Application of the Fourier Series Expansion Method for the Inversion of Gravity Gradients using Gravity Anomalies
Abstract
:1. Introduction
2. Fourier Series Representation
2.1. Fourier Series Representation of Gravity Potential
2.2. Fourier Series Representation of Gravity
2.3. Fourier Series Representation of the Gravity Gradient
3. Data and Experimental Area
3.1. Experimental Area
3.2. Data
4. Experimental Results and Analysis
4.1. Experimentation and Analysis
4.2. The Efficiency of the Calculations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, M.; Zhai, G.; Guan, Z. The Determination and Application of Marine Gravity Field; Surveying and Mapping Press: Beijing, China, 2005. [Google Scholar]
- Chen, S. The Data Processing, Analysis and Application of Marine Gravity; China Ocean Press: Beijing, China, 1991. [Google Scholar]
- Liu, J.; Liu, L.; Liang, X.; Ye, Z. Comparison of methods to model gravity gradient field using gravity anomaly data. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 1677–1682. [Google Scholar] [CrossRef]
- Lu, B.; Barthelmes, F.; Li, M.; Förste, C.; Ince, E.S.; Petrovic, S.; Flechtner, F.; Schwabe, J.; Luo, Z.; Zhong, B.; et al. Shipborne gravimetry in the Baltic sea: Data processing strategies, crucial findings and preliminary geoid determination tests. J. Geod. 2019, 93, 1059–1071. [Google Scholar] [CrossRef]
- Xian, P.; Ji, B.; Bian, S.; Liu, B. Influence of sea level anomaly on underwater gravity gradient measurements. Sensors 2022, 22, 5758. [Google Scholar] [CrossRef] [PubMed]
- Talukder, A.R.; Bialas, J.; Klaeschen, D.; Buerk, D.; Brueckmann, W.; Reston, T.; Breitzke, M. High-resolution, deep tow, multichannel seismic and sidescan sonar survey of the submarine mounds and associated BSR off Nicaragua pacific margin. Mar. Geol. 2007, 241, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.J.; Bian, S.F.; Zhou, X.H.; Fang, J.; Hao, X.G.; Zhang, W.M. Determination of gravity vertical gradient and its application potential. Prog. Geophys. 2007, 22, 1686–1691. [Google Scholar]
- Barngrover, C.; Kastner, R.; Belongie, S. Semisynthetic versus real-world sonar training data for the classification of mine-like objects. IEEE J. Ocean. Eng. 2015, 40, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Ma, J.; Tian, J.; Liu, H.; Yu, J.; Zhang, Y. A gravity gradient differential ratio method for underwater object detection. IEEE Geosci. Remote Sens. Lett. 2014, 11, 833–837. [Google Scholar] [CrossRef]
- Gerber, M.A. Gravity gradiometry-something new in inertial navigation. Astronaut. Aeronaut. 1978, 16, 18–26. [Google Scholar]
- Chan, H.A.; Moody, M.V.; Paik, H.J. Superconducting gravity gradiometer for sensitive gravity measurements. II. Experiment. Phys. Rev. D 1987, 35, 3572–3597. [Google Scholar] [CrossRef]
- Jiang, T.; Hu, C.; Liu, J.; Wu, W. Error analysis of rotating MEMS accelerometer airborne gravity gradiometer under the action of multiple physical fields. J. Huazhong Univ. Sci. Technol. 2022, 50, 83–89. [Google Scholar]
