Line Scan Hyperspectral Imaging Framework for Open Source Low-Cost Platforms
Abstract
:1. Introduction
- The mathematical basis for a line scan hyperspectral imaging system is developed using slit spectrograph.
- The expressions of the expected spectral and spatial bounds are presented.
- A practical framework for designing and constructing ultra-low-cost HSI platforms is provided.
- An example of an implementation of the framework with open source software and hardware design is demonstrated.
- A simple and cost-effective way to test the HSI platform using common fluorescent lamps is shown.
- A deconvolution method is applied to enhance the monochromatic estimation of the image.
2. Principle of Operation
2.1. Imaging Optics
- The optical prism has a very low transmission loss; however, the resulting spatial spread of wavelength is nonlinear and requires careful calibration with reliable optical sources.
- Diffraction grating spreads light linearly, which makes it quite easy to calibrate. The grating film can be sandwiched between two back-to-back prisms such that the input light and the detector are on a straight line [5], and accordingly, the arrangement is termed prism–grating–prism (PGP).
2.1.1. Optical Dispersion Function
2.1.2. Spectral Resolution
2.1.3. Spatial Resolution
2.1.4. Deconvolution
2.2. Platform’s Controller
- Low-level controller tasked with handling the interface with the actuator/motor(s) for performing the scanning action. The scanning action in the proposed platform is achieved by rotating, i.e., deflecting, a mirror. Furthermore, note that this controller needs to sense/estimate the position of the mirror in order to provide precise movements. The controller indeed requires a regulated power source for stable motor movement.
- High-level controller that coordinates the scanning action and image acquisition, performs signal pre-processing, and stores the data slices.
- User interface to allow human or machine interface to the hyperspectral platform.
3. Design and Build
3.1. Opto-Mechanical Parts
3.2. Electronics
3.3. Software
Algorithm 1 OpenHype high-level controller (Simplified) |
Initialization: Load_Parameters Connect_Arduino Connect_Camera ← Send_Parameters |
4. Experiment and Results
4.1. Cost and Build Time
- Galvo mirrors and controller USD 70–USD 120 (in our build USD 72);
- Monochrome USB camera with CS lens USD 40–USD 70 (in our build USD 59);
- Spectroscope USD 20–USD 50 (in our build USD 39);
- Electronic components USD 20 USD 30 (in our build USD 25);
- PLA 3D-printed parts USD 15 (around 30–50% of a 1 kg reel).
- Step 1: 3D printing the enclosure and components;
- Step 2: Soldering the amplifier components;
- Step 3: Assembling the circuit modules inside the enclosure and connecting the modules;
- Step 4: Assembling the optics and adjusting the optical alignment;
- Step 5: Testing and calibrating the platform as per the method recommended in Section 4.3.
4.2. Spectral Results
4.3. Spatial Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 10901. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Weston, L.; Balendhran, S.; Wen, D.; Cadusch, J.J.; Rajasekharan Unnithan, R.; Crozier, K.B. Compact Chemical Identifier Based on Plasmonic Metasurface Integrated with Microbolometer Array. Laser Photonics Rev. 2022, 16, 2100436. [Google Scholar] [CrossRef]
- Raza, A.; Dumortier, D.; Jost-Boissard, S.; Cauwerts, C.; Dubail, M. Accuracy of Hyperspectral Imaging Systems for Color and Lighting Research. LEUKOS 2023, 19, 16–34. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Qin, J.; Kim, M.S.; Chao, K.; Chan, D.E.; Delwiche, S.R.; Cho, B.K. Line-Scan Hyperspectral Imaging Techniques for Food Safety and Quality Applications. Appl. Sci. 2017, 7, 125. [Google Scholar] [CrossRef]
- Moroni, M.; Lupo, E.; Marra, E.; Cenedese, A. Hyperspectral Image Analysis in Environmental Monitoring: Setup of a New Tunable Filter Platform. Procedia Environ. Sci. 2013, 19, 885–894. [Google Scholar] [CrossRef]
