Use of 3D Inferred Imagining for Detection of Changes in Geology in Longwall-Type Excavation Front
Abstract
:1. Introduction
2. Methods and Materials
2.1. Mathematical and Physics Background of Infrared Thermography
2.2. Challenges of Use of Infrared Cameras in Underground Mine Environment
2.3. Study Area
2.4. Experiment Setup
- 1.
- Placing GCP (ground control points) visible with both necked eye and on IR images for registration (connecting) all obtained data.
- 2.
- Geologists performed a standard for this mine geological survey that consisted of cleaning parts of the wall from coal dust (so that they could see the geological layers), measuring their placement in relation to the floor (by putting a 0 of tape measure on the floor and stretching it up as high as they could reach), repeating the procedure in intervals, creation of an interpolated geological layer 2D model.
- 3.
- Three-dimensional survey of a longwall, performed with the use of TLS in order to capture the geometry of the longwall.
- 4.
- IR survey, images taken with IR camera in order to capture the thermal response of geological structures on the longwall.
3. Data Processing
4. Results
5. Discussion
6. Conclusions and Future Works
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Wang, S.; Liu, B.; Chen, W.; Fan, W.; Tian, Z. Improved YOLOv4 network using infrared images for personnel detection in coal mines. J. Electron. Imaging 2022, 31, 013017. [Google Scholar] [CrossRef]
- Szrek, J.; Zimroz, R.; Wodecki, J.; Michalak, A.; Góralczyk, M.; Worsa-Kozak, M. Application of the Infrared Thermography and Unmanned Ground Vehicle for Rescue Action Support in Underground Mine—The AMICOS Project. Remote Sens. 2021, 13, 69. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldinelli, G.; Bianchi, F. A quantitative methodology to evaluate thermal bridges in buildings. Appl. Energy 2012, 97, 365–373. [Google Scholar] [CrossRef]
- Ralston, J.; Reid, D.; Hargrave, C.; Hainsworth, D. Sensing for advancing mining automation capability: A review of underground automation technology development. Int. J. Min. Sci. Technol. 2014, 24, 305–310. [Google Scholar] [CrossRef]
- Szrek, J.; Wodecki, J.; Błażej, R.; Zimroz, R. An Inspection Robot for Belt Conveyor Maintenance in Underground Mine—Infrared Thermography for Overheated Idlers Detection. Appl. Sci. 2020, 10, 4984. [Google Scholar] [CrossRef]
- Krawczyk, A. Proposal of Redefinition of the Terms Geomatics and Geoinformatics on the Basis of Terminological Postulates. ISPRS Int. J. Geo-Inf. 2022, 11, 557. [Google Scholar] [CrossRef]
- Dyczko, A.; Kamiński, P.; Jarosz, J.; Rak, Z.; Jasiulek, D.; Sinka, T. Monitoring of Roof Bolting as an Element of the Project of the Introduction of Roof Bolting in Polish Coal Mines—Case Study. Energies 2022, 15, 95. [Google Scholar] [CrossRef]
- Yu, B.; Qiao, T.; Zhang, H.; Yan, G. Dual band infrared detection method based on mid-infrared and long infrared vision for conveyor belts longitudinal tear. J. Int. Meas. Confed. 2018, 120, 140–149. [Google Scholar] [CrossRef]
- Yao, Q.; Tang, C.; Xia, Z.; Liu, X.; Zhu, L.; Chong, Z.; Hui, X. Mechanisms of failure in coal samples from underground water reservoir. Eng. Geol. 2020, 267, 105494. [Google Scholar] [CrossRef]
- Kuenzer, C.; Dech, S. Remote Sensing and Digital Image Processing Thermal Infrared Remote Sensing. 2013. Available online: http://www.springer.com/series/6477 (accessed on 1 January 2023).
