Satellite-Based Analysis of Spatiotemporal Wildfire Pattern in the Mongolian Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Wildfire Pattern Analysis
3. Results
3.1. Temporal Pattern
3.1.1. Inter-Annual Trend
3.1.2. Intra-Annual Pattern
3.2. Spatial Distribution
3.3. The Changing Trend of Wildfire Pattern
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pausas, J.G.; Keeley, J.E. Wildfires and global change. Front. Ecol. Environ. 2021, 19, 387–395. [Google Scholar] [CrossRef]
- Bowman, D.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Xu, R.B.; Yu, P.; Abramson, M.J.; Johnston, F.H.; Samet, J.M.; Bell, M.L.; Haines, A.; Ebi, K.L.; Li, S.S.; Guo, Y.M. Wildfires, Global Climate Change, and Human Health. N. Engl. J. Med. 2020, 383, 2173–2181. [Google Scholar] [CrossRef] [PubMed]
- Melia, N.; Dean, S.; Pearce, H.G.; Harrington, L.; Frame, D.J.; Strand, T. Aotearoa New Zealand’s 21st-Century Wildfire Climate. Earths Future 2022, 10, e2022EF002853. [Google Scholar] [CrossRef]
- Ward, M.; Carwardine, J.; Watson, J.E.M.; Pintor, A.; Stuart, S.; Possingham, H.P.; Rhodes, J.R.; Carey, A.R.; Auerbach, N.; Reside, A.; et al. How to prioritize species recovery after a megafire. Conserv. Biol. 2022, 36, e13936. [Google Scholar] [CrossRef]
- Wu, D.Y.; Niu, X.Y.; Chen, Z.Q.; Chen, Y.; Xing, Y.X.; Cao, X.Y.; Liu, J.z.; Wang, X.; Pu, W. Causes and Effects of the Long-Range Dispersion of Carbonaceous Aerosols From the 2019-2020 Australian Wildfires. Geophys. Res. Lett. 2022, 49, e2022GL099840. [Google Scholar] [CrossRef]
- Yuan, S.; Bao, F.; Zhang, X.; Li, Y. Severe Biomass-Burning Aerosol Pollution during the 2019 Amazon Wildfire and Its Direct Radiative-Forcing Impact: A Space Perspective from MODIS Retrievals. Remote Sens. 2022, 14, 2080. [Google Scholar] [CrossRef]
- Buotte, P.C.; Levis, S.; Law, B.E.; Hudiburg, T.W.; Rupp, D.E.; Kent, J.J. Near-future forest vulnerability to drought and fire varies across the western United States. Glob. Chang. Biol. 2019, 25, 290–303. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.; Driscoll, A.; Heft-Neal, S.; Xue, J.; Burney, J.; Wara, M. The changing risk and burden of wildfire in the United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2011048118. [Google Scholar] [CrossRef]
- Hyde, A.S.; Verstraeten, B.S.E.; Olson, J.K.; King, S.; Bremault-Phillips, S.; Olson, D.M. The Fort McMurray Mommy Baby Study: A Protocol to Reduce Maternal Stress Due to the 2016 Fort McMurray Wood Buffalo, Alberta, Canada Wildfire. Front. Public Health 2021, 9, 685. [Google Scholar] [CrossRef]
- Skakun, R.; Castilla, G.; Metsaranta, J.; Whitman, E.; Rodrigue, S.; Little, J.; Groenewegen, K.; Coyle, M. Extending the National Burned Area Composite Time Series of Wildfires in Canada. Remote Sens. 2022, 14, 3050. [Google Scholar] [CrossRef]
- Allan, R.P.; Arias, P.A.; Berger, S.; Canadell, J.G.; Cassou, C.; Chen, D.; Cherchi, A.; Connors, S.L.; Coppola, E.; Cruz, F.A.; et al. Climate Change 2021: The Physical Science Basis; Cambridge University: Cambridge, UK, 2021. [Google Scholar]
- Zhongming, Z.; Linong, L.; Xiaona, Y.; Wangqiang, Z.; Wei, L. Climate Risk Country Profile: Mongolia. 2021. Available online: https://www.adb.org/publications/climate-risk-country-profile-mongolia (accessed on 30 June 2021).