- Peyghambari, S.; Zhang, Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: An updated review. J. Appl. Remote Sens. 2021, 15, 031501. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Hycza, T.; Stereńczak, K.; Bałazy, R. Potential use of hyperspectral data to classify forest tree species. N. Z. J. For. Sci. 2018, 48, 18. [Google Scholar] [CrossRef]
- Barberio, M.; Benedicenti, S.; Pizzicannella, M.; Felli, E.; Collins, T.; Jansen-Winkeln, B.; Marescaux, J.; Viola, M.G.; Diana, M. Intraoperative Guidance Using Hyperspectral Imaging: A Review for Surgeons. Diagnostics 2021, 11, 2066. [Google Scholar] [CrossRef]
- Ortega, S.; Fabelo, H.; Iakovidis, D.K.; Koulaouzidis, A.; Callico, G.M. Use of Hyperspectral/Multispectral Imaging in Gastroenterology. Shedding Some–Different–Light into the Dark. J. Clin. Med. 2019, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Grambow, E.; Sandkühler, N.A.; Groß, J.; Thiem, D.G.E.; Dau, M.; Leuchter, M.; Weinrich, M. Evaluation of Hyperspectral Imaging for Follow-Up Assessment after Revascularization in Peripheral Artery Disease. J. Clin. Med. 2022, 11, 758. [Google Scholar] [CrossRef]
- Khaodhiar, L.; Dinh, T.; Schomacker, K.T.; Panasyuk, S.V.; Freeman, J.E.; Lew, R.; Vo, T.; Panasyuk, A.A.; Lima, C.; Giurini, J.M.; et al. The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes. Diabetes Care 2007, 30, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Peña Mdel, P.; Gottipati, A.; Tahiliani, S.; Neu-Baker, N.M.; Frame, M.D.; Friedman, A.J.; Brenner, S.A. Hyperspectral imaging of nanoparticles in biological samples: Simultaneous visualization and elemental identification. Microsc. Res. Tech. 2016, 79, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wang, Y.; Mao, J.; Chen, Y.; Yin, A.; Zhao, B.; Zhang, H.; Liu, M. A Review of Pharmaceutical Robot based on Hyperspectral Technology. J. Intell. Robot. Syst. 2022, 105, 75. [Google Scholar] [CrossRef]
- Abdo, M.; Badilita, V.; Korvink, J.G. Spatial scanning hyperspectral imaging combining a rotating slit with a Dove prism. Opt. Express 2019, 27, 20290–20304. [Google Scholar] [CrossRef]
- Luo, L.; Li, S.; Yao, X.; He, S. Rotational hyperspectral scanner and related image reconstruction algorithm. Sci. Rep. 2021, 11, 3296. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Z.; Wang, T.; Cai, F.; Wang, D. Fast hyperspectral imager driven by a low-cost and compact galvo-mirror. Optik 2020, 224, 165716. [Google Scholar] [CrossRef]
- Habel, R.; Kudenov, M.; Wimmer, M. Practical Spectral Photography. Comput. Graph. Forum 2012, 31, 449–458. [Google Scholar] [CrossRef]
- Salazar-Vazquez, J.; Mendez-Vazquez, A. A plug-and-play Hyperspectral Imaging Sensor using low-cost equipment. HardwareX 2020, 7, e00087. [Google Scholar] [CrossRef]
- Toivonen, M.E.; Rajani, C.; Klami, A. Snapshot hyperspectral imaging using wide dilation networks. Mach. Vis. Appl. 2020, 32, 9. [Google Scholar] [CrossRef]
- Abdlaty, R.; Sahli, S.; Hayward, J.; Fang, Q. Hyperspectral imaging: Comparison of acousto-optic and liquid crystal tunable filters. In Proceedings of the Conference Proceedings of SPIE, Houston, TX, USA, 26 June 2018; Volume 10573, p. 105732P. [Google Scholar]
- Mu, T.; Han, F.; Bao, D.; Zhang, C.; Liang, R. Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter. Opt. Lett. 2019, 44, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Betters, C.H.; Evans, B.; Artlett, C.P.; Leon-Saval, S.G.; Garske, S.; Cairns, I.H.; Cocks, T.; Winter, R.; Dell, T. OpenHSI: A Complete Open-Source Hyperspectral Imaging Solution for Everyone. Remote Sens. 2022, 14, 2244. [Google Scholar] [CrossRef]
- Wang, Y.W.; Reder, N.P.; Kang, S.; Glaser, A.K.; Liu, J.T.C. Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches. Nanotheranostics 2017, 1, 369–388. [Google Scholar] [CrossRef] [PubMed]
- Biggs, D.S.C.; Andrews, M. Acceleration of iterative image restoration algorithms. Appl. Opt. 1997, 36, 1766–1775. [Google Scholar] [CrossRef] [PubMed]
- ThorLabs. User Guide. Available online: https://www.thorlabs.com/navigation.cfm?guide_id=2269 (accessed on 16 May 2023).
