Algorithm Fusion for 3D Ground-Penetrating Radar Imaging with Field Examples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Linear Process
2.2. Nonlinear and Nonstationary NLT EEMD Filter Bank
2.3. Algorithm Fusion and Construction of 3D Visualization
3. Results
3.1. Controlled Experiments
3.1.1. 2D Algorithm Experiment
3.1.2. 3D Imaging Experiment
3.2. Field Example from the Chuping Archaeological Site
3.2.1. Backfilled Survey Square
3.2.2. Incomplete Excavation Survey Square
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. EMD and EEMD Methods
- (a)
- Determine the upper and lower envelopes encompassing all data y(t) using a cubic spline.
- (b)
- Calculate the mean m1(t) of the two envelopes.
- (c)
- Subtract the mean m1(t) from the data y(t) to obtain the first component h1(t), which is the prototype of IMF C1.
- (d)
- Test whether h1(t) is an IMF or not. If it is not, h1(t) is treated as the data, and then steps (a) to (c) must be repeated.
- (e)
- Repeat the sifting procedure j times until the obtained h1j(t) satisfies the conditions of an IMF.
- (a)
- add a white noise series w(t) of finite amplitude to the original data y(t); then, the noise-added dataset Y(t) is
- (b)
- Decompose the white noise-added data into IMFs.
- (c)
- Repeat step (a) and step (b) k times with different white noise series of the same amplitude each time.
- (d)
- Obtain the (ensemble) means of the corresponding IMFs of the decompositions as
References
- Davis, J.L.; Annan, A.P. Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophys. Prospect. 1989, 3, 531–551. [Google Scholar] [CrossRef]
- López, Y.Á.; García-Fernández, M. Editorial for the Special Issue “Advanced Techniques for Ground Penetrating Radar Imaging”. Remote Sens. 2021, 13, 3696. [Google Scholar] [CrossRef]
- Elseicy, A.; Alonso-Díaz, A.; Solla, M.; Rasol, M.; Santos-Assunçao, S. Combined Use of GPR and Other NDTs for Road Pavement Assessment: An Overview. Remote Sens. 2022, 14, 4336. [Google Scholar] [CrossRef]
- Jaw, S.W.; Hashim, M. Squareal accuracy of underground utility mapping using ground penetrating radar. Tunn. Undergr. Space Technol. 2013, 35, 20–29. [Google Scholar] [CrossRef]
- Lai, W.W.L.; Dérobert, X.; Annan, P. A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis. NDT E Int. 2018, 96, 58–78. [Google Scholar]
- Chen, C.S.; Jeng, Y. GPR investigation of the near-surface geology in a geothermal river valley using contemporary data decomposition techniques with forward simulation modeling. Geothermics 2016, 64, 439–454. [Google Scholar] [CrossRef]
- Guangyou, F.; Pipan, M. Synthetic and field examples of ground-penetrating radar (GPR) profile improvement using two-phase detection techniques. Geophysics 2003, 68, 554–558. [Google Scholar] [CrossRef]
- Jeng, Y.; Lin, C.H.; Li, Y.W.; Chen, C.S.; Yu, H.M. Application of sub-image multiresolution analysis of ground-penetrating radar data in a study of shallow structures. J. Appl. Geophys. 2011, 73, 251–260. [Google Scholar] [CrossRef]
- Tzanis, A. A versatile tuneable curvelet-like directional filter with application to fracture detection in two-dimensional GPR data. Signal Process. 2017, 132, 243–260. [Google Scholar] [CrossRef]
- Oliveira, R.J.; Caldeira, B.; Teixidó, T.; Borges, J.F. GPR Clutter Reflection Noise-Filtering through Singular Value Decomposition in the Bidimensional Spectral Domain. Remote Sens. 2021, 13, 2005. [Google Scholar] [CrossRef]
- Miao, X.; Cheadle, S.P. Noise attenuation with wavelet transforms. In SEG Expanded Abstract; Soc. Expl. Geophys.: Tulsa, OK, USA, 1998; pp. 1072–1075. [Google Scholar]
- Stollnitz, E.J.; DeRose, T.D.; Salesin, D.H. Wavelets for computer graphics: A primer, Part 1. IEEE Comput. Graph. Appl. 1995, 15, 76–84. [Google Scholar] [CrossRef]
- Baåth, M. Spectral Analysis in Geophysics, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1974; pp. 25–27. [Google Scholar]
- Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC1–WCC26. [Google Scholar] [CrossRef]
- Jazayeri, S.; Klotzsche, A.; Kruse, S. Improving estimates of buried pipe diameter and infilling material from ground-penetrating radar profiles with full-waveform inversion. Geophysics 2018, 83, H27–H41. [Google Scholar] [CrossRef]
