Spectral Aerosol Radiative Forcing and Efficiency of the La Palma Volcanic Plume over the Izaña Observatory
Abstract
:1. Introduction
2. Site Description and Instruments
2.1. Site Description
2.2. Instruments
2.2.1. EKO MS-711 Spectroradiometer
2.2.2. AERONET Cimel Sun Photometer
2.3. Ancillary Instruments
2.3.1. Lidar
2.3.2. Backward Trajectories
2.3.3. Satellite Data
2.3.4. Meteorological Radiosonde
3. Methodology
3.1. Spectral Radiative Forcing and Efficiency
3.2. Heating Rate
4. Results
4.1. Selection of Case Studies
4.2. Characterisation of Optical and Micro-Physical Aerosol Properties
4.3. Spectral Aerosol Radiative Forcing and Efficiency
4.4. Heating Rate
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
F | Radiative forcing |
F | Radiative forcing efficiency |
IZO | Izaña Observatory |
TROPOMI | Tropospheric Monitoring Instrument |
MERRA-2 | Modern-Era Retrospective Analysis for Research and Applications version 2 |
FLEXTRA | Flexible Trajectories |
HR | Heating rate |
VEI | Volcanic explosivity index |
BSRN | Baseline Surface Radiation Network |
CIMO | Commission for Instruments and Methods of Observation |
WMO | World Meteorological Organisation |
IARC | Izaña Atmospheric Research Center |
AEMET | State Meteorological Agency of Spain |
BAPMoN | Pollution Monitoring Network |
GAW | Global Atmospheric Watch |
NDACC | Network for the Detection of Atmospheric Composite Change |
GAW-PFR | Precision Filter Radiometer Network |
AERONET | Aerosol Robotic Network |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NASA | National Aeronautics and Space Administration |
SCO | Santa Cruz Observatory |
DNI | Direct normal irradiance |
FWHM | Full width at half maximum |
AOD | Aerosol optical depth |
AE | Angström parameter |
SDA | Spectral deconvolution algorithm |
MPLNet | Micro-Pulse Lidar Network |
NRB | Normalised Range Backscatter |
ECMWF | European Centre for Medium-Range Weather Forecast |
GEOS | Goddard Earth Observing System |
GCOS | Global Climate Observing System |
GUAN | Global Upper-Air Network |
SZA | Solar zenith angle |
SA | Surface albedo |
DIR | Direct radiation |
RTE | Radiative transfer equation |
DISORT | Discrete Ordinates Radiative Transfer |
REPTRAN | Representative wavelength radiative transfer method |
SAL | Saharan Air Layer |
R | Effective radius |
SSA | Single-scattering albedo |
DF | Diurnally average aerosol radiative forcing |
Appendix A
Appendix B
Volcanic Plume | Dust | Volcanic Plume + Dust | ||
---|---|---|---|---|
EKO Direct | DF | −134.1 (−27.9) | −124.4 (−36.3) | −135.2 (−28.2) |
DF | −807.7 (−168.3) | −947.8 (−276.4) | −884.4 (−184.2) | |
BSRN Direct | DF | −135.9 (−28.3) | −145.0 (−42.3) | −167.5 (−48.8) |
DF | −761.3 (−158.6) | −1231.5 (−359.2) | −1095.8 (−319.6) | |
BSRN Global | DF | −20.0 (−4.2) | −30.4 (−8.9) | −34.5 (−10.5) |
DF | −111.9 (−23.3) | −258.1 (−75.3) | −225.6 (−65.8) | |
AOD | 0.18 ± 0.01 | 0.12 ± 0.01 | 0.15 ± 0.01 | |
AE | 1.69 ± 0.05 | 0.33 ± 0.01 | 0.81 ± 0.02 |
Reference | Vocan | Period | F | F |
---|---|---|---|---|
(WmAOD) | ||||
Derimian et al. [80] | Eyjafjallajökull (Iceland) | 17 April 2010 | – | −93 ± 12 |
Flanner et al. [90] | Eyjafjallajökull (Iceland) | 2010 | −1.9 (−7.3 to +2.8) (mWm) | – |
Sellitto et al. [17] | Mount Etna (Sicily, Italy) | 25–27 October 2013 | – | −66 to −49 |
Romano et al. [18] | Mount Etna (Sicily, Italy) | 3 December 2015 | – | −10 to −145 |
This study | La Palma (Spain) | 24 September 2021 | −4.2 (Wm) | −23.3 |
References
- Comité Científico (CC) PEVOLCA. Informe del Comité Científico del PEVOLCA (25/11/2021). Technical Report, PEVOLCA, 2021. Available online: https://info.igme.es/eventos/Erupcion-volcanica-la-palma/pevolca (accessed on 23 December 2022).