- Al-Hourani, A. OpenHype:Line Scan Hyperspectral Imaging Principles for Open-Source Low-Cost Platforms. Available online: https://github.com/AkramHourani/OpenHype (accessed on 16 May 2023).
- Magnusson, M.; Sigurdsson, J.; Armansson, S.E.; Ulfarsson, M.O.; Deborah, H.; Sveinsson, J.R. Creating RGB Images from Hyperspectral Images Using a Color Matching Function. In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2045–2048. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing Digital Image Analysis, 6th ed.; Springer International Publishing: New York, NY, USA, 2022. [Google Scholar]
- Seetharaman, S. Treatise on Process Metallurgy, Volume 3: Industrial Processes: Industrial Processes; Elsevier: London, UK, 2013. [Google Scholar]
- National Institute of Standards and Technology. Spectra Databas.
- Wikimedia Commons. Fluorescent Lighting Spectrum Peaks. 2022. Available online: https://commons.wikimedia.org/wiki/File:Fluorescent_lighting_spectrum_peaks_labelled.png (accessed on 20 November 2022).
- ThorLabs. Compact CCD Spectrometers. Available online: https://commons.wikimedia.org/wiki/File:Fluorescent_lighting_spectrum_peaks_labelled.gif (accessed on 16 May 2023).
- Hamamatsu Photonics. Mini-Spectrometer, C12666MA. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/c12666ma_kacc1216e.pdf (accessed on 16 May 2023).
Parameter | Symbol |
---|---|
Data cube of the scene | |
Spatial dimensions (pixels) | x, y |
Optical dispersion dimension (pixels) | z |
Wavelength (nm) | |
Wavelength of light at the edges of the CMOS sensor | , |
Scene intensity image matrix | |
Normalized optical power spectral density | |
Scan line number | n |
Total number of scan lines | |
Number of pixels shift per scan line | L |
Slit’s windowing function width (pixels) | |
Sensor’s 2D snapshot at line n | |
Monochromatic scene intensity image matrix | |
Estimated monochromatic scene | |
Sliced 2D snapshot for a single y line |
Description | Part No |
---|---|
A cover to the mirror mechanism forming a chamber | Part 01 |
Bottom cover is a separate part for easier printing | Part 02 |
Removable cover for dust protection | Part 03 |
Interface adapter from the CS lens to the spectroscope | Part 04 |
Interface adapter from the spectroscope to the M12 focusing lens | Part 05 |
Camera socket (holder) to relieve the stress from the lens and keep the alignment | Part 06 |
Holders of the aluminum beam | Part 07/08 |
Enclosure and cover of the electronics | Part 09/10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hourani, A.; Balendhran, S.; Walia, S.; Hourani, T. Line Scan Hyperspectral Imaging Framework for Open Source Low-Cost Platforms. Remote Sens. 2023, 15, 2787. https://doi.org/10.3390/rs15112787
Al-Hourani A, Balendhran S, Walia S, Hourani T. Line Scan Hyperspectral Imaging Framework for Open Source Low-Cost Platforms. Remote Sensing. 2023; 15(11):2787. https://doi.org/10.3390/rs15112787
Chicago/Turabian StyleAl-Hourani, Akram, Sivacarendran Balendhran, Sumeet Walia, and Tetiana Hourani. 2023. "Line Scan Hyperspectral Imaging Framework for Open Source Low-Cost Platforms" Remote Sensing 15, no. 11: 2787. https://doi.org/10.3390/rs15112787
APA StyleAl-Hourani, A., Balendhran, S., Walia, S., & Hourani, T. (2023). Line Scan Hyperspectral Imaging Framework for Open Source Low-Cost Platforms. Remote Sensing, 15(11), 2787. https://doi.org/10.3390/rs15112787