- Neupert, R.F. Population, nomadic pastoralism and the environment in the Mongolian Plateau. Popul. Environ. 1999, 20, 413–441. [Google Scholar] [CrossRef]
- Rao, M.P.; Davi, N.K.; D D’Arrigo, R.; Skees, J.; Nachin, B.; Leland, C.; Lyon, B.; Wang, S.-Y.; Byambasuren, O. Dzuds, droughts, and livestock mortality in Mongolia. Environ. Res. Lett. 2015, 10, 74012. [Google Scholar] [CrossRef]
- Zhang, P.; Jeong, J.H.; Yoon, J.H.; Kim, H.; Wang, S.Y.S.; Linderholm, H.W.; Fang, K.Y.; Wu, X.C.; Chen, D.L. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 2020, 370, 1095–1099. [Google Scholar] [CrossRef]
- Bai, Y.; Li, S.; Liu, M.; Guo, Q. Assessment of vegetation change on the Mongolian Plateau over three decades using different remote sensing products. J. Environ. Manag. 2022, 317, 115509. [Google Scholar] [CrossRef]
- Nanzad, L.; Zhang, J.H.; Tuvdendorj, B.; Nabil, M.; Zhang, S.; Bai, Y. NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. J. Arid. Environ. 2019, 164, 69–77. [Google Scholar] [CrossRef]
- Tao, S.L.; Fang, J.Y.; Zhao, X.; Zhao, S.Q.; Shen, H.H.; Hu, H.F.; Tang, Z.Y.; Wang, Z.H.; Guo, Q.H. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [Green Version]
- Kimura, R.; Moriyama, M. Use of A MODIS Satellite-Based Aridity Index to Monitor Drought Conditions in Mongolia from 2001 to 2013. Remote Sens. 2021, 13, 2561. [Google Scholar] [CrossRef]
- Saladyga, T.; Hessl, A.; Nachin, B.; Pederson, N. Privatization, Drought, and Fire Exclusion in the Tuul River Watershed, Mongolia. Ecosystems 2013, 16, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Bao, G.; Bao, Y.L.; Bao, Y.H.; Amarjargal; Hang, Y.L. Spatiotemporal Variations in Fire Behavior in the Mongolian Plateau during 2001-2012. Adv. Intel. Sys. Res. 2014, 102, 507–511. [Google Scholar]
- John, R.; Chen, J.; Ou-Yang, Z.-T.; Xiao, J.; Becker, R.; Samanta, A.; Ganguly, S.; Yuan, W.; Batkhishig, O. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environ. Res. Lett. 2013, 8, 35033. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Z.X.; Ying, H.; Chen, J.H.; Zhen, S.; Wang, X.; Shan, Y.L. The spatial patterns of climate-fire relationships on the Mongolian Plateau. Agric. For. Meteorol. 2021, 308, 108549. [Google Scholar] [CrossRef]
- Danilin, I.M.; Tsogt, Z. Dynamics of structure and biological productivity of post-fire larch forests in the Northern Mongolia. Contemp. Probl. Ecol. 2014, 7, 158–169. [Google Scholar] [CrossRef]
- Nasanbat, E.; Lkhamjav, O.; Balkhai, A.; Tsevee-Oirov, C.; Purev, A.; Dorjsuren, M. A spatial distributionmap of the wildfire risk in Mongolia using decision support system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Kazato, M.; Soyollham, B. Forest-steppe fires as moving disasters in the Mongolia-Russian borderland. J. Contemp. East Asia Stud. 2022, 11, 22–45. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef]
- Loboda, T.V.; Hoy, E.E.; Giglio, L.; Kasischke, E.S. Mapping burned area in Alaska using MODIS data: A data limitations-driven modification to the regional burned area algorithm. Int. J. Wildland Fire 2011, 20, 487–496. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Artes, T.S.; Oom, D.; De Rigo, D.; Durrant, T.H.; Maianti, P.; Liberta, G.; San-Miguel-Ayanz, J. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 2019, 6, 296. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P.; Giglio, L.; Huang, H.; Zubkova, M.; Humber, M.L. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 2019, 235, 111490. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Libonati, R.; Pereira, A.A.; Nogueira, J.M.P.; Santos, F.L.M.; Peres, L.F.; Santa Rosa, A.; Schroeder, W.; Pereira, J.M.C.; Giglio, L.; et al. How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. Int. J. Appl. Earth Obs. 2019, 78, 318–331. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Rihan, W.; Zhao, J.; Zhang, H.; Guo, X.; Ying, H.; Deng, G.; Li, H. Wildfires on the Mongolian Plateau: Identifying drivers and spatial distributions to predict wildfire probability. Remote Sens. 2019, 11, 2361. [Google Scholar] [CrossRef] [Green Version]
- Wenfeng, C.; Hongyan, Z.; Kunpeng, X.; Yuhai, B. Spatiotemporal patterns and trends of the Mongolian Plateau wildfires. Природа Внутренней Азии 2017, 4, 13–25. [Google Scholar]
- Esri. Sentinel-2 10 m Land Use/Land Cover Time Series. Available online: https://www.arcgis.com/home/item.html?id=d3da5dd386d140cf93fc9ecbf8da5e31 (accessed on 10 February 2022).
