Liu, X., Xing, S., Lv, H., & Wu, G. (2023). Improved General Polarimetric Model-Based Decomposition for Coherency Matrix. Remote Sensing, 15(11), 2899. https://doi.org/10.3390/rs15112899