False Detections Revising Algorithm for Millimeter Wave Radar SLAM in Tunnel
Abstract
:1. Introduction
- The multi-path scattering theory of SLAM in a tunnel is established. Combined with the actual scene of tunnel and the target, a multi-path scattering theory is constructed to illustrate the generation mechanism of radar false detections. The accumulation process of single-bounce, double-bounce and triple-bounce in SLAM is constructed.
- According to the scattering mechanism differences on SLAM, we propose a radar azimuth scattering angle signature. The calculation method of azimuth scattering angle and range of target point based on SLAM is given. According to the range of azimuth scattering angle, all radar false detections are identified for revision.
- HTMR-CSM and STMR-CSM are proposed. The scan-to-scan point cloud matching method of the original CSM algorithm is improved. A point cloud matching mode from scan-to-submap is proposed. STMR-CSM further optimizes HTMR-CSM by using reliable radar false detections to improve positioning accuracy. HTMR-CSM as a control group demonstrated the effectiveness of STMR-CSM. In addition, it improves the accuracy of the map.
2. Influence of Millimeter Wave Radar Scattering Characteristics on SLAM
2.1. Target Scattering Type Characteristic
2.2. Polarization Rotation Characteristic
2.3. Radar Slant Range of Multiple Bounce Scattering Characteristic
3. Radar Azimuth Scattering Angle Based False Detections Recognition
3.1. Azimuth Scattering Angle of Point Target
3.2. Radar False Detections Recognition
4. Millimeter Wave Radar SLAM Based on Radar False Detections Revising
4.1. Hard-Threshold-Multi-Path-Revised Correlative Scan Matching
4.2. Soft-Threshold-Multi-Path-Revised Correlative Scan Matching
5. Results and Discussions
5.1. Experimental Equipment
5.2. Experiment Result
5.3. Discussion
5.3.1. Grid Map Discussion
5.3.2. Location Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bai, Y.; Liu, G.S.; Zheng, Y.L. Recent Development of Underground Engineering in Shanghai. In Proceedings of the Symposium on Advances in Grounded Technology and Geo-Information/Annual General Meeting of the Geotechnical-Society-of-Singapore, Singapore, 1–2 December 2011; pp. 15–24. [Google Scholar]
- Li, Y.Z.; Ingason, H. Overview of research on fire safety in underground road and railway tunnels. Tunn. Undergr. Space Technol. 2018, 81, 568–589. [Google Scholar] [CrossRef]
- Ntzeremes, P.; Kirytopoulos, K. Applying a stochastic-based approach for developing a quantitative risk assessment method on the fire safety of underground road tunnels. Tunn. Undergr. Space Technol. 2018, 81, 619–631. [Google Scholar] [CrossRef]
- Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L. Review on LiDAR-based SLAM Techniques. In Proceedings of the 2021 International Conference on Signal Processing and Machine Learning (CONF-SPML), Stanford, CA, USA, 14 November 2021; pp. 163–168. [Google Scholar]
- Zhou, T.; Yang, M.; Jiang, K.; Wong, H.; Yang, D. MMW Radar-Based Technologies in Autonomous Driving: A Review. Sensors 2020, 20, 7283. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.J.; Kim, C.H.; Cho, D.I.D. A Monocular Vision Sensor-Based Efficient SLAM Method for Indoor Service Robots. IEEE Trans. Ind. Electron. 2019, 66, 318–328. [Google Scholar] [CrossRef]
- Liang, S.; Cao, Z.Q.; Wang, C.P.; Yu, J.Z. A Novel 3D LiDAR SLAM Based on Directed Geometry Point and Sparse Frame. IEEE Robot. Autom. Lett. 2021, 6, 374–381. [Google Scholar] [CrossRef]
- Dickmann, J. Automotive Radar the Key Technology For Autonomous Driving: From Detection and Ranging to Environmental Understanding. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016. [Google Scholar]
- Wei, Z.; Zhang, F.; Chang, S.; Liu, Y.; Wu, H.; Feng, Z. MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving: A Review. Sensors 2022, 22, 2542. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Ebi, J.; Ba-Ngu, V. Robotic Navigation and Mapping with Radar; Artech: Morristown, NJ, USA, 2012. [Google Scholar]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Censi, A. An ICP variant using a point-to-line metric. In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 19–25. [Google Scholar]
- Ji, Z.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics: Science and Systems Conference, Berkeley, CA, USA, 12–16 July 2014. [Google Scholar]
- Lin, J.; Zhang, F. Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), 31 May–31 August 2020; pp. 3126–3131. [Google Scholar]
- Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1–5 October 2018; pp. 4758–4765. [Google Scholar]
