On the Use of Circadian Cycles to Monitor Individual Young Plants
Abstract
1. Introduction
2. Materials
2.1. Acquisition System
2.2. Datasets
- Cabbage in a growth chamber with day–night cycles, respectively, equal to 14–10 h per day, with 6 cameras acquiring during 18 days. This corresponds to the acquisition of 56 frames per day.
- Pepper in greenhouses with natural day–night cycles, with 3 cameras acquiring during 40 days. A time lapse is available on https://uabox.univ-angers.fr/index.php/s/IpgZwhS47F1UMHB (accessed on 10 May 2023), showing the influence of circadian cycles on plant movement.
- Cabbage corresponds to the plant segmentation ground truth of the 1008 images of the temporal sequence for the set of 13 monitored cabbage plants given in Figure 2.
- Cabbage corresponds to the plant segmentation prediction of Cabbage via Ilastik software after annotation on Cabbage.
- Cabbage corresponds to plant segmentation prediction by the same Ilastik model on a set of 15 cabbage plants distinct from Cabbage.
- Pepper is similar to Cabbage but applied on another plant species: 6 pepper plants.
3. Methods
3.1. Frame Sampling
3.1.1. Baseline
3.1.2. Periodic Frame Sampling
3.1.3. Non-Periodic Frame Sampling
3.2. Object Sampling
3.2.1. Plant Tracking
3.2.2. Overlapping Detection
3.3. Metrics
3.4. Parameter Tuning
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinclair, J.B.; Dhingra, O.D. Basic Plant Pathology Methods; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Samiei, S.; Rasti, P.; Ly Vu, J.; Buitink, J.; Rousseau, D. Deep learning-based detection of seedling development. Plant Methods 2020, 16, 103. [Google Scholar] [CrossRef]
- Apelt, F.; Breuer, D.; Nikoloski, Z.; Stitt, M.; Kragler, F. Phytotyping4D: A light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth. Plant J. 2015, 82, 693–706. [Google Scholar] [CrossRef]
- Rehman, T.U.; Zhang, L.; Wang, L.; Ma, D.; Maki, H.; Sánchez-Gallego, J.A.; Mickelbart, M.V.; Jin, J. Automated leaf movement tracking in time-lapse imaging for plant phenotyping. Comput. Electron. Agric. 2020, 175, 105623. [Google Scholar] [CrossRef]
- Gall, G.E.C.; Pereira, T.D.; Jordan, A.; Meroz, Y. Fast estimation of plant growth dynamics using deep neural networks. Plant Methods 2022, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- De Vylder, J.; Vandenbussche, F.; Hu, Y.; Philips, W.; Van Der Straeten, D. Rosette Tracker: An Open Source Image Analysis Tool for Automatic Quantification of Genotype Effects. Plant Physiol. 2012, 160, 1149–1159. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar] [CrossRef][Green Version]
- Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017. [Google Scholar] [CrossRef][Green Version]
- Nasseri, M.H.; Moradi, H.; Hosseini, R.; Babaee, M. Simple online and real-time tracking with occlusion handling. arXiv 2021, arXiv:2103.04147. [Google Scholar] [CrossRef]
- Ortega, J.; Castillo, S.; Gehan, M.; Fahlgren, N. Segmentation of Overlapping Plants in Multi-Plant Image Time Series; Authorea: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Chéné, Y.; Rousseau, D.; Lucidarme, P.; Bertheloot, J.; Caffier, V.; Morel, P.; Belin, E.; Chapeau-Blondeau, F. On the use of depth camera for 3D phenotyping of entire plants. Comput. Electron. Agric. 2012, 82, 122–127. [Google Scholar] [CrossRef]
- Mohammed Amean, Z.; Low, T.; Hancock, N. Automatic leaf segmentation and overlapping leaf separation using stereo vision. Array 2021, 12, 100099. [Google Scholar] [CrossRef]
- Li, Y.; Mao, H.; Girshick, R.; He, K. Exploring Plain Vision Transformer Backbones for Object Detection. In Proceedings of the Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Proceedings, Part IX. Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Nguyen, C.V.; Fripp, J.; Lovell, D.R.; Furbank, R.; Kuffner, P.; Daily, H.; Sirault, X. 3D Scanning System for Automatic High-Resolution Plant Phenotyping. In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, QLD, Australia, 30 November–2 December 2016; pp. 1–8. [Google Scholar] [CrossRef][Green Version]
- Wu, J.; Xue, X.; Zhang, S.; Qin, W.; Chen, C.; Sun, T. Plant 3D reconstruction based on LiDAR and multi-view sequence images. Int. J. Precis. Agric. Aviat. 2018, 1, 37–43. [Google Scholar] [CrossRef]
- Gosta, M.; Grgic, M. Accomplishments and challenges of computer stereo vision. In Proceedings of the ELMAR-2010, Zadar, Croatia, 15–17 September 2010; pp. 57–64. [Google Scholar]
- Sweeney, B.M. Rhythmic Phenomena in Plants; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- McClung, C.R. Plant Circadian Rhythms. Plant Cell 2006, 18, 792–803. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Satter, R.L.; Galston, A.W. Mechanisms of Control of Leaf Movements. Annu. Rev. Plant Physiol. 1981, 32, 83–110. [Google Scholar] [CrossRef]
- Greenham, K.; Lou, P.; Remsen, S.E.; Farid, H.; McClung, C.R. TRiP: Tracking Rhythms in Plants, an automated leaf movement analysis program for circadian period estimation. Plant Methods 2015, 11, 33. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yin, X.; Liu, X.; Chen, J.; Kramer, D.M. Joint multi-leaf segmentation, alignment, and tracking for fluorescence plant videos. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1411–1423. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Geldhof, B.; Pattyn, J.; Eyland, D.; Carpentier, S.; Van de Poel, B. A digital sensor to measure real-time leaf movements and detect abiotic stress in plants. Plant Physiol. 2021, 187, 1131–1148. [Google Scholar] [CrossRef] [PubMed]
- Garbouge, H.; Rasti, P.; Rousseau, D. Enhancing the Tracking of Seedling Growth Using RGB-Depth Fusion and Deep Learning. Sensors 2021, 21, 8425. [Google Scholar] [CrossRef] [PubMed]
- Intel RealSense Documentation. Available online: https://dev.intelrealsense.com/docs (accessed on 10 May 2023).