- Mirallès, F.; Cauchon, L.; Magnan, M.-A.; Grégoire, F.; Dione, M.M.; Zinflou, A. Towards Reliable Detection of Dielectric Hotspots in Thermal Images of the Underground Distribution Network. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 3566–3574. [Google Scholar] [CrossRef]
- Gruszczyński, W.; Matwij, W.; Ćwiąkała, P. Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation. ISPRS J. Photogramm. Remote Sens. 2017, 126, 168–179. [Google Scholar] [CrossRef]
- Palonka, R. Art in the Pre-Hispanic Southwest: An Archaeology of Native American Cultures; Series: Issues in Southwest Archaeology; Lexington Books/Rowman & Littlefield: Lanham, MD, USA, 2022. [Google Scholar]
- Love, E.; Hammack, R.; Harbert, W.; Sams, J.; Veloski, G.; Ackman, T. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania. Geophysics 2005, 70, B73–B81. [Google Scholar] [CrossRef]
- Szombara, S.; Lewińska, P.; Żądło, A.; Róg, M.; Maciuk, K. Analyses of the Prądnik riverbed Shape Based on Archival and Contemporary Data Sets—Old Maps, LiDAR, DTMs, Orthophotomaps and Cross-Sectional Profile Measurements. Remote Sens. 2020, 12, 2208. [Google Scholar] [CrossRef]
- Maciuk, K. The Study of Seasonal Changes of Permanent Stations Coordinates based on Weekly EPN Solutions. Artif. Satell. 2016, 51, 1–18. [Google Scholar] [CrossRef]
- Lewińska, P.; Matuła, R.; Dyczko, A. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability. E3S Web Conf. 2018, 26, 00008. [Google Scholar] [CrossRef]
- Lewińska, P.; Dyczko, A. Thermal digital terrain model of a coal spoil tip—A way of improving monitoring and early diagnostics of potential spontaneous combustion areas. J. Ecol. Eng. 2016, 17, 170–179. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Z.; Wu, L.; Ma, B.; Liu, X. Infrared imaging detection of hidden danger in mine engineering. Prog. Electromagn. Res. Symp. 2011, 1, 125–129. [Google Scholar]
- Dyczko, A.; Malec, M.; Prostański, D. The efficiency of longwall systems in the case of using different cutting technologies in the LW Bogdanka. Acta Montan. Slovaca 2020, 25, 504–516. [Google Scholar] [CrossRef]
- Wang, J.; Apel, D.B.; Dyczko, A.; Walentek, A.; Prusek, S.; Xu, H.; Wei, C. Analysis of the damage mechanism of strainbursts by a global-local modeling approach. J. Rock Mech. Geotech. Eng. 2022, 14, 1671–1696. [Google Scholar] [CrossRef]
- Czaja, P.; Kamiński, P.; Dyczko, A. Polish Experiences in Handling Water Hazards during Mine Shaft Sinking. In Mining Techniques—Past, Present and Future; IntechOpen: London, UK, 2021. [Google Scholar]
- Maciuk, K.; Apollo, M.; Mostowska, J.; Lepeška, T.; Poklar, M.; Noszczyk, T.; Kroh, P.; Krawczyk, A.; Borowski, Ł.; Pavlovčič-Prešeren, P. Altitude on Cartographic Materials and Its Correction According to New Measurement Techniques. Remote Sens. 2021, 13, 444. [Google Scholar] [CrossRef]
- Lewińska, P.; Maciuk, K. Thermal and spatial data integration for recreating rebuilding stages of wooden and masonry buildings. Photogramm. Rec. 2020, 35, 402–425. [Google Scholar] [CrossRef]
- Grinzato, E.; Vavilov, V.; Kauppinen, T. Quantitative infrared thermography in buildings. Energy Build. 1998, 29, 1–9. [Google Scholar] [CrossRef]
- Dabek, P.; Szrek, J.; Zimroz, R.; Wodecki, J. An Automatic Procedure for Overheated Idler Detection in Belt Conveyors Using Fusion of Infrared and RGB Images Acquired during UGV Robot Inspection. Energies 2022, 15, 601. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, X.; Ma, H.; Zhang, G.-M. Infrared LEDs-Based Pose Estimation With Underground Camera Model for Boom-Type Roadheader in Coal Mining. IEEE Access 2019, 7, 33698–33712. [Google Scholar] [CrossRef]
- Liu, H.; Wu, C. A new approach to detect fire source underground mine for preventing spontaneous combustion of sulfide ores. Procedia Eng. 2010, 7, 318–326. [Google Scholar] [CrossRef]
- Du, X.; Sun, D.; Li, F.; Tong, J. A Study on the Propagation Trend of Underground Coal Fires Based on Night-Time Thermal Infrared Remote Sensing Technology. Sustainability 2022, 14, 14741. [Google Scholar] [CrossRef]
- Wang, J.; Apel, D.B.; Dyczko, A.; Walentek, A.; Prusek, S.; Xu, H.; Wei, C. Investigation of the Rockburst Mechanism of Driving Roadways in Close-Distance Coal Seam Mining Using Numerical Modeling Method. Min. Met. Explor. 2021, 38, 1899–1921. [Google Scholar] [CrossRef]
- Kopacz, M.; Kulpa, J.; Galica, D.; Dyczko, A.; Jarosz, J. Economic valuation of coal deposits—The value of geological information in the resource recognition process. Resour. Policy 2019, 63, 101450. [Google Scholar] [CrossRef]
- Tang, H.; Li, Z.-L.; Johnston, B.; Ruffell, A.; McKinley, J.; Warke, P.; Lerma, C.; Mas, Á.; Benso, E.G.; Vercher, J.; et al. Quantitative infrared thermography in buildings. Appl. Energy 2014, 28, 32. [Google Scholar] [CrossRef]
