Current Status and Challenges of BDS Satellite Precise Orbit Products: From a View of Independent SLR Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. LRAs Onboard BDS Satellites
2.2. SLR Observations of BDS Satellites
2.3. SLR Validation Method
3. Results
3.1. Satellite Signature Effect of BDS
3.2. Non-Conservative Force Modeling Effect of BDS
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Tang, J.; Montenbruck, O. Chinese Navigation Satellite Systems. In Springer Handbook of Global Navigation Satellite Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 273–304. [Google Scholar] [CrossRef]
- CSNO TARC Test and Assessment Research Center of China Satellite Navigation Office. Available online: http://csno-tarc.cn/system/constellation (accessed on 1 January 2023).
- Montenbruck, O.; Rizos, C.; Weber, R.; Weber, G.; Neilan, R.; Hugentobler, U. Getting a grip on multi-GNSS: The international GNSS service MGEX campaign. GPS World 2013, 24, 44–49. [Google Scholar]
- Uhlemann, M.; Gendt, G.; Ramatschi, M.; Deng, Z. GFZ Global Multi-GNSS Network and Data Processing Results//IAG 150 Years. In Proceedings of the IAG Scientific Assembly, Postdam, Germany, 1–6 September 2013; Springer: Berlin/Heidelberg, Germany, 2016; pp. 673–679. [Google Scholar] [CrossRef]
- Springer, T.A.; Otten, M.; Flohrer, C. Spreading the Usage of NAPEOS, the ESA Tool for Satellite Geodesy. In EGU General Assembly Conference Abstracts; EGU: Vienna, Austria, 2012; p. 7099. [Google Scholar]
- Prange, L.; Dach, R.; Lutz, S.; Schaer, S.; Jaggi, A. The CODE MGEX Orbit and Clock Solution//IAG 150 Years. In Proceedings of the IAG Scientific Assembly, Postdam, Germany, 1–6 September 2013; Springer: Berlin/Heidelberg, Germany, 2016; pp. 767–773. [Google Scholar] [CrossRef]
- Prange, L.; Orliac, E.; Dach, R.; Arnold, D.; Beutler, G.; Schaer, S.; Jaggi, A. CODE’s five-system orbit and clock solution—The challenges of multi-GNSS data analysis. J. Geod. 2017, 91, 345–360. [Google Scholar] [CrossRef]
- Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J. Geod. 2016, 90, 143–159. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Y.; Zheng, K.; Yuan, Y.; Liu, G.; Xiong, Y. Precise orbit and clock products of Galileo, BDS and QZSS from MGEX since 2018: Comparison and PPP validation. Remote Sens. 2020, 12, 1415. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hugentobler, U. Enhanced solar radiation pressure modeling for Galileo satellites. J. Geod. 2015, 89, 283–297. [Google Scholar] [CrossRef]
- Pavlis, E.C. Comparison of GPS S/C orbits determined from GPS and SLR tracking data. Adv. Space Res. 1995, 16, 55–58. [Google Scholar] [CrossRef]
- Urschl, C.; Beutler, G.; Gurtner, W.; Hugentobler, U.; Schaer, S. Contribution of SLR tracking data to GNSS orbit determination. Adv. Space Res. 2007, 39, 1515–1523. [Google Scholar] [CrossRef]
- Li, X.; Yuan, Y.; Huang, J.; Zhu, Y.; Wu, J.; Xiong, Y.; Li, X.; Zhang, K. Galileo and QZSS precise orbit and clock determination using new satellite metadata. J. Geod. 2019, 93, 1123–1136. [Google Scholar] [CrossRef]
- Zajdel, R.; Sośnica, K.; Bury, G. A new online service for the validation of multi-GNSS orbits using SLR. Remote Sens. 2017, 9, 1049. [Google Scholar] [CrossRef]
- Appleby, G.; Rodríguez, J.; Altamimi, Z. Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: Estimation of systematic errors in LAGEOS observations 1993–2014. J. Geod. 2016, 90, 1371–1388. [Google Scholar] [CrossRef]
- Sośnica, K.; Thaller, D.; Dach, R.; Steigenberger, P.; Beutler, G.; Arnold, D.; Jaggi, A. Satellite laser ranging to GPS and GLONASS. J. Geod. 2015, 89, 725–743. [Google Scholar] [CrossRef]
- Sośnica, K.; Prange, L.; Kaźmierski, K.; Bury, G.; Drożdżewski, M.; Zajdel, R.; Hadas, T. Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes. J. Geod. 2018, 92, 131–148. [Google Scholar] [CrossRef]
- ILRS Study Group. LARGE: Laser Ranging to GNSS s/c Experiment Expanded SLR Tracking of GNSS Satellites. Available online: https://ilrs.gsfc.nasa.gov/docs/2014/GNSS_Pilot_Project_v2_20140311.pdf (accessed on 1 January 2023).