- Yu, M. Error Compensation and Signal Processing of a Rotating Accelerometer Gravity Gradiometer; Southeast University: Nanjing, China, 2019. [Google Scholar]
- Douch, K.; Panet, I.; Pajot-Métivier, G.; Christophe, B.; Foulon, B.; Lequentrec-Lalancette, M.F.; Diament, M. Error analysis of a new planar electrostatic gravity gradiometer for airborne surveys. J. Geod. 2015, 89, 1217–1231. [Google Scholar] [CrossRef]
- Song, H. Precise Measurement of Gravity Gradient Based on the Cold Atom Interferometer; Huazhong University of Science & Technology: Wuhan, China, 2017. [Google Scholar]
- Wu, Q.; Teng, Y.T.; Zhang, B.; Zhang, T. The research situation of the gradiometer in the world. Geophys. Geochem. Explor. 2013, 37, 761–768. [Google Scholar]
- Forsberg, R. A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modeling; Ohio State Univ Columbus Department of Geodetic Science and Surveying: Columbus, OH, USA, 1984. [Google Scholar]
- Jahandari, H.; Farquharson, C.G. Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids. Geophysics 2013, 78, G69–G80. [Google Scholar] [CrossRef]
- Heck, B.; Seitz, K. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geod. 2007, 81, 121–136. [Google Scholar] [CrossRef]
- Wild-Pfeiffer, F. A comparison of different mass elements for use in gravity gradiometry. J. Geod. 2008, 82, 637–653. [Google Scholar] [CrossRef]
- Li, X.; Chouteau, M. Three-dimensional gravity modeling in all space. Surv. Geophys. 1998, 19, 339–368. [Google Scholar] [CrossRef]
- Wang, X. Comparison of Forward Methods of Gravity and Gravity Gradient; China University of Geosciences: Beijing, China, 2018. [Google Scholar]
- Bian, S.F. Numerical Solution for Geodetic Boundary Value Problem and the Earth’s Gravity Field Approximation; Wuhan Technical University of Surveying and Mapping: Wuhan, China, 1992. [Google Scholar]
- Xiao, S.H.; Bian, S.F. Research on regional model of continuous Fourier series of marine magnetic anomaly field using for the geomagnetic navigation. In Proceedings of the 2nd International Conference on Industrial and Information Systems, IEEE, Dalian, China, 10–11 July 2010; pp. 437–440. [Google Scholar]
- Liu, F.M.; Zhang, Y.F.; Jing, X. Gravity gradient Parker’s forward method and application using cosine transform. Acta Geod. Gartogr. Sin. 2013, 42, 177–183. [Google Scholar]
- Liu, J.Z.; Liang, X.H.; Ye, Z.R.; Liu, Z.K.; Lang, J.J.; Wang, G.C.; Liu, L.T. Combining multi-source data to construct full tensor of regional airborne gravity gradient disturbance. Chin. J. Geophys. 2020, 63, 3131–3143. [Google Scholar] [CrossRef]
- Liu, J.Z. Using gravity gradient component and their combination to interpret the geological structures in the eastern Tianshan mountains. Geophys. J. Int. 2022, 228, 982–998. [Google Scholar] [CrossRef]
- Wu, L.; Chen, L.; Wu, B.; Cheng, B.; Lin, Q. Improved Fourier modeling of gravity fields caused by polyhedral bodies: With applications to asteroid Bennu and comet 67P/Churyumov–Gerasimenko. J. Geod. 2019, 93, 1963–1984. [Google Scholar] [CrossRef]
