A Lightweight Radar Ship Detection Framework with Hybrid Attentions
Abstract
:1. Introduction
- This paper designs a novel lightweight radar ship detector with multiple hybrid attention mechanisms, which is named multiple hybrid attentions ship detector (MHASD). It is proposed to obtain high detection precision while achieving fast inference for SAR ship detection. Extensive qualitative and quantitative experiments on two benchmark SAR ship detection datasets reveal that the designed method can strike a better balance in speed and precision more effectively than some state-of-the-art approaches.
- Considering the inconspicuous features of the ship object and strong background clutter in SAR images, a hybrid attention residual module (HARM) is developed, which enhances the features of ship objects in both channel and spatial levels by means of local attention and global attention integration to ensure high detection precision.
- To further enhance the discriminability of ship object features, an attention-based feature fusion scheme (AFFS) is developed in the model neck. Meanwhile, to constrain the model’s computational complexity, a novel module called the hybrid attention feature fusion module (HAFFM) is introduced to the lightweight in the AFFS component.
2. Methodology
2.1. Feature Extraction Module
2.2. Feature Fusion Module
2.3. Prediction Module
3. Experimental Results
3.1. Dataset Description
- The LS-SSDD-v1.0 dataset is a public SAR ship dataset spanning 250 km. The resolution ratio of original SAR images is 24,000 × 16,000 pixels. In reference to the existing work [29], each SAR image is split into 800 × 800 pixels. Therefore, 9000 sub-images are created in this manner, which is subsequently separated into the training and the test datasets in a 2:1 ratio.
- The SSDD dataset, which contains 1160 SAR images and a total of 2540 ships, is the first SAR dataset for ship detection that is publicly available. The resolution of each SAR picture ranges from 1 to 15 m. The training and the test datasets are created from the original SAR dataset in an 8:2 ratio.
3.2. Evaluation Indexes
3.3. Experimental Settings
3.4. Ablation Studies of HARM and AFFS
3.5. Contrastive Experiments
4. Discussion
4.1. Detection Effects Analysis during Training
4.2. Structural Analysis of Reusing Self-Attention Mechanisms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Y.; Wang, F.; Wang, H. A Transformer-Based Coarse-to-Fine Wide-Swath SAR Image Registration Method under Weak Texture Conditions. Remote Sens. 2022, 14, 1175. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, J.; Gao, G.; Yang, J.; Marino, A. CFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images Based on Whitening Filter. IEEE Trans. Geosci. Remote Sens. 2020, 58, 58–81. [Google Scholar] [CrossRef]
- Du, L.; Dai, H.; Wang, Y.; Xie, X.; Wang, Z. Target discrimination based on weakly supervised learning for high-resolution SAR images in complex scenes. IEEE Trans. Geosci. Remote Sens. 2020, 58, 461–472. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Wang, L.; Xu, M.; Wang, H. Hyperspectral Anomaly Detection via Dual Dictionaries Construction Guided by Two-Stage Complementary Decision. Remote Sens. 2022, 14, 1784. [Google Scholar] [CrossRef]
- Qian, X.; Cheng, X.; Cheng, G.; Yao, X.; Jiang, L. Two-Stream Encoder GAN With Progressive Training for Co-Saliency Detection. IEEE Signal Process. Lett. 2021, 28, 180–184. [Google Scholar] [CrossRef]
- Li, D.; Liang, Q.; Liu, H.; Liu, Q.; Liu, H.; Liao, G. A Novel Multidimensional Domain Deep Learning Network for SAR Ship Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ke, X. Quad-FPN: A Novel Quad Feature Pyramid Network for SAR Ship Detection. Remote Sens. 2021, 13, 2771. [Google Scholar] [CrossRef]
