Recent Active Fires in Indonesia’s Southern Papua Province Caused by El Niño Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Vegetation (Fuel)
2.2. Hotspot (Fire) and Weather Data
2.3. Analysis Methods
3. Results
3.1. Annual Rainfall and Fires
3.2. Dry Season and Fire
3.3. Fire Distribution
3.3.1. Papua Province (1° × 1° Resolution)
3.3.2. Southern Papua (0.1° × 0.1° Resolution, Lower Than 6.6°S)
3.4. Various Fire Weather Conditions
3.4.1. Rainfall and Fire in 2015 and 2021
3.4.2. Weather Conditions in 2015 and 2021
- Diurnal change of temperature and humidity
- 2.
- Diurnal change of wind speed and direction
3.5. Various Fire Related Index
3.5.1. Synoptic-Scale Sea Surface Temperature Anomaly (SSTA)
3.5.2. Synoptic-Scale Wind Conditions
4. Discussion
4.1. Diurnal Weather Data
4.2. Morning Weather Change
4.3. Maximum and Minimum Values of Weather Data
5. Conclusions
- The average active fire period (fire rate, 51.5 HSs day−1) from 10 September to 21 October (42 days) occurred at the end of the dry season or just before the rainy season (Figure 3). A high fire rate suggests the occurrence of deep peatland fires (DFPs).
- In 2015, under El Niño, the very active fire period with a high fire rate of 224 HSs day−1 (about 4 times higher than average) began in late August about 2 weeks earlier than normal (Figure 5b).
- Active fires in 2015 occurred under the long period of drought (about eight months (232 days) from late April) and strong drought conditions (total rainfall was about 58 mm (0.25 mm day−1)) due to El Niño (Figure 5a).
- During active fire period in 2015, the temperature increase rate (ΔT), the RH decrease rate (ΔRH), and the wind speed increase rate (ΔWS) during morning hours from 6:00 a.m. to 9:00 a.m. were 2.3 °C h−1, −10.3% h−1, and 5.2 (km h−1) h−1, respectively (Figure 6 and Figure 7). These values suggest active fire outbreaks and will be important indicators of fire weather conditions.
- As a very fast wind speed of 35.7 km h−1 at 3 p.m. continued to blow for about two weeks during the active fire period in 2015, we may say 2015 fires can be described as wind-driven fires (Figure 7).
- We showed a relatively large difference in sea surface temperature anomaly (SSTA) in the Northern Arafura Sea between −1.8°K in 2015 and +1°K in 2021 (Figure 8).
- We named SSTA in Northern Arafura Sea “N. Arafura”. A new index, “N. Arafura”, has strong correlation with annual total number of HSs (Equation (3) and Figure 8) and will be used to predict future fire activity in Papua.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langner, A.; Miettinen, J.; Siegert, F. Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob. Chang. Biol. 2007, 13, 2329–2340. [Google Scholar] [CrossRef]
- Hoscilo, A.; Page, S.E.; Tansey, K.J.; Rieley, J.O. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. Int. J. Wildland Fire 2011, 20, 578–588. [Google Scholar] [CrossRef]
- Miettinen, J.; Shi, C.; Liew, S.C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Chang. Biol. 2011, 17, 2261–2270. [Google Scholar] [CrossRef]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef]
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef]
- Dargie, G.C.; Lewis, S.L.; Lawson, I.T.; Mitchard, E.T.A.; Page, S.E.; Bocko, Y.E.; Ifo, S.A. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 2017, 542, 86–90. [Google Scholar] [CrossRef]
- Rieley, J. Mega Rice Project (MRP) Central Kalimantan. Available online: https://peatlands.org/is-indonesia-heading-for-another-mega-rice-project-disaster/ (accessed on 3 May 2023).
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) IPCC, 2022: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar]
- Oktaviani, R.; Amaliah, S.; Ringler, C.; Rosegrant, M.W.; Sulser, T.B. The Impact of Global Climate Change on the Indonesian Economy; IFPRI Discussion Paper 1148; International Food Policy Research Institute: Washington, DC, USA, 2011; Available online: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/126762 (accessed on 3 May 2023).
- WBG Climate Change Knowledge Portal (CCKP, 2021). Available online: https://climateknowledgeportal.worldbank.org/country/indonesia/climate-data-historical (accessed on 2 April 2023).