- Lopez, C.; Blanco, M.J.; Team, I. Instituto Geográfico Nacional Volcano Monitoring of the 2021 La Palma Eruption (Canary Islands, Spain). Technical Report, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11549, 2022. Available online: https://doi.org/10.5194/egusphere-egu22-11549 (accessed on 23 December 2022).
- Bedoya-Velásquez, A.E.; Hoyos-Restrepo, M.; Barreto, A.; García, R.D.; Romero-Campos, P.M.; García, O.; Ramos, R.; Roininen, R.; Toledano, C.; Sicard, M.; et al. Estimation of the Mass Concentration of Volcanic Ash Using Ceilometers: Study of Fresh and Transported Plumes from La Palma Volcano. Remote Sens. 2022, 14, 5680. [Google Scholar] [CrossRef]
- Milford, C.; Torres, C.; Vilches, J.; Gossmanc, A.; Weisc, F.; Suárez-Molina, D.; García, O.E.; Prats, N.; Barreto, A.; García, R.D.; et al. Impact of the 2021 La Palma volcanic eruption on air quality: Insights from a multidisciplinary approach. Submitt. Sci. Total Environ. 2022. [Google Scholar]
- Felpeto, A.; Molina-Arias, A.J.; Quirós, F.; Pereda, J.; Díaz-Suárez, E.A. Measuring the height of the eruptive column during the 2021 eruption of Cumbre Vieja (La Palma Island, Canary Islands). In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. [Google Scholar] [CrossRef]
- Sicard, M.; Córdoba-Jabonero, C.; Barreto, A.; Welton, E.J.; Gil-Díaz, C.; Carvajal-Pérez, C.V.; Comerón, A.; García, O.; García, R.; López-Cayuela, M.-Á.; et al. Volcanic Eruption of Cumbre Vieja, La Palma, Spain: A First Insight to the Particulate Matter Injected in the Troposphere. Remote Sens. 2022, 14, 2470. [Google Scholar] [CrossRef]
- Copernicus Tracks Ongoing Emissions from La Palma Volcano across Europe and the Caribbean. Technical Report, Copernicus Atmosphere Monitoring Service (CAMS), 2021. Available online: https://atmosphere.copernicus.eu/copernicus-tracks-ongoing-emissions-la-palma-volcano-across-europe-and-caribbean (accessed on 23 December 2022).
