A Novel Hybrid LMD–ETS–TCN Approach for Predicting Landslide Displacement Based on GPS Time Series Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Local Mean Decomposition (LMD)
- (1)
- Firstly, in each half-wave oscillation of the signal, the mean value mi of each two following extrema ni and ni + 1 should be calculated as below:
- (2)
- Each corresponding half-wave oscillation’s local magnitude is determined as below:
- (3)
- For the initial signal x(t), the original mean represented m11(t) is calculated by Equation (1), and the initial envelope estimate denoted a11(t), and then outcome signal h11(t), s11(t) is given as below:
- (4)
- The iteration procedure should repeat n times until a purely frequency-modulated signal s1n(t) is calculated. Therefore,
- (5)
- At this time, a product function PF1(t) is multiplied by s1n(t) and a1(t),
- (6)
- The initial signal x(t) subtracts PF1(t) to generate a new function u1(t), so the flow should continue k times until uk(t) belongs to a constant or no more oscillations.
2.2. ETS Model
2.3. Temporal Convolutional Network (TCN)
2.4. Prediction Process and Experimental Settings
- Step 1.
- The predicted trend displacement is predicted by the ETS model fitting the trend term.
- Step 2.
- A TCN approach is trained to forecast the landslide-predicted periodic displacement based on the periodic term.
- Step 3.
- The cumulative predicted displacement is the sum of the predicted trend displacement and the predicted periodic displacement .
- Step 4.
- Predict the displacement of t + 1 time by repeating steps 1 to 4.
2.5. Metrics
3. Case Study
3.1. Topography and Geological Setting
3.2. Time Series Monitoring Data and Deformation Analysis
4. Results
4.1. Cumulative Displacement Decomposition
4.2. Trend Displacement Prediction
4.3. Periodic Displacement Prediction
4.3.1. Selection of Inducing Factors
4.3.2. The TCN Prediction of Periodic Displacement
4.4. Cumulative Displacement Prediction
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dou, J.; Yunus, A.P.; Merghadi, A.; Shirzadi, A.; Nguyen, H.; Hussain, Y.; Avtar, R.; Chen, Y.; Pham, B.T.; Yamagishi, H. Different Sampling Strategies for Predicting Landslide Susceptibilities Are Deemed Less Consequential with Deep Learning. Sci. Total Environ. 2020, 720, 137320. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, Y.; Zhou, J.; Wang, X.; Yamagishi, H.; Dou, J. Preliminary Analyses of a Catastrophic Landslide Occurred on 23 July 2019, in Guizhou Province, China. Landslides 2020, 17, 719–724. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Tien Bui, D.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.W.; Khosravi, K.; Yang, Y.; Pham, B.T. Assessment of Advanced Random Forest and Decision Tree Algorithms for Modeling Rainfall-Induced Landslide Susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Science Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Wang, W.; He, Z.; Han, Z.; Li, Y.; Dou, J.; Huang, J. Mapping the Susceptibility to Landslides Based on the Deep Belief Network: A Case Study in Sichuan Province, China. Nat. Hazards 2020, 103, 3239–3261. [Google Scholar] [CrossRef]
- Wang, F.; Li, T. Landslide Disaster Mitigation in Three Gorges Reservoir, China; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Wang, F.-W.; Zhang, Y.-M.; Huo, Z.-T.; Matsumoto, T.; Huang, B.-L. The 14 July 2003 Qianjiangping Landslide, Three Gorges Reservoir, China. Landslides 2004, 1, 157–162. [Google Scholar] [CrossRef]
- Tang, H.; Wasowski, J.; Juang, C.H. Geohazards in the Three Gorges Reservoir Area, China—Lessons Learned from Decades of Research. Eng. Geol. 2019, 261, 105267. [Google Scholar] [CrossRef]