- Kruk, J.; Liu, T.; Mozaffari, A.; Gueting, N.; Klotzsche, A.; Vereecken, H.; Warren, C.; Giannopoulos, A. GPR full-waveform inversion, recent developments, and future opportunities. In Proceedings of the 2018 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18–21 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Asadi, P.; Gindy, M.; Alvarez, M. A machine learning based approach for automatic rebar detection and quantification of deterioration in concrete bridge deck ground-penetrating radar B-scan images. KSCE J. Civ. Eng. 2019, 23, 2618–2627. [Google Scholar] [CrossRef]
- Liang, H.; Xing, L.; Lin, J. Application and algorithm of ground-penetrating radar for plant root detection: A review. Sensors 2020, 20, 2836. [Google Scholar] [CrossRef] [PubMed]
- Rasol, M.; Pais, J.C.; Perez-Gracia, V.; Solla, M.; Fernandes, F.M.; Fontul, S.; Ayala-Cabrera, D.; Schmidt, F.; Assadollahi, H. GPR monitoring for road transport infrastructure: A systematic review and machine learning insights. Constr. Build. Mater. 2022, 324, 126686. [Google Scholar] [CrossRef]
- Priestley, M.B. Evolutionary spectra and non-stationary processes. J. R. Statist. Soc. 1965, B27, 204–237. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Kantz, H.; Schreiber, T. Basic topics. In Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2003; pp. 1–2. [Google Scholar]
- Windrows, B.; Stearns, S.D. Adaptive Signal Processing; Prentice Hall: Englewood Cliffs, NJ, USA, 1985; pp. 3–15. [Google Scholar]
- Mandic, D.P.; Rehman, N.; Wu, Z.; Huang, N.E. Empirical mode decomposition based time-frequency analysis of multivariate signals: The power of adaptive data analysis. IEEE Signal Process. Mag. 2013, 30, 74–86. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z. A review on Hilbert-Huang Transform: Method and its applications. Rev. Geophys. 2008, 46, 1–23. [Google Scholar] [CrossRef]
- Huang, N.E. Hilbert-Huang Transform and Its Applications; World Scientific: Singapore, 2014; pp. 1–26. [Google Scholar]
- Neal, A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Grasmueck, M. 3D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics 1996, 61, 1050–1064. [Google Scholar] [CrossRef]
- Grasmueck, M.; Weger, R.; Horstmeyer, H. Full-resolution GPR imaging. Geophysics 2005, 70, K12–K19. [Google Scholar] [CrossRef]
- Nuzzo, L.; Leucci, G.; Negri, S.; Carrozzo, M.T.; Quarta, T. Application of 3D visualization techniques in the analysis of GPR data for archaeology. Ann. Geophys. 2002, 45, 321–337. [Google Scholar] [CrossRef]
- Kelly, T.B.; Angel, M.N.; O’Connor, D.E.; Huff, C.C.; Morris, L.E.; Wach, G.D. A novel approach to 3D modelling ground-penetrating radar (GPR) data—A case study of a cemetery and applications for criminal investigation. Forensic. Sci. Int. 2021, 325, 1–15. [Google Scholar] [CrossRef]
- Yilmaz, O. Seismic Data Processing; Soc. Expl. Geophys.: Tulsa, OK, USA, 1987; pp. 1–526. [Google Scholar]
- Lathi, B.P. Modern Digital and Analog Communication Systems, 4th ed.; Oxford University Press: New York, NY, USA, 2010; pp. 1–926. [Google Scholar]
- Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Gloerson, P.; Huang, N.E. Comparison of interanual intrinsic modes in hemispheric sea ice covers and others geophysical parameters. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1062–1074. [Google Scholar] [CrossRef]
- Flandrin, P.; Rilling, G.; Gonçalvés, P. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 2004, 11, 112–114. [Google Scholar] [CrossRef]
- Battista, B.M.; Knapp, C.; McGee, T.; Goebel, V. Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics 2007, 72, H29–H37. [Google Scholar] [CrossRef]
- Jeng, Y.; Lin, M.-J.; Chen, C.-S.; Wang, Y.-H. Noise reduction and data recovery for a very low frequency electromagnetic survey using the nonlinear decomposition method. Geophysics 2007, 72, F223–F235. [Google Scholar] [CrossRef]
- Wu, Z.H.; Huang, N.E.; Chen, X.Y. The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal. 2009, 1, 339–372. [Google Scholar] [CrossRef]
- Bajaj, V.; Pachori, R.B. Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Jeng, Y. A data-driven multidimensional signal-noise decomposition approach for GPR data processing. Comput. Geosci. 2015, 85, 164–174. [Google Scholar] [CrossRef]
- Huang, N.E.; Hu, K.; Yang, A.C.C.; Chang, H.-C.; Jia, D.; Liang, W.-K.; Yeh, J.R.; Kao, C.-L.; Juan, C.-H.; Peng, C.K.; et al. On Holo-Hilbert spectral analysis: A full informational spectral representation for nonlinear and non-stationary data. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, A374, 20150206. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.R.; Bhuiyan, M.I.H. Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting. Comput. Meth. Programs Biomed. 2017, 140, 201–210. [Google Scholar] [CrossRef]