- Li, K.; Zhang, M.; Xu, M.; Tang, R.; Wang, L.; Wang, H. Ship Detection in SAR Images Based on Feature Enhancement Swin Transformer and Adjacent Feature Fusion. Remote Sens. 2022, 14, 3186. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, K.; Han, B.; Yang, J.; Pan, Z.; Hu, Y.; Yin, D. D-MFPN: A Doppler Feature Matrix Fused with a Multilayer Feature Pyramid Network for SAR Ship Detection. Remote Sens. 2023, 15, 626. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Shen, J.; Xiao, X.; Liu, X.; Sun, X.; Wang, X.; Li, D. Improved Neural Network with Spatial Pyramid Pooling and Online Datasets Preprocessing for Underwater Target Detection Based on Side Scan Sonar Imagery. Remote Sens. 2023, 15, 440. [Google Scholar] [CrossRef]
- Jiang, X.; Xie, H.; Chen, J.; Zhang, J.; Wang, G.; Xie, K. Arbitrary-Oriented Ship Detection Method Based on Long-Edge Decomposition Rotated Bounding Box Encoding in SAR Images. Remote Sens. 2023, 15, 673. [Google Scholar] [CrossRef]
- Gao, S.; Liu, J.; Miao, Y.; He, Z. A High-Effective Implementation of Ship Detector for SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4019005. [Google Scholar] [CrossRef]
- Tang, G.; Zhao, H.; Claramunt, C.; Men, S. FLNet: A Near-shore Ship Detection Method Based on Image Enhancement Technology. Remote Sens. 2022, 14, 4857. [Google Scholar] [CrossRef]
- Yu, N.; Ren, H.; Deng, T.; Fan, X. Stepwise Locating Bidirectional Pyramid Network for Object Detection in Remote Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Zhang, T. Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene Sentinel-1 SAR Images. Remote Sens. 2022, 14, 1018. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.; Kweon, I. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Chen, H.; Jin, H.; Lv, S. YOLO-DSD: A YOLO-Based Detector Optimized for Better Balance between Accuracy, Deployability and Inference Time in Optical Remote Sensing Object Detection. Appl. Sci. 2022, 12, 7622. [Google Scholar] [CrossRef]
- Ye, J.; Yuan, Z.; Qian, C.; Li, X. CAA-YOLO: Combined-Attention-Augmented YOLO for Infrared Ocean Ships Detection. Sensors 2022, 22, 3782. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, T.; Zhang, Z.; Wang, H. Object Detection in Remote Sensing Images by Combining Feature Enhancement and Hybrid Attention. Appl. Sci. 2022, 12, 6237. [Google Scholar] [CrossRef]
- Wan, H.; Chen, J.; Huang, Z.; Xia, R.; Wu, B.; Sun, L.; Yao, B.; Liu, X.; Xing, H. AFSar: An Anchor-Free SAR Target Detection Algorithm Based on Multiscale Enhancement Representation Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Ultralytics. YOLOv5. Available online: https://github.com/ultralytics/yolov5 (accessed on 1 November 2021).
- Lin, T.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5999–6009. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the 34th Conference on Artificial Intelligence (AAAI), New York, NY, USA, 7–12 February 2020; pp. 12993–13000. [Google Scholar]
- Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1.0: A Deep Learning Dataset Dedicated to Small Ship Detection from Large-Scale Sentinel-1 SAR Images. Remote Sens. 2020, 12, 2997. [Google Scholar] [CrossRef]
- Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Lin, T.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in context. In Proceedings of the 13th European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Sergios, T. Stochastic gradient descent. Mach. Learn. 2015, 5, 161–231. [Google Scholar]
- Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra R-CNN: Towards balanced learning for object detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 821–830. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10778–10787. [Google Scholar]
- Zhang, X.; Wan, F.; Liu, C.; Ye, Q. FreeAnchor: Learning to match anchors for visual object detection. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Li, L.; Shi, J. FoveaBox: Beyond anchor-based object detector. IEEE Trans. Image. Process. 2020, 29, 7389–7398. [Google Scholar] [CrossRef]
- Hu, Q.; Hu, S.; Liu, S. BANet: A Balance Attention Network for Anchor-Free Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Zhang, T.; Shi, J.; Wei, S.; Li, J. On-Board Ship Detection in SAR Images Based on L-YOLO. In Proceedings of the 2022 IEEE Radar Conference (RadarConf22), New York, NY, USA, 21–25 March 2022; pp. 1–5. [Google Scholar]
- Wang, C.; Bochkovskiy, A.; Liao, H. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Fu, J.; Sun, X.; Wang, Z.; Fu, K. An Anchor-Free Method Based on Feature Balancing and Refinement Network for Multiscale Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1331–1344. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Wang, W. A Lightweight Faster R-CNN for Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4006105. [Google Scholar]
- Deng, Y.; Guan, D.; Chen, Y.; Yuan, W.; Ji, J.; Wei, M. Sar-Shipnet: Sar-Ship Detection Neural Network via Bidirectional Coordinate Attention and Multi-Resolution Feature Fusion. In Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 3973–3977. [Google Scholar]
- Yu, J.; Wu, T.; Zhou, S.; Pan, H.; Zhang, X.; Zhang, W. An SAR Ship Object Detection Algorithm Based on Feature Information Efficient Representation Network. Remote Sens. 2022, 14, 3489. [Google Scholar] [CrossRef]
- Guo, H.; Yang, X.; Wang, N.; Gao, X. A CenterNet++ model for ship detection in SAR images. Pattern Recogn. 2021, 112, 107787. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, X.; Li, J.; Gao, X. A Cascade Rotated Anchor-Aided Detector for Ship Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 11–14. [Google Scholar] [CrossRef]
- Cui, Z.; Li, Q.; Cao, Z.; Liu, N. Dense attention pyramid networks for multi-scale ship detection in SAR images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8983–8997. [Google Scholar] [CrossRef]
- Yao, C.; Bai, L.; Xue, D.; Lin, X.; Ye, Z.; Wang, Y.; Yin, K. GFB-Net: A Global Context-Guided Feature Balance Network for Arbitrary-Oriented SAR Ship Detection. In Proceedings of the 7th International Conference on Image, Vision and Computing (ICIVC), Xi’an, China, 26–28 July 2022; pp. 166–171. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
Baseline | HARM | AFFS | AP (%) | P (%) | R (%) | F1 | GFLOPS | Parameters (MB) | Model Size (MB) | T (s) |
---|---|---|---|---|---|---|---|---|---|---|
✓ | ✘ | ✘ | 74.3 | 84.7 | 65.1 | 0.74 | 16.3 | 6.73 | 14.4 | 3.18 |
✓ | ✓ | ✘ | 76.0 | 85.2 | 69.0 | 0.76 | 15.8 | 6.10 | 12.4 | 3.12 |
✓ | ✘ | ✓ | 75.2 | 85.2 | 67.1 | 0.75 | 14.2 | 5.75 | 12.3 | 2.94 |
✓ | ✓ | ✓ | 75.5 | 83.4 | 67.9 | 0.75 | 13.7 | 5.12 | 10.4 | 2.88 |
Method | AP (%) | P (%) | R (%) | F1 | GFLOPS | FPS | Parameters (MB) | Model Size (MB) |
---|---|---|---|---|---|---|---|---|
Libra R-CNN [34] | 73.68 | 73.5 | 76.70 | 0.75 | 162.18 | 9.63 | 41.62 | 532 |
EfficientDet [35] | 61.35 | 62.14 | 67.49 | 0.65 | 107.52 | 4.57 | 39.40 | 302 |
Free anchor [36] | 71.04 | 55.30 | 77.67 | 0.65 | 127.82 | 11.47 | 36.33 | 277 |
FoveaBox [37] | 52.32 | 97.75 | 53.03 | 0.68 | 126.59 | 11.47 | 36.24 | 277 |
BANet [38] | 67.3 | 25.1 | 35.5 | 0.294 | - | - | - | - |