- Cojean, R.; Caï, Y.J. Analysis and Modeling of Slope Stability in the Three-Gorges Dam Reservoir (China)—The Case of Huangtupo Landslide. J. Mt. Sci. 2011, 8, 166–175. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, H.; Gao, Y.; Li, X. Real-Time Monitoring and Early Warning of Landslides at Relocated Wushan Town, the Three Gorges Reservoir, China. Landslides 2010, 7, 339–349. [Google Scholar] [CrossRef]
- Petley, D.N.; Mantovani, F.; Bulmer, M.H.; Zannoni, A. The Use of Surface Monitoring Data for the Interpretation of Landslide Movement Patterns. Geomorphology 2005, 66, 133–147. [Google Scholar] [CrossRef]
- Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical Landslide Early Warning Systems. Earth-Science Rev. 2020, 200, 102973. [Google Scholar] [CrossRef]
- Liu, L.-L.; Zhang, J.; Li, J.-Z.; Huang, F.; Wang, L.-C. A Bibliometric Analysis of the Landslide Susceptibility Research (1999–2021). Geocarto Int. 2022, 1–26. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Zhang, S.-H.; Liu, L.-L. A New Active Learning Kriging Metamodel for Structural System Reliability Analysis with Multiple Failure Modes. Reliab. Eng. Syst. Saf. 2022, 228, 108761. [Google Scholar] [CrossRef]
- Saito, M. Forecasting the Time of Occurrence of a Slope Failure. In Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, QC, USA, 8–15 September 1965; pp. 537–541. [Google Scholar]
- Li, X.; Kong, J.; Wang, Z. Landslide Displacement Prediction Based on Combining Method with Optimal Weight. Nat. Hazards 2012, 61, 635–646. [Google Scholar] [CrossRef]
- Saito, M. Forecasting Time of Slope Failure by Tertiary Creep. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico, 29 August 1969; Volume 2, pp. 677–683. [Google Scholar]
- Voight, B. A Relation to Describe Rate-Dependent Material Failure. Science 1989, 243, 200–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.B.; Chen, M.D.; Wang, L.S. Landslide Real-Time Tracking Prediction; Chengdu University of Science and Technology Press: Chengdu, China, 1999; pp. 27–31. [Google Scholar]
- Lu, P.; Rosenbaum, M.S. Artificial Neural Networks and Grey Systems for the Prediction of Slope Stability. Nat. Hazards 2003, 30, 383–398. [Google Scholar] [CrossRef]
- Du, J.; Yin, K.; Lacasse, S. Displacement Prediction in Colluvial Landslides, Three Gorges Reservoir, China. Landslides 2013, 10, 203–218. [Google Scholar] [CrossRef]
- Huang, F.; Yin, K.; Zhang, G.; Gui, L.; Yang, B.; Liu, L. Landslide Displacement Prediction Using Discrete Wavelet Transform and Extreme Learning Machine Based on Chaos Theory. Environ. Earth Sci. 2016, 75, 1376. [Google Scholar] [CrossRef]
- Cai, Z.; Xu, W.; Meng, Y.; Shi, C.; Wang, R. Prediction of Landslide Displacement Based on GA-LSSVM with Multiple Factors. Bull. Eng. Geol. Environ. 2016, 75, 637–646. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, Z.; Tang, H. Landslide Deformation Prediction Based on Recurrent Neural Network. Neural Process. Lett. 2015, 41, 169–178. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, K.; Cai, C.; Liu, W.; Xie, J. Displacement Prediction of Step-like Landslides Based on Feature Optimization and VMD-Bi-LSTM: A Case Study of the Bazimen and Baishuihe Landslides in the Three Gorges, China. Bull. Eng. Geol. Environ. 2021, 80, 8481–8502. [Google Scholar] [CrossRef]
- Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time Series Analysis and Long Short-Term Memory Neural Network to Predict Landslide Displacement. Landslides 2019, 16, 677–694. [Google Scholar] [CrossRef]