- Aldrian, E. Decreasing Trends in Annual Rainfalls over Indonesia: A Threat for the National Water Resource? Geophysics and Meteorology Agency, Jakarta, Indonesia. 2007. Available online: https://www.researchgate.net/publication/284944836_Decreasing_trends_in_annual_rainfalls_over_Indonesia_A_threat_for_the_national_water_resource (accessed on 3 May 2023).
- Wang, B.; Luo, X.; Yang, Y.-M.; Sun, W.; Cane, M.A.; Cai, W.; Yeh, S.-W.; Liu, J. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA 2019, 116, 22512–22517. [Google Scholar] [CrossRef]
- Sulaiman, A.; Osaki, M.; Takahashi, H.; Yamanaka, M.D.; Susanto, R.D.; Shimada, S.; Kimura, K.; Hirano, T.; Wetadewi, R.I.; Sisva, S.; et al. Peatland Groundwater Level in the Indonesian Maritime Continent as an Alert for El Niño and Moderate Positive Indian Ocean Dipole Events. Sci. Rep. 2023, 13, 939. [Google Scholar] [CrossRef]
- Runtuboi, Y.Y.; Permadi, D.B.; Sahide, M.A.K.; Maryudi, A. Oil Palm Plantations, Forest Conservation and Indigenous Peoples in West Papua Province: What Lies Ahead? For. Soc. 2021, 5, 23–31. [Google Scholar] [CrossRef]
- Sloan, S.; Campbell, M.J.; Alamgir, M.; Engert, J.; Ishida, F.Y.; Senn, N.; Huther, J.; Laurance, W.F. Hidden Challenges for Conservation and Development along the Trans-Papuan Economic Corridor. Environ. Sci. Policy 2019, 92, 98–106. [Google Scholar] [CrossRef]
- Krisnawati, H.; Imanuddin, R.; Adinugroho, W.C.; Hutabarat, S. National Inventory of Greenhouse Gas Emissions and Removals on Indonesia’s Forests and Peatlands; Ministry of Environment and Forestry, Research, Development and Innovation Agency: Bogor, Indonesia, 2015; ISBN 9789798452642. [Google Scholar]
- Bambang, H.W.S.; Hasyim, B. Sebaran Lahan Gambut, Luas Dan Cadangan Karbon Bawah Permukaan Tanah Di Papua; Wetland Internasional: Bogor, Indonesia, 2006; ISBN 9789791641203. [Google Scholar]
- Kartikasari, S.N.; Marshall, A.J.; Beehler, B. Ekologi Papua, Seri Ekologi Indonesia, Jilid VI; Yayasan Pustaka Obor Indonesia: Jakarta, Indonesia, 2012; ISBN 9789794617960. [Google Scholar]
- Hayasaka, H. Peatland Fire Weather Conditions in Sumatra, Indonesia. Climate 2023, 11, 92. [Google Scholar] [CrossRef]
- Usup, A.; Hayasaka, H. Peatland Fire Weather Conditions in Central Kalimantan, Indonesia. Fire 2023, 6, 182. [Google Scholar] [CrossRef]
- Hooijer, A.; Silvius, M.; Woesten, H.; Page, S. PEAT-CO2 Assessment of CO2 Emissions from Drained Peatlands in SE Asia; Delft Hydraulics: Delft, Netherlands, 2006; p. 41. [Google Scholar]
- Gaveau, D.L.A.; Santos, L.; Locatelli, B.; Salim, M.A.; Husnayaen, H.; Meijaard, E.; Heatubun, C.; Sheil, D. Forest loss in Indonesian New Guinea (2001–2019): Trends, drivers and outlook. Biol. Conserv. 2021, 261, 109225. [Google Scholar] [CrossRef]
- Putra, E.I.; Hayasaka, H. The Effect of the Precipitation Pattern of the Dry Season on Peat Fire Occurrence in the Mega Rice Project Area, Central Kalimantan, Indonesia. Tropics 2011, 19, 145–156. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Eko Cahyono, W.; Setyawati, W.; Hamdi, S.; Cholianawati, N.; Yudha Kombara, P.; Julian Sari, W. Observations of Aerosol Optical Properties during Tropical Forest Fires in Indonesia. Mater. Today: Proc. 2022, 63, S445–S450. [Google Scholar] [CrossRef]