- Gunn, P.J. Linear transformations of gravity and magnetic fields. Geophys. Prospect. 1975, 23, 300–312. [Google Scholar] [CrossRef]
- Zhao, W.; Sneeuw, N. Discussion on a Fourier expression suited for local gravity field modeling. Sci. Surv. Mapp. 2014, 39, 20–25. [Google Scholar] [CrossRef]
- Harrison, J.C.; Dickinson, M. Fourier transform methods in local gravity modeling. Bull. Géod. 1989, 63, 149–166. [Google Scholar] [CrossRef]
- Ghobadi-Far, K.; Sharifi, M.A.; Sneeuw, N. 2D Fourier series representation of gravitational functionals in spherical coordinates. J. Geod. 2016, 90, 871–881. [Google Scholar] [CrossRef]
- Nagy, D.; Papp, G.; Benedek, J. The gravitational potential and its derivatives for the prism. J. Geod. 2000, 74, 552–560. [Google Scholar] [CrossRef]
- Tziavos, I.N.; Sideris, M.G.; Forsberg, R.; Schwarz, K.P. The effect of the terrain on airborne gravity and gradiometry. J. Geophys. Res. Solid Earth 1988, 93, 9173–9186. [Google Scholar] [CrossRef]
- Dransfield, M.; Zeng, Y. Airborne gravity gradiometry: Terrain corrections and elevation error. Geophysics 2009, 74, I37–I42. [Google Scholar] [CrossRef]
- Wallenstein, M. Manipulation of gravity anomaly data using Fourier series. In Proceedings of the IEEE 1971 Conference on Engineering in the Ocean Environment, San Diego, CA, USA, 21–24 September 1971; pp. 280–285. [Google Scholar] [CrossRef]
Experimental Area | Min | Max | Mean | STD |
---|---|---|---|---|
North China Plain | −57.53 | 157.39 | −4.54 | 16.98 |
Qinghai-Tibetan Plateau | −342.69 | 638.27 | 0.51 | 93.53 |
Experimental Area | Min | Max | Mean | STD |
---|---|---|---|---|
North China Plain | −252.77 | 276.10 | −0.50 | 15.18 |
Qinghai–Tibetan Plateau | −806.44 | 1070.06 | −0.06 | 115.95 |
Truncation Order | Gravity Gradient | Min | Max | Mean | STD |
---|---|---|---|---|---|
5 × 5 | gxx | −20.14 | 6.71 | 0.64 | 2.32 |
gxy | −14.56 | 4.82 | 0.46 | 1.66 | |
gxz | −8.75 | 26.11 | −0.84 | 3.02 | |
gyy | −18.31 | 6.06 | 0.58 | 2.09 | |
gyz | −8.08 | 24.27 | −0.77 | 2.79 | |
gzz | −12.74 | 37.36 | −1.22 | 4.39 | |
10 × 10 | gxx | −110.89 | 45.55 | 4.43 | 15.25 |
gxy | −82.94 | 33.03 | 3.23 | 11.20 | |
gxz | −59.60 | 140.69 | −5.82 | 19.97 | |
gyy | −110.80 | 43.75 | 4.31 | 14.90 | |
gyz | −57.51 | 141.39 | −5.66 | 19.54 | |
gzz | −88.71 | 203.01 | −8.74 | 29.87 | |
15 × 15 | gxx | −284.16 | 138.08 | 13.91 | 45.77 |
gxy | −210.15 | 102.21 | 10.28 | 34.18 | |
gxz | −181.70 | 358.19 | −18.37 | 60.21 | |
gyy | −277.83 | 139.74 | 14.22 | 46.92 | |
gyz | −181.97 | 364.88 | −18.51 | 60.88 | |
gzz | −276.28 | 530.98 | −28.13 | 91.48 | |
20 × 20 | gxx | −528.64 | 299.06 | 30.91 | 97.94 |
gxy | −408.84 | 224.70 | 23.27 | 74.58 | |
gxz | −396.98 | 672.29 | −41.11 | 129.65 | |
gyy | −528.64 | 317.00 | 33.24 | 105.04 | |
gyz | −409.91 | 710.83 | −42.85 | 135.07 | |
gzz | −615.70 | 995.12 | −64.15 | 199.89 |