- Xu, S.; Niu, R. Displacement Prediction of Baijiabao Landslide Based on Empirical Mode Decomposition and Long Short-Term Memory Neural Network in Three Gorges Area, China. Comput. Geosci. 2018, 111, 87–96. [Google Scholar] [CrossRef]
- Long, J.; Li, C.; Liu, Y.; Feng, P.; Zuo, Q. A Multi-Feature Fusion Transfer Learning Method for Displacement Prediction of Rainfall Reservoir-Induced Landslide with Step-like Deformation Characteristics. Eng. Geol. 2022, 297, 106494. [Google Scholar] [CrossRef]
- Dou, J.; Xiang, Z.; Qiang, X.; Zheng, P.; Wang, X.; Su, A.; Liu, J.; Luo, W. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Sci. 2022. [Google Scholar] [CrossRef]
- Pham, B.T.; Nguyen-Thoi, T.; Qi, C.; Van Phong, T.; Dou, J.; Ho, L.S.; Van Le, H.; Prakash, I. Coupling RBF Neural Network with Ensemble Learning Techniques for Landslide Susceptibility Mapping. Catena 2020, 195, 104805. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, H.; Xu, Q.; Lu, Z.; Liao, L.; Li, H.; Hao, L. A Graph Convolutional Incorporating GRU Network for Landslide Displacement Forecasting Based on Spatiotemporal Analysis of GNSS Observations. Remote Sens. 2022, 14, 1016. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, M.G.; Xu, K.X.; Huang, X. Research on Space-Time Evolution Laws and Early Warning-Prediction of Landslides. Chin. J. Rock Mech. Eng. 2008, 27, 1104–1112. [Google Scholar]
- Wang, J.F. Quantitative Prediction of Landslide Using S-Curve. Chin. J. Geol. Hazard Control 2003, 14, 1–8. [Google Scholar]
- Du, H.; Song, D.Q.; Chen, Z.; Shu, H.P.; Guo, Z.Z. Prediction Model Oriented for Landslide Displacement with Step-like Curve by Applying Ensemble Empirical Mode Decomposition and the PSO-ELM Method. J. Clean. Prod. 2020, 270, 122248. [Google Scholar] [CrossRef]
- Li, C.; Criss, R.E.; Fu, Z.; Long, J.; Tan, Q. Evolution Characteristics and Displacement Forecasting Model of Landslides with Stair-Step Sliding Surface along the Xiangxi River, Three Gorges Reservoir Region, China. Eng. Geol. 2021, 283, 105961. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.; He, Z.; Tan, J.; Li, C. A Novel Displacement Prediction Method Using Gated Recurrent Unit Model with Time Series Analysis in the Erdaohe Landslide. Nat. Hazards 2021, 105, 783–813. [Google Scholar] [CrossRef]
- Zhang, L.G.; Chen, X.Q.; Zhang, Y.G.; Wu, F.W.; Chen, F.; Wang, W.T.; Guo, F. Application of GWO-ELM Model to Prediction of Caojiatuo Landslide Displacement in the Three Gorge Reservoir Area. Water 2020, 12, 1860. [Google Scholar] [CrossRef]
- Chou, Y. Statistical Analysis: With Business and Economic Applications; Holt, Rinehart and Winston: New York, NY, USA, 1975; ISBN 9780030854040. [Google Scholar]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B. Application of Time Series Analysis and PSO–SVM Model in Predicting the Bazimen Landslide in the Three Gorges Reservoir, China. Eng. Geol. 2016, 204, 108–120. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Gui, L.; Du, J.; Yin, K.; Do, H.M. Landslide Displacement Prediction Based on Variational Mode Decomposition and WA-GWO-BP Model. Landslides 2020, 17, 567–583. [Google Scholar] [CrossRef]
