Regulation of Evapotranspiration in Different Precipitation Zones and Its Application in High-Temperature and Drought Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Introduction of Ground Sites
2.1.2. Remote Sensing Data
2.1.3. Data Processing
2.2. Methods
2.2.1. ET Retrieval
2.2.2. Estimation of the Potential ET
2.2.3. ESI
3. Results
3.1. ET Estimated Result
3.2. Time Series of Parameter Change
3.3. ET Regulation
3.4. Correlation between ESI and SWC
3.5. Application of ET in Drought Monitoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, G. Part 4: Drought Disasters and Drought Mitigation. J. Arid. Meteorol. 1990, 4, 34–43. [Google Scholar]
- WMO. Early Warning Systems for Drought Preparedness and Drought Management. In Proceedings of the Expert Group Meeting, Lisbon, Portugal, 5–7 September 2000; pp. 1–8. [Google Scholar]
- Sivakumar, M.; Stefanski, R.; Bazza, M.; Zalaya, S.; Wilhite, D.; Magalhaes, A. High Level Meeting on National Drought Policy: Summary and Major Outcomes. Weather Clim. Extrem. 2014, 3, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Yang, X. Research and Application of Meteorological Drought Monitoring Indexes in Northwest China. Meteorol. Mon. 2007, 33, 90–96. [Google Scholar]
- Hao, X.; Zhang, Q.; Yang, Z.; Wang, X.; Yue, P.; Han, T.; Wang, S. A new method for drought monitoring based on land surface energy balance and its preliminary application to the Hedong region of Gansu province. Chin. J. Geophys. 2016, 59, 3188–3201. [Google Scholar]
- Li, Y.; Zhang, L.; Zhang, H.; Pu, Z. Drought Monitoring Based on CABLE Land Surface Model and Its Effect Examination of Typical Drought Events. Plateau Meteorol. 2015, 34, 1005–1018. [Google Scholar]
- Kogan, F. Development of Global Drought Watch System Using NOAA/AVHRR Data. Adv. Space Res. 1993, 13, 219–222. [Google Scholar] [CrossRef]
- Kogan, F. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Jackson, R.; Slaler, P.; Pinter, P. Discrimination of Growth and Water Stress in Wheat by Various Vegetation Indices Through Clear and Turbid Atmosphere. Remote Sens. Environ. 1983, 13, 187–208. [Google Scholar] [CrossRef]
- Sandhoh, I.; Rasmussen, K.; Andersen, J. A simple Interpretation of the Surface Temperature-Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Carlson, T.; Gillies, R.; Perry, E. A Method to Make Use of Thermal Infrared Temperature and NDVI Measurement to Infer Soil Water Content and Fractional Vegetation Cover. Remote Sens. Rev. 1994, 52, 45–59. [Google Scholar] [CrossRef]
- Sun, L.; Wang, F.; Wu, J. Drought Monitoring by Remote Sensing in Winter-Wheat-Growing Area of China. Trans. Chin. Soc. Agric. Eng. 2010, 1, 243–249. [Google Scholar]
- Watson, K.; Rowen, L.; Offield, T. Application of Thermal Modeling in the Geologic Interpretation of IR Image. Remote Sens. Environ. 1971, 3, 2017–2041. [Google Scholar]
- Jackson, R.; Idso, S.; Reginato, R. Canopy Temperature as A Crop Water Stress Indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Moran, M.; Clarke, T.; Inoue, Y.; Vodal, A. Estimating Crop Water Deficit Using the Relation between Surface Air Temperature and Spectral Vegetation Index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Shao, X.; Yao, F.; Zhang, J.; Li, H. Analysis of Drought in North China Based on Evapotranspiration Drought Index. Meteorol. Mon. 2013, 39, 1154–1162. [Google Scholar]
- Zhang, X.; Li, J.; Qin, Q.; Han, Y.; Guan, J. Comparison and Application of Several Drought Monitoring Models in Ningxia, China. Trans. Chin. Soc. Agric. Eng. 2009, 25, 18–23. [Google Scholar]
- Shan, Y.; Gong, A.; Su, Y.; Liu, W.; Jiang, W. Improvement of Soil Moisture Monitoring Using EVI as A Key Parameter Based on TVDI in the North China Plain. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; IEEE: Piscataway Township, NJ, USA, 2014; pp. 3738–3741. [Google Scholar]