- Lin, X.; Baojun, L.; Yingchun, L.; Sujie, X.; Tao, B. Satellite Geometry and Attitude Mode of BDS-3 MEO Satellites Developed by SECM. In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), Miami, FL, USA, 24–28 September 2018; pp. 1268–1289. [Google Scholar] [CrossRef]
- O’Brien, B.C.; Harris, I.B.; Beckman, T.J.; Reed, D.A.; Cook, D.A. Design and performances of laser retro-reflector arrays for Beidou navigation satellites and SLR observations. Adv. Space Res. 2014, 54, 811–817. [Google Scholar] [CrossRef]
- Kirchner, G.; Koidl, F. Maximizing the Output of SLR Station Graz: Tracking 140 Targets. In Proceedings of the 2015 ILRS Technical Workshop, Matera, Italy, 26–30 October 2015. [Google Scholar]
- Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M. The international laser ranging service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
- Otsubo, T.; Appleby, G.M. System-dependent center-of-mass correction for spherical geodetic satellites. J. Geophys. Res. Solid Earth 2003, 108, 2201. [Google Scholar] [CrossRef]
- Guo, F.; Li, X.; Zhang, X.; Wang, J. Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX). GPS Solut. 2017, 21, 279–290. [Google Scholar] [CrossRef]
- IERS. IERS Conventions 2010: IERS Technical Note 36; Petit, G., Luzum, B., Eds.; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2011. [Google Scholar]
- Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A. CODE’s new solar radiation pressure model for GNSS orbit determination. J. Geod. 2015, 89, 775–791. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef]
- Mendes, V.B.; Prates, G.; Pavlis, E.C.; Pavlis, D.E.; Langley, R.B. Improved mapping functions for atmospheric refraction correction in SLR. Geophys. Res. Lett. 2002, 29, 53-1–53-4. [Google Scholar] [CrossRef]
- Mendes, V.B.; Pavlis, E.C. High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett. 2004, 31, L14602. [Google Scholar] [CrossRef]
- ILRS International Laser Ranging Service. Available online: https://ilrs.gsfc.nasa.gov/docs/2012/COMPASS-I3_RRA_information.pdf (accessed on 21 May 2023).
- ILRS International Laser Ranging Service. Available online: https://ilrs.gsfc.nasa.gov/docs/2012/COMPASS-M3_RRA_information.pdf (accessed on 21 May 2023).
- ILRS International Laser Ranging Service. Available online: https://ilrs.gsfc.nasa.gov/docs/2015/ilrsmsr_1604_retro_v2-Compass-MS1.pdf (accessed on 21 May 2023).
- Dong, X.; Han, X.; Fan, C.; Song, Q. Improvements of Changchun SLR Station. In Proceedings of the 20th International Workshop on Laser Ranging, Potsdam, Germany, 9–14 October 2016. [Google Scholar]
- Rodriguez-Solano, C.; Hugentobler, U.; Steigenberger, P. Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv. Space Res. 2012, 49, 1113–1128. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, J.; Wang, C.; Lyu, Y.; Xu, X.; Yang, C.; Li, J. Precise orbit determination for BDS satellites. Satell. Navig. 2022, 3, 2. [Google Scholar] [CrossRef]
- Rodriguez-Solano, C.J. Impact of Albedo Modelling on GPS Orbits; Technische Universität München: München, Germany, 2009; Available online: https://mediatum.ub.tum.de/doc/1368717/document.pdf (accessed on 21 May 2023).
- Montenbruck, O.; Schmid, R.; Mercier, F.; Steigenberger, P.; Noll, C.; Fatkulin, R.; Kogure, S.; Ganeshan, A. GNSS satellite geometry and attitude models. Adv. Space Res. 2015, 56, 1015–1029. [Google Scholar] [CrossRef]
- China Satellite Navigation Office. CSNO Satellite Information of BDS. Available online: http://en.beidou.gov.cn/SYSTEMS/Officialdocument/201912/P020200103556125703019.rar (accessed on 1 January 2023).