- Weiser, F.; Baumann, E.; Jentsch, A.; Medina, F.M.; Lu, M.; Nogales, M.; Beierkuhnlein, C. Impact of Volcanic Sulfur Emissions on the Pine Forest of La Palma, Spain. Forests 2022, 13, 299. [Google Scholar] [CrossRef]
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.K.; Rogelj, J.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary. The Intergovernmental Panel on Climate Change AR6. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Solomon, S.; Daniel, J.S.; Neely, R.R.; Vernier, J.P.; Dutton, E.G.; Thomason, L.W. The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change. Science 2011, 333, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Monerie, P.A.; Moine, M.P.; Terray, L.; Valcke, S. Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature. Environ. Res. Lett. 2017, 12, 054010. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.; Mills, M.J.; Ghan, S.; Gregory, J.M.; Allan, R.P.; Andrews, T.; Bardeen, C.G.; Conley, A.; Forster, P.M.; Gettelman, A.; et al. Volcanic Radiative Forcing From 1979 to 2015. J. Geophys. Res. Atmos. 2018, 123, 12491–12508. [Google Scholar] [CrossRef]
- Arfeuille, F.; Weisenstein, D.; Mack, H.; Rozanov, E.; Peter, T.; Brönnimann, S. Volcanic forcing for climate modeling: A new microphysics-based data set covering years 1600–present. Clim. Past 2014, 10, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Sellitto, P.; Briole, P. On the radiative forcing of volcanic plumes: Modelling the impact of Mount Etna in the Mediterranean. Ann. Geophys. 2015, 58. [Google Scholar] [CrossRef]
- Aubry, T.J.; Jellinek, A.M.; Degruyter, W.; Bonadonna, C.; Radić, V.; Clyne, M.; Quainoo, A. Impact of global warming on the rise of volcanic plumes and implications for future volcanic aerosol forcing. J. Geophys. Res. Atmos. 2016, 121, 13326–13351. [Google Scholar] [CrossRef] [Green Version]
- Sellitto, P.; di Sarra, A.; Corradini, S.; Boichu, M.; Herbin, H.; Dubuisson, P.; Sèze, G.; Meloni, D.; Monteleone, F.; Merucci, L.; et al. Synergistic use of Lagrangian dispersion and radiative transfer modelling with satellite and surface remote sensing measurements for the investigation of volcanic plumes: The Mount Etna eruption of 25–27 October 2013. Atmos. Chem. Phys. 2016, 16, 6841–6861. [Google Scholar] [CrossRef] [Green Version]
- Romano, S.; Burlizzi, P.; Kinne, S.; de Tomasi, F.; Hamann, U.; Perrone, M. Radiative impact of Etna volcanic aerosols over south eastern Italy on 3 December 2015. Atmos. Environ. 2018, 182, 155–170. [Google Scholar] [CrossRef]
- Yang, W.; Vecchi, G.A.; Fueglistaler, S.; Horowitz, L.W.; Luet, D.J.; Muñoz, Á.G.; Paynter, D.; Underwood, S. Climate Impacts From Large Volcanic Eruptions in a High-Resolution Climate Model: The Importance of Forcing Structure. Geophys. Res. Lett. 2019, 46, 7690–7699. [Google Scholar] [CrossRef]
- Sellitto, P.; Salerno, G.; la Spina, A.; Caltabiano, T.; Scollo, S.; Boselli, A.; Leto, G.; Zanmar Sanchez, R.; Crumeyrolle, S.; Hanoune, B.; et al. Small-scale volcanic aerosols variability, processes and direct radiative impact at Mount Etna during the EPL-RADIO campaigns. Sci. Rep. 2020, 10, 15224. [Google Scholar] [CrossRef]
- Fyfe, J.C.; Kharin, V.V.; Santer, B.D.; Cole, J.N.S.; Gillett, N.P. Significant impact of forcing uncertainty in a large ensemble of climate model simulations. Proc. Natl. Acad. Sci. USA 2021, 118, e2016549118. [Google Scholar] [CrossRef]