- Raspberry Pi Documentation. Available online: https://www.raspberrypi.com/documentation/ (accessed on 10 May 2023).
- Li, Z.; Guo, R.; Li, M.; Chen, Y.; Li, G. A review of computer vision technologies for plant phenotyping. Comput. Electron. Agric. 2020, 176, 105672. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef][Green Version]
- Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.N.; Kausler, B.X.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M.; et al. ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 2019, 16, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Beucher, S. Watersheds of functions and picture segmentation. In Proceedings of the ICASSP’82. IEEE International Conference on Acoustics, Speech, and Signal Processing, Paris, France, 3–5 May 1982; Volume 7, pp. 1928–1931. [Google Scholar] [CrossRef]
Cabbage | Cabbage | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Frame Sampling TGT | Object Sampling | Frame Sampling | Object Sampling | |||||||||
Baseline | PFS | NPFS | POS | NPOS | (NP+P)OS | TGT | TGT | POS | NPOS | (NP+P)OS | TGT | |
3 | 5 | 5 | 12 | 5 | 5 | 5 | 0 | 12 | 3 | 3 | 4 | |
15 | 14 | 12 | 12 | 14 | 13 | 12 | 12 | |||||
7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |||||
11 | 11 | 11 | 11 | 10 | 10 | 10 | 10 | |||||
11 | 11 | 6 | 8 | 11 | 11 | 7 | 8 | |||||
12 | 16 | 12 | 12 | 11 | 11 | 9 | 9 | |||||
13 | 7 | 7 | 7 | 13 | 7 | 7 | 7 | |||||
14 | 14 | 14 | 14 | 16 | 11 | 11 | 14 | |||||
17 | 12 | 12 | 12 | 17 | 12 | 12 | 12 | |||||
16 | 16 | 16 | 16 | 16 | 8 | 8 | 16 | |||||
11 | 6 | 6 | 7 | 11 | 3 | 3 | 7 | |||||
16 | 12 | 12 | 12 | 15 | 12 | 12 | 12 | |||||
17 | 13 | 13 | 13 | 17 | 13 | 13 | 13 | |||||
sMAE (days) | −7.46 | −5.46 | −5.46 | +2.77 | +0.77 | −0.23 | −10.07 | +3 | +1.69 | −1.31 | ||
GAIN (days) | +2 | +2 | +10.23 | +8.23 | +7.23 | +7.46 | +13.07 | +11.76 | +8.76 | +10.07 |
Tracking | Classification | Output—Daily Sequence | |||||
---|---|---|---|---|---|---|---|
Wrong Object Selection | Wrong Overlapping Detection | Wrong Frames | Empty Frames | sMAE from TGT | Gain from Baseline | ||
(%)↓ | (%)↓ | (%)↓ | (%)↓ | (days)↓ | (days) | ||
Cabbage | POS | 0.03 | 4.81 | 16.98 | 16.98 | +2.77 | +10.23 |
NPOS | 2.35 | 8.67 | 3.05 | +0.77 | +8.23 | ||
(NP+P)OS | 0 | 3.23 | −0.23 | +7.23 | |||
Cabbage | POS | 0.03 | 4.94 | 20.81 | 16.11 | +3 | +13.07 |
NPOS | 8.4 | 9.62 | 0.99 | +1.69 | +11.76 | ||
(NP+P)OS | 0.88 | 2.15 | −1.31 | +8.76 | |||
Cabbage | POS | 0 | 3.47 | 15.3 | 15.88 | +2 | +11.6 |
NPOS | 10.92 | 24.57 | 20 | +3.87 | +12.67 | ||
(NP+P)OS | 1.67 | 7.5 | −1.27 | +8.6 | |||
Pepper | POS | 0.2 | 9.59 | 12.1 | 17.83 | +2.83 | +9.33 |
NPOS | 12.07 | 18.11 | 11.02 | +4.67 | +9.17 | ||
(NP+P)OS | 3.77 | 12.26 | −4.83 | +5.67 |
Segmentation | Simultaneous Change | Frame Limiting | |
---|---|---|---|
Cabbage | - | ||
Cabbage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordier, M.; Torres, C.; Rasti, P.; Rousseau, D. On the Use of Circadian Cycles to Monitor Individual Young Plants. Remote Sens. 2023, 15, 2704. https://doi.org/10.3390/rs15112704
Cordier M, Torres C, Rasti P, Rousseau D. On the Use of Circadian Cycles to Monitor Individual Young Plants. Remote Sensing. 2023; 15(11):2704. https://doi.org/10.3390/rs15112704
Chicago/Turabian StyleCordier, Mathis, Cindy Torres, Pejman Rasti, and David Rousseau. 2023. "On the Use of Circadian Cycles to Monitor Individual Young Plants" Remote Sensing 15, no. 11: 2704. https://doi.org/10.3390/rs15112704
APA StyleCordier, M., Torres, C., Rasti, P., & Rousseau, D. (2023). On the Use of Circadian Cycles to Monitor Individual Young Plants. Remote Sensing, 15(11), 2704. https://doi.org/10.3390/rs15112704