- Olson, E.B. Real-time correlative scan matching. In Proceedings of the IEEE International Conference on Robotics & Automation, Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Witrisal, K.; Meissner, P.; Leitinger, E.; Shen, Y.; Gustafson, C.; Tufvesson, F.; Haneda, K.; Dardari, D.; Molisch, A.F.; Conti, A.; et al. High-Accuracy Localization for Assisted Living: 5G systems will turn multipath channels from foe to friend. IEEE Signal Process. Mag. 2016, 33, 59–70. [Google Scholar] [CrossRef]
- Guo, X.P.; Du, J.S.; Gao, J.; Wang, W. Pedestrian Detection Based on Fusion of Millimeter Wave Radar and Vision. In Proceedings of the 2018 International Conference, Beijing, China, 18–20 August 2018. [Google Scholar]
- Kellner, D.; Klappstein, J.; Dietmayer, K. Grid-based DBSCAN for clustering extended objects in radar data. In Proceedings of the Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012; pp. 365–370. [Google Scholar]
- Li, Y.; Liu, Y.; Wang, Y.; Lin, Y.; Shen, W.J. The Millimeter-Wave Radar SLAM Assisted by the RCS Feature of the Target and IMU. Sensors 2020, 20, 5421. [Google Scholar] [CrossRef] [PubMed]
- Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X.J.D.M.; Discovery, K. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications. Data Min. Knowl. Discov. 1998, 2, 169–194. [Google Scholar] [CrossRef]
- Ge, Y.; Wen, F.X.; Kim, H.; Zhu, M.F.; Jiang, F.; Kim, S.; Svensson, L.; Wymeersch, H. 5G SLAM Using the Clustering and Assignment Approach with Diffuse Multipath. Sensors 2020, 20, 31. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Papathanassiou, K.P.; Hajnsek, I. Polarization orientation effects in urban areas on sar data. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ‘05, Seoul, Republic of Korea, 29 July 2005; Volume 7, pp. 4863–4867. [Google Scholar]
- Etinger, A.; Litvak, B.; Pinhasi, Y. Multi Ray Model for Near-Ground Millimeter Wave Radar. Sensors 2017, 17, 1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Jin, M.; He, Y.; Wang, W.; Liu, Y. Dancing Waltz with Ghosts: Measuring Sub-mm-Level 2D Rotor Orbit with a Single mmWave Radar. In Proceedings of the IPSN ‘21: The 20th International Conference on Information Processing in Sensor Networks, Nashville, TN, USA, 18–21 May 2021. [Google Scholar]
- Hao, Z.J.; Yan, H.; Dang, X.C.; Ma, Z.Y.; Jin, P.; Ke, W.Z. Millimeter-Wave Radar Localization Using Indoor Multipath Effect. Sensors 2022, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Leigsnering, M.; Ahmad, F.; Amin, M.G.; Zoubir, A.M. Compressive Sensing-Based Multipath Exploitation for Stationary and Moving Indoor Target Localization. IEEE J. Sel. Top. Signal Process. 2015, 9, 1469–1483. [Google Scholar] [CrossRef]
- Roos, F.; Sadeghi, M.; Bechter, J.; Appenrodt, N.; Dickmann, J.; Waldschmidt, C. Ghost Target Identification by Analysis of the Doppler Distribution in Automotive Scenarios. In Proceedings of the 18th International Radar Symposium (IRS), Prague, Czech Republic, 28–30 June 2017. [Google Scholar]
- Paredes, J.A.; Alvarez, F.J.; Hansard, M.; Rajab, K.Z. A Gaussian Process model for UAV localization using millimetre wave radar. Expert Syst. Appl. 2021, 185, 13. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Data Rate | 17 Hz |
Ranging Accuracy | Far Range: ±0.40 m; Short Range: ±0.10 m (±0.05 m@ static) |
Angular Accuracy | Far Range: ±0.1°; Short Range: ±0.1°@0.4°/ ±1°@ ±45°/ ±5°@ ±60° |
Detection Range | Far Range: 0.20…150 m@0…±9°; Short Range: 0.20…70 m@0…±45°, 0.20…20 m@ ± 60° |
Name | CSM | HTMR-CSM | Accuracy Improvement (%) | STMR-CSM | Accuracy Improvement (%) |
---|---|---|---|---|---|
0.89 | 1.02 | −15 | 0.82 | 9 | |
0.9270 | 1.0050 | −8 | 0.7622 | 22 | |
0.0260 | 0.0211 | 23 | 0.0204 | 27 | |
Number of Points | 40,825 | 24,789 | 37,138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wei, Y.; Wang, Y.; Lin, Y.; Shen, W.; Jiang, W. False Detections Revising Algorithm for Millimeter Wave Radar SLAM in Tunnel. Remote Sens. 2023, 15, 277. https://doi.org/10.3390/rs15010277
Li Y, Wei Y, Wang Y, Lin Y, Shen W, Jiang W. False Detections Revising Algorithm for Millimeter Wave Radar SLAM in Tunnel. Remote Sensing. 2023; 15(1):277. https://doi.org/10.3390/rs15010277
Chicago/Turabian StyleLi, Yang, Yonghui Wei, Yanping Wang, Yun Lin, Wenjie Shen, and Wen Jiang. 2023. "False Detections Revising Algorithm for Millimeter Wave Radar SLAM in Tunnel" Remote Sensing 15, no. 1: 277. https://doi.org/10.3390/rs15010277
APA StyleLi, Y., Wei, Y., Wang, Y., Lin, Y., Shen, W., & Jiang, W. (2023). False Detections Revising Algorithm for Millimeter Wave Radar SLAM in Tunnel. Remote Sensing, 15(1), 277. https://doi.org/10.3390/rs15010277