- Santer, B.D.; Bonfils, C.; Painter, J.F.; Zelinka, M.D.; Mears, C.; Solomon, S.; Schmidt, G.A.; Fyfe, J.C.; Cole, J.N.; Nazarenko, L.; et al. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci. 2014, 7, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Stenchikov, G. Chapter 29—The role of volcanic activity in climate and global changes. In Climate Change, 3rd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 607–643. [Google Scholar] [CrossRef]
- Brindley, H.; Bantges, R. The spectral signature of recent climate change. Curr. Clim. Change Rep. 2016, 2, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Kaskaoutis, D.; Kambezidis, H.; Toth, Z. Investigation about the dependence of spectral diffuse-to-direct-beam irradiance ratio on atmospheric turbidity and solar zenith angle. Theor. Appl. Climatol. 2007, 89, 245–256. [Google Scholar] [CrossRef]
- Dirnberger, D.; Blackburn, G.; Müller, B.; Reise, C. On the impact of solar spectral irradiance on the yield of different PV technologies. Sol. Energy Mater. Sol. Cells 2015, 132, 431–442. [Google Scholar] [CrossRef]
- Mishra, M.K.; Rajeev, K. Spectral dependence of aerosol radiative forcing at surface over a tropical coastal station. In Proceedings of the Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VI, New Delhi, India, 4–7 April 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9880, pp. 48–54. [Google Scholar] [CrossRef]
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- García, R.D.; Cuevas, E.; Ramos, R.; Cachorro, V.E.; Redondas, A.; Moreno-Ruiz, J.A. Description of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009–2017): Measurements and quality control/assurance procedures. Geosci. Instrum. Methods Data Syst. 2019, 8, 77–96. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, E.; Milford, C.; Bustos, J.J.; García, O.E.; García, R.D.; Gómez-Peláez, A.J.; Guirado-Fuentes, C.; Marrero, C.; Prats, N.; Ramos, R.; et al. Izaña Atmospheric Research Center Activity Report 2017–2018. Technical Report WMO/GAW No. 247, World Meteorological Organization & Izaña Atmospheric Resear Center (AEMET), 2019. Available online: https://izana.aemet.es/wp-content/docs/Izana_Report_2017_2018.pdf (accessed on 23 December 2022).
- Commission for Instruments and Methods of Observation. Sixteenth Session. Technical Report WMO No. 1138, World Meteorological Organization, 2014. Available online: https://library.wmo.int/doc_num.php?explnum_id=5576 (accessed on 23 December 2022).
- Cuevas, E.; González, Y.; Rodríguez, S.; Guerra, J.C.; Gómez-Peláez, A.J.; Alonso-Pérez, S.; Bustos, J.; Milford, C. Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere. Atmos. Chem. Phys. 2013, 13, 1973–1998. [Google Scholar] [CrossRef] [Green Version]
- García, R.D.; Cuevas, E.; Barreto, Á.; Cachorro, V.E.; Pó, M.; Ramos, R.; Hoogendijk, K. Aerosol retrievals from the EKO MS-711 spectral direct irradiance measurements and corrections of the circumsolar radiation. Atmos. Meas. Tech. 2020, 13, 2601–2621. [Google Scholar] [CrossRef]
- García, R.; Cuevas, E.; Cachorro, V.; García, O.; Barreto, A.; Almansa, A.F.; Romero-Campos, P.; Ramos, R.; Pó, M.; Hoogendijk, K.; et al. Water Vapor Retrievals from Spectral Direct Irradiance Measured with an EKO MS-711 Spectroradiometer—Intercomparison with Other Techniques. Remote Sens. 2021, 13, 350. [Google Scholar] [CrossRef]