- Lin, Z.; Ji, Y.; Liang, W.; Sun, X. Landslide Displacement Prediction Based on Time-Frequency Analysis and LMD-BiLSTM Model. Mathematics 2022, 10, 2203. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, F.; Deng, M.; Liu, J.; He, Z.; Zhang, W.; Gu, X. A Hybrid Machine Learning Model Coupling Double Exponential Smoothing and ELM to Predict Multi-Factor Landslide Displacement. Remote Sens. 2022, 14, 3384. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Q.; Tang, M.G.; Nie, W.; Ma, S.Q.; Xu, Z.P. Comparison of Two Optimized Machine Learning Models for Predicting Displacement of Rainfall-Induced Landslide: A Case Study in Sichuan Province, China. Eng. Geol. 2017, 218, 213–222. [Google Scholar] [CrossRef]
- Huang, D.; He, J.; Song, Y.; Guo, Z.; Huang, X.; Guo, Y. Displacement Prediction of the Muyubao Landslide Based on a GPS Time-Series Analysis and Temporal Convolutional Network Model. Remote Sens. 2022, 14, 2656. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, J.; Li, F.; Han, S.; Qin, L.; Li, Q. Landslide Risk Prediction Model Using an Attention-Based Temporal Convolutional Network Connected to a Recurrent Neural Network. IEEE Access 2022, 10, 37635–37645. [Google Scholar] [CrossRef]
- Smith, J.S. The Local Mean Decomposition and Its Application to EEG Perception Data. J. R. Soc. Interface 2005, 2, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, VIC, Australia, 2018. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Li, X.Z.; Kong, J.M. Application of GA–SVM Method with Parameter Optimization for Landslide Development Prediction. Nat. Hazards Earth Syst. Sci. 2014, 14, 525–533. [Google Scholar] [CrossRef]
- Miao, F.; Wu, Y.; Xie, Y.; Li, Y.; Fan, B.; Zhang, J. Displacement Prediction of Baishuihe Landslide Based on Multi Algorithm Optimization and SVR Model. J. Eng. Geol. 2016, 24, 1136–1144. [Google Scholar]
- Herzen, J.; Lässig, F.; Piazzetta, S.G.; Neuer, T.; Tafti, L.; Raille, G.; Van Pottelbergh, T.; Pasieka, M.; Skrodzki, A.; Huguenin, N.; et al. Darts: User-Friendly Modern Machine Learning for Time Series. 2021. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Yao, W.; Li, C.; Zuo, Q.; Zhan, H.; Criss, R.E. Spatiotemporal Deformation Characteristics and Triggering Factors of Baijiabao Landslide in Three Gorges Reservoir Region, China. Geomorphology 2019, 343, 34–47. [Google Scholar] [CrossRef]
- Wu, X.; Benjamin Zhan, F.; Zhang, K.; Deng, Q. Application of a Two-Step Cluster Analysis and the Apriori Algorithm to Classify the Deformation States of Two Typical Colluvial Landslides in the Three Gorges, China. Environ. Earth Sci. 2016, 75, 146. [Google Scholar] [CrossRef]
- Cao, Y.; Yin, K.; Alexander, D.E.; Zhou, C. Using an Extreme Learning Machine to Predict the Displacement of Step-like Landslides in Relation to Controlling Factors. Landslides 2016, 13, 725–736. [Google Scholar] [CrossRef]
- Tomás, R.; Li, Z.; Liu, P.; Singleton, A.; Hoey, T.; Cheng, X. Spatiotemporal Characteristics of the Huangtupo Landslide in the Three Gorges Region (China) Constrained by Radar Interferometry. Geophys. J. Int. 2014, 197, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Yin, K.; Xiao, T.; Chen, L.; Du, J. Annual Variation of Landslide Stability under the Effect of Water Level Fluctuation and Rainfall in the Three Gorges Reservoir, China. Environ. Earth Sci. 2017, 76, 564. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, H.; Wen, T.; Ma, J.; Tan, Q.; Xia, D.; Liu, X.; Zhang, Y. A Hybrid Landslide Displacement Prediction Method Based on CEEMD and DTW-ACO-SVR—Cases Studied in the Three Gorges Reservoir Area. Sensors 2020, 20, 4287. [Google Scholar] [CrossRef] [PubMed]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A Review of the Recent Literature on Rainfall Thresholds for Landslide Occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, B.; Zhu, H.; Yu, X.B.; Han, H.; Fan, X. PSO-SVM-Based Deep Displacement Prediction of Majiagou Landslide Considering the Deformation Hysteresis Effect. Landslides 2021, 18, 179–193. [Google Scholar] [CrossRef]