- Resubun, I. Beberapa Data Etnografis Manusia Dan Pulau Kimaam, Di Pantai Selatan Papua. Limen J. Agama Dan Kebud. 2020, 10, 56–80. [Google Scholar]
- Hayasaka, H.; Usup, A.; Naito, D. New Approach Evaluating Peatland Fires in Indonesian Factors. Remote Sens. 2020, 12, 2055. [Google Scholar] [CrossRef]
- Hayasaka, H.; Putra, E.I. Reassessment of Peatland Fires in Central Kalimantan. IOP Conf. Series Earth Environ. Sci. 2022, 959, 012053. [Google Scholar] [CrossRef]
- Yulianti, N.; Hayasaka, H.; Usup, A. Recent Forest and Peat Fire Trends in Indonesia The Latest Decade by MODIS Hotspot Data. Glob. Environ. Res. 2012, 16, 105–116. [Google Scholar]
- Hayasaka, H.; Tanaka, H.L.; Bieniek, P.A. Synoptic-Scale Fire Weather Conditions in Alaska. Polar Sci. 2016, 10, 217–226. [Google Scholar] [CrossRef]
- Hayasaka, H.; Sokolova, G.V.; Ostroukhov, A.; Naito, D. Classification of Active Fires and Weather Conditions in the Lower Amur River Basin. Remote Sens. 2020, 12, 3204. [Google Scholar] [CrossRef]
- Hayasaka, H.; Yamazaki, K.; Naito, D. Weather Conditions and Warm Air Masses in Southern Sakha During Active Forest Fire Periods. J. Disaster Res. 2019, 14, 641–648. [Google Scholar] [CrossRef]
- Hayasaka, H. Rare and Extreme Wildland Fire in Sakha in 2021. Atmosphere 2021, 12, 1572. [Google Scholar] [CrossRef]
- Hayasaka, H.; Yamazaki, K.; Naito, D. Weather Conditions and Warm Air Masses during Active Fire-Periods in Boreal Forests. Polar Sci. 2019, 22, 100472. [Google Scholar] [CrossRef]
- Farukh, M.A.; Islam, M.A.; Hayasaka, H. Wildland Fires in the Subtropical Hill Forests of Southeastern Bangladesh. Atmosphere 2023, 14, 97. [Google Scholar] [CrossRef]
- Tjasyono, H.B.T.; Gernowo, R.; Sri Woro, B.H.; Ina, J. Characteristics of Cloud and Rainfall in the Indonesian Monsoonal Areas. 2008. Available online: http://file.upi.edu/Direktori/SPS/PRODI.PENDIDIKAN_IPA/BAYONG_TJASYONO/Characteristics_of_Cloud.pdf (accessed on 19 May 2023).
- Wheeler, M.C.; McBride, J.L. Australian-Indonesian Monsoon. In Intraseasonal Variability in the Atmosphere-Ocean Climate System; Lau, W.K.M., Waliser, D.E., Eds.; Springer Praxis Books; Springer: Berlin/Heidelberg, Germany, 2005; pp. 125–173. ISBN 978-3-540-27250-2. [Google Scholar]
- Yamanaka, M.D. Physical Climatology of Indonesian Maritime Continent: An Outline to Comprehend Observational Studies. Atmos. Res. 2016, 178–179, 231–259. [Google Scholar] [CrossRef]
- Griffiths, M.L.; Drysdale, R.N.; Gagan, M.K.; Zhao, J.X.; Ayliffe, L.K.; Hellstrom, J.C.; Hantoro, W.S.; Frisia, S.; Feng, Y.X.; Cartwright, I.; et al. Increasing Australian-Indonesian Monsoon Rainfall Linked to Early Holocene Sea-Level Rise. Nat. Geosci. 2009, 2, 636–639. [Google Scholar] [CrossRef]
- Wirasatriya, A.; Susanto, R.D.; Kunarso, K.; Jalil, A.R.; Ramdani, F.; Puryajati, A.D. Northwest Monsoon Upwelling within the Indonesian Seas. Int. J. Remote Sens. 2021, 42, 5437–5458. [Google Scholar] [CrossRef]
Island Name | Station Name | Position | Data Type | Data Deficit % | Remarks |