- Holben, B.; Eck, T.; Slutsker, I.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Barreto, A.; Cuevas, E.; Granados-Muñoz, M.J.; Alados-Arboledas, L.; Romero, P.M.; Gröbner, J.; Kouremeti, N.; Almansa, A.F.; Stone, T.; Toledano, C.; et al. The new sun-sky-lunar Cimel CE318-T multiband photometer—A comprehensive performance evaluation. Atmos. Meas. Tech. 2016, 9, 631–654. [Google Scholar] [CrossRef] [Green Version]
- Torres, B.; Toledano, C.; Berjón, A.; Fuertes, D.; Molina, V.; Gonzalez, R.; Canini, M.; Cachorro, V.E.; Goloub, P.; Podvin, T.; et al. Measurements on pointing error and field of view of Cimel-318 Sun photometers in the scope of AERONET. Atmos. Meas. Tech. 2013, 6, 2207–2220. [Google Scholar] [CrossRef]
- Toledano, C.; González, R.; Fuertes, D.; Cuevas, E.; Eck, T.F.; Kazadzis, S.; Kouremeti, N.; Gröbner, J.; Goloub, P.; Blarel, L.; et al. Assessment of Sun photometer Langley calibration at the high-elevation sites Mauna Loa and Izaña. Atmos. Chem. Phys. 2018, 18, 14555–14567. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, N.T.; Eck, T.F.; Smirnov, A.; Holben, B.N.; Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 2003, 108, 4559. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in Remote Sensing of desert dust. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Campbell, J.R.; Hlavka, D.L.; Welton, E.J.; Flynn, C.J.; Turner, D.D.; Spinhirne, J.D.; Scott, V.S.; Hwang, I.H. Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Processing. J. Atmos. Ocean. Tech. 2002, 19, 431–442. [Google Scholar] [CrossRef]
- Flynn, C.; Mendoza, A.; Zheng, Y.; Mathur, S. Novel polarization-sensitive micropulse lidar measurement technique. Opt. Express 2007, 15, 2785–2790. [Google Scholar] [CrossRef]
- Welton, E.J.; Campbell, J.R.; Berkoff, T.A.; Valencia, S.; Spinhime, J.D.; Holben, B.; Tsay, S.C. The NASA Micro-Pulse Lidar NETWORK (MPLNET): Co-location of lidars with aeronet sunphotometers and related earth science applications. In Proceedings of the 85th AMS Annual Meeting, San Diego, CA, USA, 9–13 January 2005; American Meteorological Society: San Diego, CA, USA, 2005; pp. 5165–5169. [Google Scholar]
- Barreto, A.; Cuevas, E.; García, R.D.; Carrillo, J.; Prospero, J.M.; Ilić, L.; Basart, S.; Berjón, A.J.; Marrero, C.L.; Hernández, Y.; et al. Long-term characterisation of the vertical structure of the Saharan Air Layer over the Canary Islands using lidar and radiosonde profiles: Implications for radiative and cloud processes over the subtropical Atlantic Ocean. Atmos. Chem. Phys. 2022, 22, 739–763. [Google Scholar] [CrossRef]
- Stohl, A.; Wotawa, G.; Seibert, P.; Kromp-Kolb, H. Interpolation Errors in Wind Fields as a Function of Spatial and Temporal Resolution and Their Impact on Different Types of Kinematic Trajectories. J. Appl. Meteorol. Climatol. 1995, 34, 2149–2165. [Google Scholar] [CrossRef]
- Stohl, A.; Seibert, P. Accuracy of trajectories as determined from the conservation of meteorological tracers. Q. J. R. Meteorol. Soc. 1998, 124, 1465–1484. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Theys, N.; de Smedt, I.; Yu, H.; Danckaert, T.; van Gent, J.; Hörmann, C.; Wagner, T.; Hedelt, P.; Bauer, H.; Romahn, F.; et al. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: Algorithm theoretical basis. Atmos. Meas. Tech. 2017, 10, 119–153. [Google Scholar] [CrossRef] [Green Version]
- Meywerk, J.; Ramanathan, V. Observations of the spectral clear-sky aerosol forcing over the tropical Indian Ocean. J. Geophys. Res. Atmos. 1999, 104, 24359–24370. [Google Scholar] [CrossRef]
- Bush, B.C.; Valero, F.P.J. Surface aerosol radiative forcing at Gosan during the ACE-Asia campaign. J. Geophys. Res. Atmos. 2003, 108D23, 8660. [Google Scholar] [CrossRef]