- Smulko, J. Methods of trend removal in electrochemical noise data–Overview. Measurement 2019, 131, 569–581. [Google Scholar]
- Chen, C.S.; Chien, T.S.; Lee, P.L.; Jeng, Y.; Yeh, T.K. Prefrontal brain electrical activity and cognitive load analysis using a non-linear and non-Stationary approach. IEEE Access 2020, 8, 211115–211124. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.B.; Zhang, Q.C.; Shi, Y.T.; Cui, F.P.; Zhao, Y. Research on spark spectrum signal processing based on ensemble empirical mode decomposition. Spectrosc. Spectr. Anal. 2020, 40, 1923–1928. [Google Scholar]
- Shaik, M.; Shaik, A.G.; Yadav, S.K. Hilbert-Huang transform and decision tree-based islanding and fault recognition in renewable energy penetrated distribution system. Sustain. Energy Grids Netw. 2022, 30, 100606. [Google Scholar] [CrossRef]
- Brown, W.; van der Walt, M. Two-dimensional EMD with Shape-preserving Spline Interpolation. J. Appl. Anal. 2023, in press. [Google Scholar] [CrossRef]
- Chen, C.-S.; Jeng, Y. Nonlinear data processing method for the signal enhancement of GPR data. J. Appl. Geophys. 2011, 75, 113–123. [Google Scholar] [CrossRef]
- Gonzalez, R.; Woods, R. Digital Image Processing, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 76–79. [Google Scholar]
- Jiao, Y.; Zhang, F.; Huang, Q.; Liu, X.; Li, L. Analysis of interpolation methods in the validation of backscattering coefficient products. Sensors 2023, 23, 469. [Google Scholar] [CrossRef] [PubMed]
- Jeng, Y. Shallow seismic investigation of a site with poor reflection quality. Geophysics 1995, 60, 1715–1726. [Google Scholar] [CrossRef]
- Jeng, Y.; Lee, Y.L.; Chen, C.Y.; Lin, M.J. Integrated signal enhancements in magnetic investigation in archaeology. J. Appl. Geophys. 2003, 53, 31–48. [Google Scholar] [CrossRef]
- Jeng, Y.; Chen, C.S.; Yu, H.M.; Jeng, A.S.R.; Tang, C.Y.; Lin, M.J. Ultrashallow seismic experiment on a trenched section of the Chelunpu fault zone, Taiwan. Tectonophysics 2007, 443, 255–270. [Google Scholar] [CrossRef]
- Chen, C.-S.; Jeng, Y. Multidimensional EMD with marginal Hilbert-Huang spectrum applications for engineering geophysics—Technical tutorial and field example. TLE 2022, 41, 347–356. [Google Scholar] [CrossRef]
- Jeng, Y.; Chen, C.S. Subsurface GPR imaging of a potential collapse area in urban environments. Eng. Geol. 2012, 147–148, 57–67. [Google Scholar] [CrossRef]
- Booth, A.D.; Linford, N.T.; Clark, R.A.; Murray, T. Three-dimensional, multi-offset ground-penetrating radar imaging of archaeological targets. Archaeol. Prospect. 2008, 15, 93–112. [Google Scholar] [CrossRef]
- Böniger, U.; Tronicke, J. Improving the interpretability of 3D GPR data using target-specific attributes: Application to tomb detection. J. Archaeol. Sci. 2010, 37, 672–679. [Google Scholar] [CrossRef]
- Chen, C.Y. Chuping-Archaeological Fieldwork Report II; Inst. Hist. Philol. (IHP), Acad. Sin.: Taipei, Taiwan, 1994; pp. 1–479. Available online: https://www1.ihp.sinica.edu.tw/Publications/Book/479 (accessed on 27 January 2023). (In Chinese)
- Yu, H.M. Application of Contemporary Time-Frequency Analysis Methods to Pseudo-3D Ground-Penetrating Radar Data. Unpublished. Ph.D. Dissertation, Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan, 2012. [Google Scholar]
- Yu, H.-M.; Chen, C.-S.; Jeng, Y. Use of ground penetrating radar in studies of the Chuping prehistoric site (In Chinese with English abstract). J. Soc. Reg. Dev. 2012, 3, 67–88. [Google Scholar]
- Chen, C.-S.; Jeng, Y. Improving GPR imaging of the buried water utility infrastructure by integrating the multidimensional nonlinear data decomposition technique into the edge detection. Water 2021, 13, 3148. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeng, Y.; Yu, H.-M.; Chen, C.-S. Algorithm Fusion for 3D Ground-Penetrating Radar Imaging with Field Examples. Remote Sens. 2023, 15, 2886. https://doi.org/10.3390/rs15112886
Jeng Y, Yu H-M, Chen C-S. Algorithm Fusion for 3D Ground-Penetrating Radar Imaging with Field Examples. Remote Sensing. 2023; 15(11):2886. https://doi.org/10.3390/rs15112886
Chicago/Turabian StyleJeng, Yih, Hung-Ming Yu, and Chih-Sung Chen. 2023. "Algorithm Fusion for 3D Ground-Penetrating Radar Imaging with Field Examples" Remote Sensing 15, no. 11: 2886. https://doi.org/10.3390/rs15112886
APA StyleJeng, Y., Yu, H. -M., & Chen, C. -S. (2023). Algorithm Fusion for 3D Ground-Penetrating Radar Imaging with Field Examples. Remote Sensing, 15(11), 2886. https://doi.org/10.3390/rs15112886