---|---|---|---|---|---|
Papua | Merauke | 8.49°S, 140.4°E | 3-h | 3.8–4.8 | Large interval and deficit |
Kalimantan | Banjarbarue | 3.45°S, 114.78°E | 0.5-h | 20.6 | Deficit for important day |
Sumatra—South | Palembang | 2.88°S, 104.69°E | 0.5-h | 19.7–20 | Deficit for important day |
Sumatra—North | Malacca *2 | 2.25°N, 102.25°E | 0.5- and 1-h | 0.9 | Malaysia but near Dumai |
Place Name | ΔT (T0 *) °C h−1 | ΔRH (RH0 *) % h−1 | ΔWS (WS0 *) (km h−1) h−1 | Values of Comparison Year | Time, Period (DMY) |
---|---|---|---|---|---|
Southern Papua (Merauke) | 2.3 (21.7) | −10.3 (85.9) | 5.2 (6.8) | ΔT = 1.4, ΔRH = −6.5, ΔWS = 2.4 (7–19 October 2021) | 6–9 a.m., 7–19 October 2015 |
Central Kalimantan (MRP) | 2.7 (23.7) | −12.6 (85.9) | 1.9 (3) | ΔT = 1.6, ΔRH = −8, ΔWS = 2.2 (12–22 October 2021) | 7:30–10:30 a.m., 12–22 September 2015 |
South Sumatra (Palembang) | 2.3 (23.6) | −9.6 (95.5) | 3.4 (7.3) | ΔT = 1.3, ΔRH = −5.5, ΔWS = 2.2 (12–22 September 2021) | 7–9 a.m., 28 August–7 September 2015 |
North Sumatra (Dumai) | 2.1 (24.8) | −9.8 (85) | 3.1 (5.7) | ΔT = 1.4, ΔRH = −4.8, ΔWS = 2.9 (19–24 February 2021) | 8–11 a.m., 19–24 February 2005 |
1.8 (24.4) | −7.9 (84) | 2.5 (14) | ΔT = 1.4, ΔRH = −6.3, ΔWS = 3.3 (6–13 March 2021) | 8–11 a.m., 6–13 March 2014 | |
1.8 (26.0) | −6.9 (86.8) | 2.7 (3.3) | ΔT = 1.8, ΔRH = −6.9, ΔWS = 1.5 (17–25 June 2021) | 8–11 a.m., 17–25 June 2013 | |
3 (25.0) | −13.5 (89) | 5 (4) | 8–11 a.m., 20 June 2013 |
Place Name | Tmax °C | RHmin % | WSmax km h−1 | Dominant Wind Direction * | Active Fire Period |
---|---|---|---|---|---|
Southern Papua (Merauke) | 29.4 (12 a.m.) | 59.5 (9 a.m.) | 35.7 (3 p.m.) | 135° (SE) | 7–19 October 2015 |
Central Kalimantan (MRP) | 36 (2:30 p.m.) | 37.1 (1:30 p.m.) | 21 (5 p.m.) | 150° (SE) | 12–22 September 2015 |
South Sumatra (Palembang) | 33.7 (2 p.m.) | 44.8 (2 p.m.) | 19.5 (5:30 p.m.) | 110° (SE) | 28 August–7 September 2015 |
North Sumatra (Dumai) | 35.3 (3 p.m.) | 39 (4 p.m.) | 15.3 (10 a.m.) | 45–90° (NE-E) | 19–24 February 2005 |
34.1 (3 p.m.) | 46.3 (3 p.m.) | 23 (10 a.m.) | 45° (NE) | 6–13 March 2014 | |
33.3 (3 p.m.) | 53.4 (4 p.m.) | 13.7 (2 p.m.) | 220° (SW) | 17–25 June 2013 | |
34 (2 p.m.) | 46 (3 p.m.) | 22 (1 p.m.) | 270° (W) | 20 June 2013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yulianti, N.; Hayasaka, H. Recent Active Fires in Indonesia’s Southern Papua Province Caused by El Niño Conditions. Remote Sens. 2023, 15, 2709. https://doi.org/10.3390/rs15112709
Yulianti N, Hayasaka H. Recent Active Fires in Indonesia’s Southern Papua Province Caused by El Niño Conditions. Remote Sensing. 2023; 15(11):2709. https://doi.org/10.3390/rs15112709
Chicago/Turabian StyleYulianti, Nina, and Hiroshi Hayasaka. 2023. "Recent Active Fires in Indonesia’s Southern Papua Province Caused by El Niño Conditions" Remote Sensing 15, no. 11: 2709. https://doi.org/10.3390/rs15112709
APA StyleYulianti, N., & Hayasaka, H. (2023). Recent Active Fires in Indonesia’s Southern Papua Province Caused by El Niño Conditions. Remote Sensing, 15(11), 2709. https://doi.org/10.3390/rs15112709