- García, R.D.; García, O.E.; Cuevas, E.; Cachorro, V.E.; Romero-Campos, P.M.; Ramos, R.; de Frutos, A.M. Solar radiation measurements compared to simulations at the BSRN Izaña station. Mineral dust radiative forcing and efficiency study. J. Geophys. Res. Atmos. 2014, 119, 179–194. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef] [Green Version]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef] [Green Version]
- Stamnes, K.; Tsay, S.C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef]
- Gasteiger, J.; Emde, C.; Mayer, B.; Buras, R.; Buehler, S.; Lemke, O. Representative wavelengths absorption parameterization applied to satellite channels and spectral bands. J. Quant. Spectrosc. Radiat. Transf. 2014, 148, 99–115. [Google Scholar] [CrossRef]
- Dahlback, A.; Stamnes, K. A new spherical model for computing the radiation field available for photolysis and heating at twilight. Planet. Space Sci. 1991, 39, 671–683. [Google Scholar] [CrossRef]
- Rodriguez-Franco, J.J.; Cuevas, E. Characteristics of the subtropical tropopause region based on long-term highly resolved sonde records over Tenerife. J. Geophys. Res. Atmos. 2013, 118, 10–754. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, J.; Guerra, J.; Cuevas, E.; Barrancos, J. Characterization of the marine boundary layer and the trade-wind inversion over the sub-tropical North Atlantic. Bound. Layer Meteorol. 2016, 158, 311–330. [Google Scholar] [CrossRef]
- Stamnes, K.; Tsay, S.C.; Wiscombe, W.; Laszlo, I. DISORT, a General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology; Technical Report; Stevens Institute of Technology: Hoboken, NJ, USA, 2000. [Google Scholar]
- Gueymard, C.A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 2004, 76, 423–453. [Google Scholar] [CrossRef]
- Bass, A.; Paur, R. The ultraviolet cross-sections of ozone: I. The measurements. In Atmospheric Ozone; Springer: Berlin/Heidelberg, Germany, 1985; pp. 606–610. [Google Scholar]
- León-Luis, S.F.; Redondas, A.; Carreño, V.; López-Solano, J.; Berjón, A.; Hernández-Cruz, B.; Santana-Díaz, D. Internal consistency of the Regional Brewer Calibration Centre for Europe triad during the period 2005–2016. Atmos. Meas. Tech. 2018, 11, 4059–4072. [Google Scholar] [CrossRef] [Green Version]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Section 7; pp. 571–658. [Google Scholar] [CrossRef]
- Ramachandran, S.; Rupakheti, M.; Lawrence, M. Aerosol-induced atmospheric heating rate decreases over South and East Asia as a result of changing content and composition. Sci. Rep. 2020, 10, 20091. [Google Scholar] [CrossRef]
- Foken, T. Springer Handbook of Atmospheric Measurements; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Cochrane, S.P.; Schmidt, K.S.; Chen, H.; Pilewskie, P.; Kittelman, S.; Redemann, J.; LeBlanc, S.; Pistone, K.; Segal Rozenhaimer, M.; Kacenelenbogen, M.; et al. Biomass burning aerosol heating rates from the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 experiments. Atmos. Meas. Tech. 2022, 15, 61–77. [Google Scholar] [CrossRef]
- Carlson, T.N.; Benjamin, S.G. Radiative Heating Rates for Saharan Dust. J. Atmos. Sci. 1980, 37, 193–213. [Google Scholar] [CrossRef]
- Kim, S.W.; Yoon, S.C.; Jefferson, A.; Won, J.G.; Dutton, E.G.; Ogren, J.A.; Anderson, T.L. Observation of enhanced water vapor in Asian dust layer and its effect on atmospheric radiative heating rates. Geophys. Res. Lett. 2004, 31, L18113. [Google Scholar] [CrossRef] [Green Version]