- Han, H.; Shi, B.; Zhang, L. Prediction of Landslide Sharp Increase Displacement by SVM with Considering Hysteresis of Groundwater Change. Eng. Geol. 2021, 280, 105876. [Google Scholar] [CrossRef]
- Yan, C.; Shen, X.; Guo, F.; Zhao, S.; Zhang, L. A Novel Model Modification Method for Support Vector Regression Based on Radial Basis Functions. Struct. Multidiscip. Optim. 2019, 60, 983–997. [Google Scholar] [CrossRef]
- Akbarimehr, M.; Motagh, M.; Haghshenas-Haghighi, M. Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations. Remote Sens. 2013, 5, 3681–3700. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Yan, J.; Tang, H.; Wang, S.; Xiong, C.; Hu, X. A Shear Constitutive Model for Describing the Full Process of the Deformation and Failure of Slip Zone Soil. Eng. Geol. 2020, 276, 105766. [Google Scholar] [CrossRef]
- Wang, J.; Schweizer, D.; Liu, Q.; Su, A.; Hu, X.; Blum, P. Three-Dimensional Landslide Evolution Model at the Yangtze River. Eng. Geol. 2021, 292, 106275. [Google Scholar] [CrossRef]
- Tang, H.; Li, C.; Hu, X.; Su, A.; Wang, L.; Wu, Y.; Criss, R.; Xiong, C.; Li, Y. Evolution Characteristics of the Huangtupo Landslide Based on in Situ Tunneling and Monitoring. Landslides 2015, 12, 511–521. [Google Scholar] [CrossRef]
Model | Hyperparameter | Explanation |
---|---|---|
TCN | Kernel size = 3 dilation = 3 | Kernel size: The size of every kernel in a convolutional layer. dilation: The base of the exponent determines the dilation on every level. |
ARIMA | p = 2 q = 2 d = 0 | p: Number of time lags of the autoregressive model (AR). q: The size of the moving average window (MA). d: The order of differentiation. |
SVR | C = 518.243 γ = 0.01 | C: Regularization parameter. γ: Determine how much influence a single training example has. |
LSTM | Hidden layer size = 25 | Hidden layer size: Size for each hidden LSTM layer. |
ZG323 | ZG324 | ZG325 | ZG326 | |
---|---|---|---|---|
ETS (A, A, N) | 398.164 | 388.168 | 371.580 | 353.010 |
ETS (A, Ad, N) | 399.886 | 391.479 | 373.780 | 358.070 |
ETS (A, A, M) | 401.779 | 419.033 | 653.940 | 390.110 |
ETS (A, Ad, M) | 405.402 | 443.103 | 407.100 | 395.750 |
ETS (M, A, N) | 407.325 | 957.639 | 500.880 | 470.510 |
ETS (A, A, A) | 408.013 | 417.567 | 653.730 | 386.480 |
ETS (M, Ad, N) | 408.481 | 1033.737 | 512.030 | 479.280 |
ETS (A, Ad, A) | 410.877 | 421.896 | 406.080 | 392.370 |
ETS (M, A, A) | 418.297 | 946.128 | 515.820 | 480.750 |
ETS (M, A, M) | 429.235 | 776.559 | 532.780 | 500.510 |
ETS (M, Ad, A) | 431.305 | 523.652 | 528.800 | 491.650 |
ETS (M, Ad, M) | 441.487 | 783.988 | 544.840 | 510.350 |
ETS (A, N, N) | 714.137 | 740.008 | 728.970 | 765.490 |
ETS (A, N, M) | 742.629 | 775.787 | 761.540 | 797.760 |
ETS (A, N, A) | 744.536 | 771.705 | 761.480 | 798.000 |
ETS (M, N, N) | 746.094 | 1024.060 | 819.330 | 798.650 |
ETS (M, N, A) | 777.466 | 876.940 | 848.900 | 827.650 |
ETS (M, N, M) | 778.535 | 985.622 | 851.510 | 830.750 |
MAE | RMSE | R2 | |
---|---|---|---|
ZG323 | 0.645 | 0.831 | 0.999 |
ZG324 | 2.071 | 2.425 | 0.998 |
ZG325 | 1.072 | 1.448 | 0.999 |
ZG326 | 2.323 | 2.961 | 0.999 |
ZG323 | ZG324 | ZG325 | ZG326 | |
---|---|---|---|---|
Periodic displacement over one month | 0.863 | 0.906 | 0.877 | 0.891 |
Periodic displacement over two months | 0.778 | 0.845 | 0.795 | 0.820 |
Periodic displacement over three months | 0.715 | 0.794 | 0.733 | 0.766 |
Precipitation in the current month | 0.687 | 0.731 | 0.774 | 0.897 |