- Barr, E.S. Historical Survey of the Early Development of the Infrared Spectral Region. Am. J. Phys. 1960, 28, 42–54. [Google Scholar] [CrossRef]
- Astarita, T.; Carlomagno, G.M. Infrared Thermography for Thermo-Fluid-Dynamics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 23–48. [Google Scholar] [CrossRef]
- Kylili, A.; Fokaides, P.A.; Christou, P.; Kalogirou, S.A. Infrared thermography (IRT) applications for building diagnostics: A review. Appl. Energy 2014, 134, 531–549. [Google Scholar] [CrossRef]
- Johnston, B.; Ruffell, A.; McKinley, J.; Warke, P. Detecting voids within a historical building façade: A comparative study of three high frequency GPR antenna. J. Cult. Heritage 2018, 32, 117–123. [Google Scholar] [CrossRef]
- Avdelidis, N.; Moropoulou, A. Emissivity considerations in building thermography. Energy Build. 2003, 35, 663–667. [Google Scholar] [CrossRef]
- Brooke, C. Thermal Imaging for the Archaeological Investigation of Historic Buildings. Remote Sens. 2018, 10, 1401. [Google Scholar] [CrossRef]
- Paoletti, D.; Ambrosini, D.; Sfarra, S.; Bisegna, F. Preventive thermographic diagnosis of historical buildings for consolidation. J. Cult. Heritage 2013, 14, 116–121. [Google Scholar] [CrossRef]
- Edis, E.; Flores-Colen, I.; de Brito, J. Passive Thermographic Inspection of Adhered Ceramic Claddings: Limitation and Conditioning Factors. J. Perform. Constr. Facil. 2013, 6, 737–747. [Google Scholar] [CrossRef]
- Tang, H.; Li, Z.-L. Quantitative Remote Sensing in Thermal Infrared; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Lerma, C.; Mas, Á.; Gil, E.; Vercher, J.; Torner, M.E. Quantitative Analysis Procedure for Building Materials in Historic Buildings by Applying Infrared Thermography. Russ. J. Nondestruct. Test. 2018, 54, 601–609. [Google Scholar] [CrossRef]
- Gianinetto, M.; Roncoroni, F.; Scaioni, M. Calibration of Close-Range Thermal Imagery for Integration into 3D VR Models. In Proceedings of the Conference: 2nd Workshop Italy-Canada “3D Digital Imaging and Modeling: Applications of Heritage, Industry, Medicine and Land, Padova, Italy, 17–18 May 2005. [Google Scholar]
- Danielski, I.; Fröling, M. Diagnosis of Buildings’ Thermal Performance—A Quantitative Method Using Thermography Under Non-steady State Heat Flow. Energy Procedia 2015, 83, 320–329. [Google Scholar] [CrossRef]
- Barreira, E.; Almeida, R.; Delgado, J. Infrared thermography for assessing moisture related phenomena in building components. Constr. Build. Mater. 2016, 110, 251–269. [Google Scholar] [CrossRef]
- Dyczko, A.; Malec, M. Innovative Concept of Production Support System for the LW Bogdanka Mine Innovative Concept of Production Support System for the LW Bogdanka Mine. IOP Conf. Series Mater. Sci. Eng. 2021, 1134, 012004. [Google Scholar] [CrossRef]
- Matwij, W.; Gruszczyński, W.; Puniach, E.; Ćwiąkała, P. Determination of underground mining-induced displacement field using multi-temporal TLS point cloud registration. Measurement 2021, 180, 109482. [Google Scholar] [CrossRef]
- Gollob, C.; Ritter, T.; Nothdurft, A. Comparison of 3D Point Clouds Obtained by Terrestrial Laser Scanning and Personal Laser Scanning on Forest Inventory Sample Plots. Data 2020, 5, 103. [Google Scholar] [CrossRef]
- Lewińska, P.; Zagórski, P. Creating a 3D database of Svalbard’s historical sites: 3D inventory and virtual reconstruction of a mining building at Camp Asbestos, Wedel Jarlsberg Land, Svalbard. Polar Res. 2018, 37, 1485416. [Google Scholar] [CrossRef]
- Lewińska, P.; Róg, M.; Żądło, A.; Szombara, S. To save from oblivion: Comparative analysis of remote sensing means of documenting forgotten architectural treasures—Zagórz Monastery complex, Poland. Measurement 2022, 189, 110447. [Google Scholar] [CrossRef]
- Apollo, M.; Andreychouk, V. Trampling Intensity and Vegetation Response and Recovery according to Altitude: An Experimental Study from the Himalayan Miyar Valley. Resources 2020, 9, 98. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewińska, P. Use of 3D Inferred Imagining for Detection of Changes in Geology in Longwall-Type Excavation Front. Remote Sens. 2023, 15, 2884. https://doi.org/10.3390/rs15112884
Lewińska P. Use of 3D Inferred Imagining for Detection of Changes in Geology in Longwall-Type Excavation Front. Remote Sensing. 2023; 15(11):2884. https://doi.org/10.3390/rs15112884
Chicago/Turabian StyleLewińska, Paulina. 2023. "Use of 3D Inferred Imagining for Detection of Changes in Geology in Longwall-Type Excavation Front" Remote Sensing 15, no. 11: 2884. https://doi.org/10.3390/rs15112884
APA StyleLewińska, P. (2023). Use of 3D Inferred Imagining for Detection of Changes in Geology in Longwall-Type Excavation Front. Remote Sensing, 15(11), 2884. https://doi.org/10.3390/rs15112884