- Gutleben, M.; Groß, S.; Wirth, M.; Emde, C.; Mayer, B. Impacts of Water Vapor on Saharan Air Layer Radiative Heating. Geophys. Res. Lett. 2019, 46, 14854–14862. [Google Scholar] [CrossRef] [Green Version]
- Gutleben, M.; Groß, S.; Wirth, M.; Mayer, B. Radiative effects of long-range-transported Saharan air layers as determined from airborne lidar measurements. Atmos. Chem. Phys. 2020, 20, 12313–12327. [Google Scholar] [CrossRef]
- García, O.; Cuevas, E.; Rivas, P.; Torres, C.; León-Luis, S.; Taquet, N. Synergy between Surface and Column Measurements at Izaña Global Atmospheric Watch Station: Application to the Volcanic Eruption on La Palma; Technical Report, Information Note ICOS-Spain Nº2; Izaña Atmospheric Research Center: Santa Cruz de Tenerife, Spain, 2022. [Google Scholar]
- Ansmann, A.; Tesche, M.; Seifert, P.; Groß, S.; Freudenthaler, V.; Apituley, A.; Wilson, K.M.; Serikov, I.; Linné, H.; Heinold, B.; et al. Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010. J. Geophys. Res. Atmos. 2011, 116, D00U02. [Google Scholar] [CrossRef]
- Pisani, G.; Boselli, A.; Coltelli, M.; Leto, G.; Pica, G.; Scollo, S.; Spinelli, N.; Wang, X. Lidar depolarization measurement of fresh volcanic ash from Mt. Etna, Italy. Atmos. Environ. 2012, 62, 34–40. [Google Scholar] [CrossRef]
- Freudenthaler, V.; Esselborn, M.; Wiegner, M.; Heese, B.; Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Wirth, M.; Fix, A.; et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B Chem. Phys. Meteorol. 2009, 61, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R.R.; Thompson, A.M.; Schafer, J.S. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. Atmos. 2012, 117, D17203. [Google Scholar] [CrossRef] [Green Version]
- Derimian, Y.; Dubovik, O.; Tanre, D.; Goloub, P.; Lapyonok, T.; Mortier, A. Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010. J. Geophys. Res. Atmos. 2012, 117, D00U25. [Google Scholar] [CrossRef] [Green Version]
- Barreto, A.; García, R.D.; Guirado-Fuentes, C.; Cuevas, E.; Almansa, A.F.; Milford, C.; Toledano, C.; Expósito, F.J.; Díaz, J.P.; León-Luis, S.F. Aerosol characterization in the Subtropical Eastern North Atlantic region derived from long-term AERONET measurements. Atmos. Chem. Phys. Discuss. 2022, 2022, 1–28. [Google Scholar] [CrossRef]
- Ångström, A. Techniques of determinig the turbidity of the atmosphere. Tellus 1961, 13, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, E.; Romero-Campos, P.M.; Kouremeti, N.; Kazadzis, S.; Räisänen, P.; García, R.D.; Barreto, A.; Guirado-Fuentes, C.; Ramos, R.; Toledano, C.; et al. Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005–2015) 1 min synchronous measurements. Atmos. Meas. Tech. 2019, 12, 4309–4337. [Google Scholar] [CrossRef]
- Takemura, T.; Nakajima, T.; Dubovik, O.; Holben, B.N.; Kinne, S. Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model. J. Clim. 2002, 15, 333–352. [Google Scholar] [CrossRef]
- Logothetis, S.A.; Salamalikis, V.; Kazantzidis, A. The impact of different aerosol properties and types on direct aerosol radiative forcing and efficiency using AERONET version 3. Atmos. Res. 2021, 250, 105343. [Google Scholar] [CrossRef]
- Markowicz, K.; Flatau, P.; Remiszewska, J.; Witek, M.; Reid, E.; Reid, J.; Bucholtz, A.; Holben, B. Observations and Modeling of the Surface Aerosol Radiative Forcing during UAE 2. J. Atmos. Sci. 2008, 65, 2877–2891. [Google Scholar] [CrossRef]