L-YOLO [39] | 73.01 | 84.78 | 63.96 | 0.73 | 8.10 | 16.31 | - | 7.40 |
YOLOv5 | 74.3 | 84.7 | 65.1 | 0.74 | 16.3 | 118.68 | 6.73 | 14.4 |
YOLOv7 | 66.8 | 79.0 | 62.2 | 0.70 | 103.2 | 175.44 | 34.79 | 74.8 |
Proposed | 75.5 | 83.4 | 67.9 | 0.75 | 13.7 | 208.33 | 5.12 | 10.4 |
Method | AP (%) | P (%) | R (%) | F1 |
---|---|---|---|---|
Libra R-CNN [34] | 43.25 | 56.57 | 50.74 | 0.53 |
EfficientDet [35] | 30.48 | 37.62 | 39.75 | 0.37 |
Free anchor [36] | 34.73 | 30.48 | 53.57 | 0.39 |
FoveaBox [37] | 13.92 | 94.70 | 14.16 | 0.25 |
YOLOv5 | 43.1 | 55.5 | 41.7 | 0.48 |
YOLOv7 | 31.0 | 49.8 | 33.7 | 0.40 |
Proposed | 43.8 | 57.6 | 42.2 | 0.49 |
Method | AP (%) | P (%) | R (%) | F1 |
---|---|---|---|---|
Libra R-CNN [34] | 90.09 | 81.52 | 92.04 | 0.86 |
EfficientDet [35] | 80.37 | 76.00 | 83.88 | 0.80 |
Free anchor [36] | 88.67 | 76.85 | 91.91 | 0.84 |
FoveaBox [37] | 75.01 | 95.86 | 75.99 | 0.85 |
YOLOv5 | 89.9 | 88.7 | 84.4 | 0.87 |
YOLOv7 | 85.7 | 85.5 | 81.6 | 0.84 |
Proposed | 91.5 | 90.5 | 85.7 | 0.88 |
Method | Input Size | AP (%) | P (%) | R (%) | F1 | Parameters (MB) | Model Size (MB) | FPS |
---|---|---|---|---|---|---|---|---|
FBR-Net [41] | 448 | 94.1 | 92.7 | 94.0 | 0.934 | 32.5 | - | 24.94 |
Lite Faster R-CNN [42] | 500 | 89.79 | - | - | - | - | 19.106 | 41.67 |
Quad-FPN [7] | 512 | 95.2 | 89.5 | 95.7 | 0.923 | - | - | 11.37 |
YOLOv5 | 512 | 95.2 | 96.4 | 89.7 | 0.93 | 6.73 | 13.7 | 192.23 |
SAR-ShipNet [43] | 512 | 89.08 | 95.12 | 76.30 | 0.85 | 134 | - | 82 |
FIERNet [44] | 512 | 94.14 | 98.16 | 87.89 | 0.93 | - | - | - |
CenterNet++ [45] | 512 | 92.7 | 92.6 | 94.5 | 0.936 | 20.3 | - | 46.51 |
CR2A-Net [46] | 512 | 89.8 | 94.0 | 87.8 | 0.908 | 88.6 | - | 14.88 |
DAPN [47] | 512 | 90.1 | 87.6 | 91.4 | 0.89 | 63.8 | - | 28.99 |
GFB-Net [48] | 608 | 93.0 | 85.6 | 94.0 | - | 41.36 | - | 31.5 |
YOLOv5 | 640 | 96.5 | 97.2 | 90.0 | 0.93 | 6.73 | 13.7 | 172.41 |
YOLOX [49] | 640 | 85.31 | 90.78 | 71.36 | 0.80 | 97 | - | 50 |
YOLOv7 | 640 | 96.4 | 90.5 | 93.6 | 0.92 | 34.79 | 71.3 | 185.19 |
Proposed | 512 | 96.8 | 96.0 | 94.2 | 0.94 | 5.50 | 11.2 | 222.22 |
Proposed | 640 | 97.4 | 94.5 | 95.4 | 0.95 | 5.50 | 11.2 | 188.70 |
Baseline | SA | SA2 | SA3 | SA × 2 | SA × 3 | AP (%) | P (%) | R (%) | F1 | GFLOPS | Parameters (MB) | Model Size (MB) | T (s) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
✓ | ✘ | ✘ | ✘ | ✘ | ✘ | 74.3 | 84.7 | 65.1 | 0.74 | 16.3 | 6.73 | 14.4 | 3.18 |
✓ | ✓ | ✘ | ✘ | ✘ | ✘ | 74.4 | 85.7 | 66.6 | 0.75 | 15.8 | 6.10 | 13.1 | 2.64 |
✓ | ✘ | ✓ | ✘ | ✘ | ✘ | 74.7 | 85.4 | 66.7 | 0.75 | 15.8 | 6.10 | 13.1 | 3.12 |
✓ | ✘ | ✘ | ✓ | ✘ | ✘ | 75.3 | 83.9 | 67.2 | 0.75 | 15.8 | 6.10 | 13.1 | 3.18 |
✓ | ✘ | ✘ | ✘ | ✓ | ✘ | 76.0 | 85.2 | 69.0 | 0.76 | 15.8 | 6.10 | 12.4 | 3.12 |
✓ | ✘ | ✘ | ✘ | ✘ | ✓ | 74.6 | 85.8 | 66.5 | 0.75 | 15.8 | 6.10 | 12.4 | 3.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, N.; Ren, H.; Deng, T.; Fan, X. A Lightweight Radar Ship Detection Framework with Hybrid Attentions. Remote Sens. 2023, 15, 2743. https://doi.org/10.3390/rs15112743
Yu N, Ren H, Deng T, Fan X. A Lightweight Radar Ship Detection Framework with Hybrid Attentions. Remote Sensing. 2023; 15(11):2743. https://doi.org/10.3390/rs15112743
Chicago/Turabian StyleYu, Nanjing, Haohao Ren, Tianmin Deng, and Xiaobiao Fan. 2023. "A Lightweight Radar Ship Detection Framework with Hybrid Attentions" Remote Sensing 15, no. 11: 2743. https://doi.org/10.3390/rs15112743
APA StyleYu, N., Ren, H., Deng, T., & Fan, X. (2023). A Lightweight Radar Ship Detection Framework with Hybrid Attentions. Remote Sensing, 15(11), 2743. https://doi.org/10.3390/rs15112743