- Guo, N.; Wang, X. Advances and Developing Opportunities in Remote Sensing of Drought. J. Arid. Meteorol. 2015, 33, 1–18. [Google Scholar]
- Zhang, D.; Meng, L.; Qu, J.; Zhang, W.; Wang, L. Estimation of Surface Soil Moisture in Cornfields Using A Modified MODIS-Based Index and Considering Corn Growth Stages. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5618–5631. [Google Scholar] [CrossRef]
- Guo, N.; Wang, W.; Wang, X.; Hu, D.; Wang, L. Agricultural Drought Remote Sensing Monitoring and Analysis Platform in Northwest China Base on FY-3 Data. In Proceedings of the 2019 International Conference on Meteorology Observations (ICMO), Chengdu, China, 28–31 December 2019. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Z.; Liu, L. Numerical Simulation of the Evapotranspiration Process in the Soil-Vegetation-Atmosphere Continuum. Acta Geogr. Sin. 1996, 51, 118–126. [Google Scholar]
- Wang, J.; Liu, S.; Sun, M.; Guo, N.; Bastiaanssen, W. Monitoring ET with Remote Sensing and the Management of Water Resource on A Basin Scale. J. Arid. Meteorol. 2005, 23, 1–7. [Google Scholar]
- Anderson, M.; Kustas, W. Thermal Remote Sensing of Drought and Evapotranspiration. Eos Trans. Am. Geophys. Union 2013, 89, 233–234. [Google Scholar] [CrossRef]
- Meng, X.; Lü, S. Estimation of Land Surface Heat Flux in the Heterogeneous Underlying Surface in Jinta Oasis Based on RemoteSensing and Numerical Model. Plateau Meteorol. 2012, 31, 910–919. [Google Scholar]
- Yang, F.; Zhang, Q.; Hunt, J.E.; Zhou, J.; Sha, S.; Li, Y.; Yang, Z.; Wang, X. Biophysical Regulation of Evapotranspiration in Semiarid Croplands. J. Soil Water Conserv. May 2019, 74, 309–318. [Google Scholar] [CrossRef]
- Yu, G.; Yanbin, H.; Yanfen, W. 2003–2005 China Flux Observation (ChinaFLUX) Carbon and Water Flux Observation Dataset; Science Data Bank: Beijing, China, 2018. [Google Scholar]
- Wang, K.; Liang, S. An Improved Method for Estimating Global Evapotranspiration Based on Satellite Determination of Surface Net Radiation, Vegetation Index, Temperature, and Soil Moisture. J. Hydrometeor. 2008, 9, 712–727. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, J.; Li, Y.; Li, W.; Wang, L.; Yang, Y. Using the Particle Swarm Optimization Algorithm to Calibrate the Parameters Relating to the Turbulent Flux in the Surface Layer in the Source Region of the Yellow River. Agric. For. Meteorol. 2017, 232, 606–622. [Google Scholar] [CrossRef] [Green Version]
- Becker, F.; Li, Z.L. Towards a Local Split-Window Method over Land Surfaces. Int. J. Remote Sens. 1990, 11, 369–393. [Google Scholar] [CrossRef]
- Wang, L.; Guo, N.; Wang, W.; Zuo, H. Optimization of the Local Split-Window Algorithm for FY-4A Land Surface Temperature Retrieval. Remote Sens. 2019, 11, 2016. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zuo, H.; Wang, W. A Simple Method for Surface Radiation Estimating Using FY-4A Data. J. Appl. Meteorol. Climatol. 2021, 60, 763–777. [Google Scholar] [CrossRef]
- Priestley, C.; Taylor, R. On the Assessment of Surface Heat Flux and Evaporation using Large-scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. Estimation of Surface Evaporation Map over Southern Great Plains Using Remote Sensing Data. Water Resour. Res. 2001, 37, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Huang, G.; Tamai, N. A Hybrid Model for Estimating Global Solar Radiation. Sol. Energy 2001, 70, 13–22. [Google Scholar] [CrossRef]
- Haque, A. Estimating actual areal evapotranspiration from potential evapotranspiration using physical models based on complementary relationships and meteorological data. Bull. Eng. Geol. Environ. 2003, 62, 57–63. [Google Scholar] [CrossRef]
- Wang, S.; Jaing, L.; Wang, J. Retrieval of Soil Moisture Based on Multi-frequency Microwave Remote Sensing: Study of HiWATER. Remote Sens. Technol. Appl. 2020, 35, 1414–1425. [Google Scholar]