- Konatham, S.; Martín-Torres, J.; Zorzano, M.P. The Impact of the Spectral Radiation Environment on the Maximum Absorption Wavelengths of Human Vision and Other Species. Life 2021, 11, 1337. [Google Scholar] [CrossRef]
- Boucher, O.; Tanré, D. Estimation of the aerosol perturbation to the Earth’s radiative budget over oceans using POLDER satellite aerosol retrievals. Geophys. Res. Lett. 2000, 27, 1103–1106. [Google Scholar] [CrossRef]
- Bergstrom, R.W.; Pilewskie, P.; Schmid, B.; Russell, P.B. Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000. J. Geophys. Res. Atmos. 2003, 108, 8474. [Google Scholar] [CrossRef]
- Flanner, M.G.; Gardner, A.S.; Eckhardt, S.; Stohl, A.; Perket, J. Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions. J. Geophys. Res. Atmos. 2014, 119, 9481–9491. [Google Scholar] [CrossRef]
- Li, F.; Vogelmann, A.M.; Ramanathan, V. Saharan Dust Aerosol Radiative Forcing Measured from Space. J. Clim. 2004, 17, 2558–2571. [Google Scholar] [CrossRef]
- Di Sarra, A.; Fuà, D.; Meloni, D. Estimate of surface direct radiative forcing of desert dust from atmospheric modulation of the aerosol optical depth. Atmos. Chem. Phys. 2013, 13, 5647–5654. [Google Scholar] [CrossRef] [Green Version]
- Di Biagio, C.; di Sarra, A.; Meloni, D. Large atmospheric shortwave radiative forcing by Mediterranean aerosols derived from simultaneous ground-based and spaceborne observations and dependence on the aerosol type and single scattering albedo. J. Geophys. Res. 2010, 115, D10209. [Google Scholar] [CrossRef] [Green Version]
- García, O.E.; Díaz, J.P.; Expósito, F.J.; Díaz, A.M.; Dubovik, O.; Derimian, Y.; Dubuisson, P.; Roger, J.C. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data. Atmos. Chem. Phys. 2012, 12, 5129–5145. [Google Scholar] [CrossRef]
Input | Source | References |
---|---|---|
RTE | Disort2 | Stamnes et al. [57,62] |
Solar flux | Gueymard | Gueymard [63] |
O cross-section | Bass and Paur | Bass and Paur [64] |
Absorption parameterisation | REPTRAN | Gasteiger et al. [58] |
Surface albedo | AERONET | Sinyuk et al. [42] |
O total column | Brewer spectrophotometer | León-Luis et al. [65] |
HO total column | AERONET | Holben et al. [35] |
Number of streams | 16 | García et al. [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, R.D.; García, O.E.; Cuevas-Agulló, E.; Barreto, Á.; Cachorro, V.E.; Marrero, C.; Almansa, F.; Ramos, R.; Pó, M. Spectral Aerosol Radiative Forcing and Efficiency of the La Palma Volcanic Plume over the Izaña Observatory. Remote Sens. 2023, 15, 173. https://doi.org/10.3390/rs15010173
García RD, García OE, Cuevas-Agulló E, Barreto Á, Cachorro VE, Marrero C, Almansa F, Ramos R, Pó M. Spectral Aerosol Radiative Forcing and Efficiency of the La Palma Volcanic Plume over the Izaña Observatory. Remote Sensing. 2023; 15(1):173. https://doi.org/10.3390/rs15010173
Chicago/Turabian StyleGarcía, Rosa Delia, Omaira Elena García, Emilio Cuevas-Agulló, África Barreto, Victoria Eugenia Cachorro, Carlos Marrero, Fernando Almansa, Ramón Ramos, and Mario Pó. 2023. "Spectral Aerosol Radiative Forcing and Efficiency of the La Palma Volcanic Plume over the Izaña Observatory" Remote Sensing 15, no. 1: 173. https://doi.org/10.3390/rs15010173
APA StyleGarcía, R. D., García, O. E., Cuevas-Agulló, E., Barreto, Á., Cachorro, V. E., Marrero, C., Almansa, F., Ramos, R., & Pó, M. (2023). Spectral Aerosol Radiative Forcing and Efficiency of the La Palma Volcanic Plume over the Izaña Observatory. Remote Sensing, 15(1), 173. https://doi.org/10.3390/rs15010173