Truncation Order | Gravity Gradient | Min | Max | Mean | STD |
---|---|---|---|---|---|
5 × 10 | gxx | −2.75 | 1.33 | −0.01 | 0.42 |
gxy | −6.00 | 2.96 | −0.01 | 0.94 | |
gxz | −3.44 | 6.97 | 0.01 | 1.09 | |
gyy | −27.59 | 13.56 | −0.05 | 4.27 | |
gyz | −14.04 | 28.52 | 0.06 | 4.42 | |
gzz | −14.78 | 29.86 | 0.06 | 4.66 | |
10 × 20 | gxx | −16.82 | 8.60 | −0.07 | 2.76 |
gxy | −36.50 | 18.81 | −0.14 | 6.22 | |
gxz | −21.72 | 42.35 | 0.17 | 7.17 | |
gyy | −174.80 | 89.26 | −0.66 | 29.95 | |
gyz | −91.67 | 180.63 | 0.68 | 30.96 | |
gzz | −94.72 | 189.16 | 0.73 | 32.45 | |
15 × 30 | gxx | −49.31 | 23.89 | −0.30 | 8.43 |
gxy | −110.62 | 52.57 | −0.65 | 19.10 | |
gxz | −60.51 | 125.95 | 0.76 | 21.93 | |
gyy | −532.21 | 258.01 | −3.12 | 93.93 | |
gyz | −266.92 | 548.63 | 3.24 | 97.02 | |
gzz | −280.00 | 570.68 | 3.42 | 101.47 | |
20 × 40 | gxx | −99.74 | 50.75 | −0.88 | 18.64 |
gxy | −223.71 | 118.77 | −1.97 | 42.41 | |
gxz | −136.07 | 247.12 | 2.29 | 48.59 | |
gyy | −1122.91 | 592.25 | −9.70 | 211.31 | |
gyz | −612.01 | 1150.66 | 10.05 | 218.10 | |
gzz | −640.83 | 1182.69 | 10.58 | 227.78 |
Truncation Order | Min | Max | Mean | STD | |
---|---|---|---|---|---|
North China Plain | 5 × 5 | −275.22 | 244.53 | −0.72 | 13.85 |
10 × 10 | −284.20 | 222.49 | −8.19 | 29.93 | |
15 × 15 | −324.73 | 569.58 | −27.57 | 89.96 | |
20 × 20 | −606.08 | 1033.57 | −63.54 | 198.27 | |
Qinghai–Tibetan Plateau | 5 × 10 | −1058.32 | 814.50 | 0.07 | 116.39 |
10 × 20 | −1052.27 | 854.47 | 0.62 | 120.20 | |
15 × 30 | −1057.01 | 1132.26 | 3.21 | 152.25 | |
20 × 40 | −1127.59 | 1553.10 | 10.32 | 253.07 |
Truncation Orders | 5 × 5 | 10 × 10 | 15 × 15 | 20 × 20 |
North China Plain | 9.8 | 30.1 | 61.5 | 103.1 |
Data size | 479 × 477 | |||
Truncation orders | 5 × 10 | 10 × 20 | 15 × 30 | 20 × 40 |
Qinghai–Tibetan Plateau | 118.3 | 401.8 | 841.5 | 1389.5 |
Data size | 1917 × 831 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Bian, S.; Ji, B.; Wu, S.; Xian, P.; Chen, C.; Zhang, R. Application of the Fourier Series Expansion Method for the Inversion of Gravity Gradients using Gravity Anomalies. Remote Sens. 2023, 15, 230. https://doi.org/10.3390/rs15010230
Liu B, Bian S, Ji B, Wu S, Xian P, Chen C, Zhang R. Application of the Fourier Series Expansion Method for the Inversion of Gravity Gradients using Gravity Anomalies. Remote Sensing. 2023; 15(1):230. https://doi.org/10.3390/rs15010230
Chicago/Turabian StyleLiu, Bei, Shaofeng Bian, Bing Ji, Shuguang Wu, Pengfei Xian, Cheng Chen, and Ruichen Zhang. 2023. "Application of the Fourier Series Expansion Method for the Inversion of Gravity Gradients using Gravity Anomalies" Remote Sensing 15, no. 1: 230. https://doi.org/10.3390/rs15010230
APA StyleLiu, B., Bian, S., Ji, B., Wu, S., Xian, P., Chen, C., & Zhang, R. (2023). Application of the Fourier Series Expansion Method for the Inversion of Gravity Gradients using Gravity Anomalies. Remote Sensing, 15(1), 230. https://doi.org/10.3390/rs15010230