- Na, L.; Zhang, J.Q.; Bao, Y.L.; Bao, Y.B.; Na, R.S.; Tong, S.Q.; Si, A.; Na, L.; Zhang, J.; Bao, Y.; et al. Himawari-8 Satellite Based Dynamic Monitoring of Grassland Fire in China-Mongolia Border Regions. Sensors 2018, 18, 276. [Google Scholar] [CrossRef] [Green Version]
- Dionne, R.; Shulman, D. Mongolia Wildfire Assessment; United States Forest Service: Washington, DC, USA, 1996; pp. 1–13. [Google Scholar]
- Darren, J.; Byambasuren, O.; Babler, M. Fire Management Assessment of the Eastern Steppe, Mongolia; The Nature Conservancy: Arlington, VA, USA, 2009; pp. 1–42. [Google Scholar]
- Farukh, M.A.; Hayasaka, H.; Mishigdorj, O. Recent tendency of Mongolian wildland fire incidence: Analysis using MODIS hotspot and weather data. J. Nat. Disaster Sci. 2009, 31, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Dashtseren, A.; Temuujin, K.; Westermann, S.; Batbold, A.; Amarbayasgalan, Y.; Battogtokh, D. Spatial and Temporal Variations of Freezing and Thawing Indices From 1960 to 2020 in Mongolia. Front. Earth Sci. 2021, 9, 713498. [Google Scholar] [CrossRef]
- Munkhjargal, M.; Yadamsuren, G.; Yamkhin, J.; Menzel, L. The Combination of Wildfire and Changing Climate Triggers Permafrost Degradation in the Khentii Mountains, Northern Mongolia. Atmosphere-Basel 2020, 11, 155. [Google Scholar] [CrossRef] [Green Version]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Y.; Shinoda, M.; Yi, K.; Fu, X.; Sun, L.; Nasanbat, E.; Li, N.; Xiang, H.; Yang, Y.; DavdaiJavzmaa, B.; et al. Satellite-Based Analysis of Spatiotemporal Wildfire Pattern in the Mongolian Plateau. Remote Sens. 2023, 15, 190. https://doi.org/10.3390/rs15010190
Bao Y, Shinoda M, Yi K, Fu X, Sun L, Nasanbat E, Li N, Xiang H, Yang Y, DavdaiJavzmaa B, et al. Satellite-Based Analysis of Spatiotemporal Wildfire Pattern in the Mongolian Plateau. Remote Sensing. 2023; 15(1):190. https://doi.org/10.3390/rs15010190
Chicago/Turabian StyleBao, Yulong, Masato Shinoda, Kunpeng Yi, Xiaoman Fu, Long Sun, Elbegjargal Nasanbat, Na Li, Honglin Xiang, Yan Yang, Bulgan DavdaiJavzmaa, and et al. 2023. "Satellite-Based Analysis of Spatiotemporal Wildfire Pattern in the Mongolian Plateau" Remote Sensing 15, no. 1: 190. https://doi.org/10.3390/rs15010190
APA StyleBao, Y., Shinoda, M., Yi, K., Fu, X., Sun, L., Nasanbat, E., Li, N., Xiang, H., Yang, Y., DavdaiJavzmaa, B., & Nandintsetseg, B. (2023). Satellite-Based Analysis of Spatiotemporal Wildfire Pattern in the Mongolian Plateau. Remote Sensing, 15(1), 190. https://doi.org/10.3390/rs15010190