- Fritsche, M.; Sośnica, K.; Rodriguez-Solano, C.J.; Steigenberger, P.; Wang, K.; Dietrich, R.; Dach, R.; Hugentobler, U.; Rothacher, M. Homogeneous reprocessing of GPS, GLONASS and SLR observations. J. Geod. 2014, 88, 625–642. [Google Scholar] [CrossRef]
Items | MEO (SHAO) | GEO/IGSO (SHAO) | MEO (NCRIEO) |
---|---|---|---|
No. corner cube | 42 | 90 | 38 |
Diameter of each cube | 33 mm | 33 mm | 33 mm |
Height of each cube | 24.0 mm | 24.0 mm | 23.3 mm |
Dihedral offset | 0.6″ | 0.5″ | 1.1″ |
Satellites (Tracking by ILRS only) | COMPASS-M3 (PRN: C11) BeiDou3-M9 (PRN: C29) BeiDou3-M10 (PRN: C30) | COMPASS-G1 (PRN: C01) COMPASS-I3 (PRN: C08) COMPASS-I5 (PRN: C10) COMPASS-I6B (PRN: C13) | BeiDou3-M2 (PRN: C20) BeiDou3-M3 (PRN: C21) |
Detector Type | Monument | Code | Location Name | Country |
---|---|---|---|---|
PMT | 1868 | KOML | Komsomolsk | Russia |
1873 | SIML | Simeiz | Ukraine | |
1874 | MDVS | Mendeleevo | Russia | |
1879 | ALTL | Atlay | Russia | |
1884 | RIGL | Riga | Latvia | |
1886 | ARKL | Arkhyz | Russia | |
1887 | BAIL | Baikonur | Kazakhstan | |
1889 | ZELL | Zelenchukskya | Russia | |
1890 | BADL | Badray | Russia | |
1891 | IRKL | Irkutsk | Russia | |
1893 | KTZL | Katzively | Ukraine | |
7407 | BRAL | Brasilia | Brazil | |
7501 | HARL | Brasilia | Brazil | |
7503 | HRTL | Hartebeesthoek | South Africa | |
7811 | BORL | Borowiec | Poland | |
MCP | 7090 | YARL | Yarragadee | Australia |
7105 | GODL | Greenbelt | United States of America | |
7110 | MONL | Monument Peak | United States of America | |
7124 | THTL | Tahiti | French Polynesia | |
7838 | SISL | Simosato | Japan | |
7941 | MATM | Matera | Italy | |
CSPAD | 7237 | CHAL | Changchun | China |
7249 | BEIL | Beijing | China | |
7396 | JFNL | Wuhan | China | |
7810 | ZIML | Hartebeesthoek | South Africa | |
7819 | KUN2 | Kunming | China | |
7821 | SHA2 | Shanghai | China | |
7825 | STL3 | Mt Stromlo | Australia | |
7827 | SOSW | Wettzell | Germany | |
7839 | GRZL | Graz | Austria | |
7840 | HERL | Herstmonceux | United Kingdom | |
7841 | POT3 | Potsdam | Germany | |
7845 | GRSM | Grasse | France (LLR) | |
8834 | WETL | Wettzell | Germany (WLRS) |
AC | SAT | High-Performing | All | ||
---|---|---|---|---|---|
Mean (mm) | RMS (mm) | Mean (mm) | RMS (mm) | ||
CODE | BDS-2 IGSO | −6.2 | 58.3 | −0.2 | 59.3 |
BDS-2 MEO | −23.0 | 39.8 | −18.1 | 40.9 | |
GFZ | BDS-2 IGSO | 2.7 | 55.5 | 4.3 | 57.2 |
BDS-2 MEO | −24.9 | 52.6 | −18.5 | 53.6 | |
BDS-3 CAST | 30.3 | 50.3 | 28.7 | 50.5 | |
BDS-3 SECM | −48.5 | 61.5 | −52.3 | 65.5 | |
WU | BDS-2 IGSO | −3.8 | 50.5 | −5.4 | 50.9 |
BDS-2 MEO | −13.7 | 49.5 | −13.1 | 50.3 | |
BDS-3 CAST | 7.2 | 47.4 | 3.0 | 48.2 | |
BDS-3 SECM | −12.7 | 51.5 | −10.2 | 52.9 | |
ESA | BDS-2 IGSO | 69.4 | 111.4 | 70.2 | 123.9 |
BDS-2 MEO | −2.2 | 46.5 | 5.1 | 50.0 | |
BDS-3 CAST | 46.8 | 51.2 | 45.4 | 51.3 | |
BDS-3 SECM | −20.2 | 30.3 | −22.3 | 33.9 |
Model | CODE | GFZ | WU | ESA |
---|---|---|---|---|
SRP | ECOM2 | ECOM | ECOM + PBW(BDS-3) | ECOM + estimated PBW |
ERP | Not applied | Not applied | Applied in BDS-2 MEO | Applied |
AT | Not applied | Not applied | Applied in BDS-2 | Not applied |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, C.; Yuan, Y.; Zhang, K. Current Status and Challenges of BDS Satellite Precise Orbit Products: From a View of Independent SLR Validation. Remote Sens. 2023, 15, 2782. https://doi.org/10.3390/rs15112782
Li X, Liu C, Yuan Y, Zhang K. Current Status and Challenges of BDS Satellite Precise Orbit Products: From a View of Independent SLR Validation. Remote Sensing. 2023; 15(11):2782. https://doi.org/10.3390/rs15112782
Chicago/Turabian StyleLi, Xingxing, Chengbo Liu, Yongqiang Yuan, and Keke Zhang. 2023. "Current Status and Challenges of BDS Satellite Precise Orbit Products: From a View of Independent SLR Validation" Remote Sensing 15, no. 11: 2782. https://doi.org/10.3390/rs15112782
APA StyleLi, X., Liu, C., Yuan, Y., & Zhang, K. (2023). Current Status and Challenges of BDS Satellite Precise Orbit Products: From a View of Independent SLR Validation. Remote Sensing, 15(11), 2782. https://doi.org/10.3390/rs15112782