- Ying, G.; Hou, Y.; Zhang, Y.; Xue, Y.; Wang, H.; Tian, Y.; Si, Q. Responses of Evapotranspiration of Dominant Plants to Soil Moisture in Desert Steppe. Anim. Husb. Feed Sci. 2016, 37, 18–22. [Google Scholar]
- Wang, X.; Zhang, L.; Liu, L.; Huang, Z.; Liu, X. Numerical Calculation of the Relationship between Evapotranspiration and Soil Moisture in Arid Sandy Region. J. Desert Res. 1996, 16, 388–391. [Google Scholar]
- Wang, H.; Liu, C. Evapotranspiration, Soil Evaporation and Water Efficiet Use. Acta Geogr. Sin. 1997, 52, 447–454. [Google Scholar]
- Liao, Q. Study on Remote Sensing Inversion of Surface Evapotranspiration. Master’s Thesis, Guilin University of Technology, Guangxi, China, 2020. [Google Scholar]
- Wang, J.; Li, X.; Liu, E.; Yu, Q. The Relationship between Relative Evapotranspiration and Leaf Area Index and Surface Soil Water Content in Winter Wheat Field of North China Plain. Chin. J. Eco-Agric. 2003, 11, 32–43. [Google Scholar]
- Yue, P.; Zhang, Q.; Zhang, L.; Yang, Y.; Wang, W.; Yang, Z.; Li, H.; Wang, S.; Sun, X. Biometeorological effects on carbon dioxide and water-use efficiency within a semiarid grassland in the Chinese Loess Plateau. J. Hydrol. 2020, 590, 125520. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.; Brodersen, C.; Duursma, R.; Lopez, R.; Medlyn, B. Triggers of Tree Mortality under Drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
Name | Site | Longitude (°E), Latitude (°N) | Vegetation Type | Observation Time | Application |
---|---|---|---|---|---|
Arou | AR | 100.46, 38.05 | Grassland | 2020 | Modeling |
Jingyangling | JYL | 101.12, 37.84 | Grassland | 2019 | Modeling |
Sidaoqiao | SDQ | 101.14, 42.0 | forest | 2020 | Modeling |
Dingxi | DXX | 104.58, 35.57 | Cropland | 2019–2020 | Modeling (2019)/Verifying (2020) |
Daman | DM | 100.37, 38.86 | Cropland | 2019–2020 | Verifying |
Dashalong | DSL | 98.94, 38.84 | Grassland | 2020 | Verifying |
NO. | Name | Site | Longitude (°E), Latitude (°N) | Vegetation Type | Rainfall (mm) | Observation Time |
---|---|---|---|---|---|---|
1 | Changbaishan | CBS | 128.06, 42.24 | Mixed forest | 438–523 | 2003–2010 |
2 | Dangxiong | DX | 91.03, 30.29 | Alpine meadow | 241–648 | 2004–2010 |
3 | Dinghushan | DHS | 112.30, 23.09 | Forest | 1063–1989 | 2003–2010 |
4 | Haibei | HB | 101.20, 37.40 | Alpine meadow | 342–546 | 2003–2010 |
5 | Neimeng | NM | 116.18, 44.08 | Grassland | 107–364 | 2004, 2005, 2008–2010 |
6 | Qianyanzhou | QYZ | 115.03, 26.44 | Forest | 855–1454 | 2003–2010 |
7 | Xishuangbanna | XSBN | 101.16, 21.54 | Forest | 552–3458 | 2003–2010 |
8 | Yuzhong | SACOL | 104.13, 35.95 | Grassland | 225–402 | 2007–2010 |
9 | Shiquanhe | SQH | 80.08, 32.50 | Desert | 48–129 | 2014–2016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Guo, N.; Yue, P.; Hu, D.; Sha, S.; Wang, X. Regulation of Evapotranspiration in Different Precipitation Zones and Its Application in High-Temperature and Drought Monitoring. Remote Sens. 2022, 14, 6190. https://doi.org/10.3390/rs14246190
Wang L, Guo N, Yue P, Hu D, Sha S, Wang X. Regulation of Evapotranspiration in Different Precipitation Zones and Its Application in High-Temperature and Drought Monitoring. Remote Sensing. 2022; 14(24):6190. https://doi.org/10.3390/rs14246190
Chicago/Turabian StyleWang, Lijuan, Ni Guo, Ping Yue, Die Hu, Sha Sha, and Xiaoping Wang. 2022. "Regulation of Evapotranspiration in Different Precipitation Zones and Its Application in High-Temperature and Drought Monitoring" Remote Sensing 14, no. 24: 6190. https://doi.org/10.3390/rs14246190
APA StyleWang, L., Guo, N., Yue, P., Hu, D., Sha, S., & Wang, X. (2022). Regulation of Evapotranspiration in Different Precipitation Zones and Its Application in High-Temperature and Drought Monitoring. Remote Sensing, 14(24), 6190. https://doi.org/10.3390/rs14246190