Precipitation in the previous month | 0.706 | 0.746 | 0.751 | 0.844 |
Precipitation in the two months before | 0.729 | 0.761 | 0.788 | 0.915 |
Reservoir level in the current month | 0.725 | 0.749 | 0.760 | 0.734 |
Reservoir level in the previous month | 0.671 | 0.716 | 0.717 | 0.695 |
Reservoir level in the two months before | 0.614 | 0.679 | 0.675 | 0.658 |
MAE | RMSE | R2 | |
---|---|---|---|
ZG323 | 10.423 | 13.061 | 0.602 |
ZG324 | 13.133 | 16.938 | 0.650 |
ZG325 | 9.795 | 14.663 | 0.694 |
ZG326 | 17.371 | 21.005 | 0.850 |
MAE | RMSE | R2 | |
---|---|---|---|
ZG323 | 10.340 | 12.821 | 0.927 |
ZG324 | 13.615 | 17.545 | 0.907 |
ZG325 | 9.720 | 14.854 | 0.915 |
ZG326 | 17.314 | 21.380 | 0.896 |
MAE | RMSE | R2 | ||
---|---|---|---|---|
ZG323 | ARIMA | 11.732 | 15.224 | 0.897 |
SVR | 15.348 | 17.637 | 0.862 | |
LSTM | 11.584 | 14.836 | 0.902 | |
TCN | 10.340 | 12.821 | 0.927 | |
ZG324 | ARIMA | 16.371 | 20.225 | 0.876 |
SVR | 14.393 | 18.993 | 0.891 | |
LSTM | 13.615 | 17.545 | 0.907 | |
TCN | 9.140 | 13.800 | 0.942 | |
ZG325 | ARIMA | 13.106 | 17.410 | 0.883 |
SVR | 15.183 | 21.029 | 0.829 | |
LSTM | 12.759 | 19.825 | 0.848 | |
TCN | 9.720 | 14.854 | 0.915 | |
ZG326 | ARIMA | 24.300 | 30.726 | 0.785 |
SVR | 23.056 | 26.120 | 0.845 | |
LSTM | 18.797 | 24.616 | 0.862 | |
TCN | 17.314 | 21.381 | 0.896 |
MAE | RMSE | R2 | |||||
---|---|---|---|---|---|---|---|
First Half of Years | Latter Half of Years | First Half of Years | Latter Half of Years | First Half of Years | Latter Half of Years | ||
ZG323 | ARIMA | 9.731 | 13.734 | 10.889 | 18.574 | 0.896 | 0.786 |
SVR | 14.161 | 16.535 | 16.395 | 18.796 | 0.763 | 0.781 | |
LSTM | 8.179 | 14.989 | 9.731 | 18.589 | 0.917 | 0.785 | |
TCN | 8.014 | 12.667 | 9.683 | 15.329 | 0.917 | 0.854 | |
ZG324 | ARIMA | 13.375 | 19.366 | 17.030 | 22.981 | 0.826 | 0.790 |
SVR | 9.768 | 19.017 | 11.947 | 24.057 | 0.915 | 0.770 | |
LSTM | 11.344 | 15.886 | 13.374 | 20.899 | 0.893 | 0.826 | |
TCN | 5.870 | 12.410 | 7.549 | 17.992 | 0.966 | 0.871 | |
ZG325 | ARIMA | 8.528 | 17.683 | 9.788 | 22.593 | 0.930 | 0.748 |
SVR | 8.899 | 21.467 | 11.134 | 27.576 | 0.910 | 0.624 | |
LSTM | 8.599 | 16.920 | 10.254 | 26.095 | 0.924 | 0.664 | |
TCN | 4.455 | 14.985 | 5.672 | 20.227 | 0.977 | 0.798 | |
ZG326 | ARIMA | 12.523 | 36.077 | 14.776 | 40.864 | 0.909 | 0.526 |
SVR | 20.493 | 25.619 | 23.386 | 28.594 | 0.771 | 0.768 | |
LSTM | 12.074 | 25.520 | 13.803 | 31.959 | 0.920 | 0.710 | |
TCN | 8.963 | 25.664 | 10.091 | 28.503 | 0.957 | 0.769 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; Dou, J.; Fu, Y.; Wang, X.; He, Y.; Ma, H.; Wang, R.; Xing, K. A Novel Hybrid LMD–ETS–TCN Approach for Predicting Landslide Displacement Based on GPS Time Series Analysis. Remote Sens. 2023, 15, 229. https://doi.org/10.3390/rs15010229
Luo W, Dou J, Fu Y, Wang X, He Y, Ma H, Wang R, Xing K. A Novel Hybrid LMD–ETS–TCN Approach for Predicting Landslide Displacement Based on GPS Time Series Analysis. Remote Sensing. 2023; 15(1):229. https://doi.org/10.3390/rs15010229
Chicago/Turabian StyleLuo, Wanqi, Jie Dou, Yonghu Fu, Xiekang Wang, Yujian He, Hao Ma, Rui Wang, and Ke Xing. 2023. "A Novel Hybrid LMD–ETS–TCN Approach for Predicting Landslide Displacement Based on GPS Time Series Analysis" Remote Sensing 15, no. 1: 229. https://doi.org/10.3390/rs15010229
APA StyleLuo, W., Dou, J., Fu, Y., Wang, X., He, Y., Ma, H., Wang, R., & Xing, K. (2023). A Novel Hybrid LMD–ETS–TCN Approach for Predicting Landslide Displacement Based on GPS Time Series Analysis. Remote Sensing, 15(1), 229. https://doi.org/10.3390/rs15010229