Satellite Multi-Sensor Data Analysis of Unusually Strong Polar Lows over the Chukchi and Beaufort Seas in October 2017
Abstract
:1. Introduction
- Can a multi-sensor approach provide insights into the development of strong PLs?
- How accurately do the ERA5, MERRA-2 and CFSv2 reanalysis datasets capture the development of the PLs in comparison with satellite observations?
- What are reanalyzes strengths and weaknesses in the PLs identification, tracking and representation of its intensity?
2. Data and Analysis Methods
2.1. Satellite Measurements
2.2. ERA5, MERRA-2 and CFSv2 Reanalysis Data Sets
2.3. PL Detection and Tracking Algorithms
- a low stability criterion, defined as the difference between the sea surface temperature (SST) and the temperature at 500 hPa (T500) ≥ 39 K;
- ≥ 10 × 10−5 s−1; such threshold exhibits good agreement between a vorticity-tracking-based and a satellite-based PL data sets [40].
3. Results and Discussion
3.1. Review of Synoptic and Sea Ice Conditions
3.2. Detecting and Tracking PLs
3.3. A Severe PL Pair
3.4. PL Vertical Structure from CloudSat Measurements
3.5. Near-Surface Wind Speed Inter-Comparisons
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rasmussen, E.A.; Turner, J. Polar Lows: Mesoscale Weather Systems in the Polar Regions; Cambridge University Press: Cambridge, UK, 2003; p. 612. [Google Scholar]
- Blechschmidt, A.M.; Bakan, S.; Grabl, H. Large-scale atmospheric circulation patterns during polar low events over the Nordic seas. J. Geophys. Res. 2009, 114, D06115. [Google Scholar] [CrossRef] [Green Version]
- Kolstad, E.W. A global climatology of favorable conditions for polar lows. Q. J. R. Meteorol. Soc. 2011, 137, 1749–1761. [Google Scholar] [CrossRef]
- Condron, A.; Renfrew, I.A. The impact of polar mesoscale storms on northeast Atlantic Ocean circulation. Nat. Geosci. 2013, 6, 34–37. [Google Scholar] [CrossRef]
- Zahn, M.; Storch, H.V. Investigation of past and future polar low frequency in the North Atlantic. Geophys. Monogr. Ser. 2012, 196, 99–110. [Google Scholar]
- Ninomiya, K. Polar low development over the east coast of the Asian continent on 9–11 December 1985. J. Meteorol. Soc. Jpn. 1991, 69, 669–685. [Google Scholar] [CrossRef] [Green Version]
- Fu, G. Polar Lows: Intense Cyclones in Winter; China Meteorological Press: Beijing, China, 2001; p. 218. [Google Scholar]
- Chen, F.; Geyer, B.; Zahn, M.; Storch, H.V. Toward a Multi-Decadal Climatology of North Pacific Polar Lows Employing Dynamical Downscaling. Atmos. Ocean. Sci. 2012, 23, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Storch, H.V.; Ya, D.; Wu, L. Polar Low genesis over North Pacific under different scenarios of Global Warming. Clim. Dyn. 2014, 43, 3449–3456. [Google Scholar] [CrossRef]
- Yanase, W.; Niino, H.; Shun.-Ichi, I.W.; Hodges, K.; Zahn, M.; Spengler, T.; Gurvich, I. Climatology of polar lows over the Sea of Japan using the JRA-55 reanalysis. J. Clim. 2016, 29, 419–437. [Google Scholar] [CrossRef]
- Chen, F.; Storch, H.V. Trends and Variability of North Pacific Polar Lows. Adv. Meteorol. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Parker, M. Polar lows in the Beaufort Sea. In Polar and Arctic Lows; Twitchell, P., Rasmussen, E., Davidson, K.L., Eds.; A. Deepak: Hampton, NY, USA, 1989; pp. 323–330. [Google Scholar]
- Zimich, P.I. Atmospheric Processes and Weather Eastern Arctic; Dal’nauka: Vladivostok, Russia, 1998; p. 236. (In Russian) [Google Scholar]
- Wang, M.; Yang, Q.; Overland, J.E.; Stabeno, P. Sea-ice cover timing in the Pacific Arctic: The present and projections to mid-century by selected CMIP5 models. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2018, 152, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, V.V.; Alexeev, V.A.; Alexeeva, T.A.; Koldunov, N.V.; Repina, I.A.; Smirnov, A.V. Does Arctic Ocean Ice Cover Become Seasonal? Earth Obs. Remote Sens. 2013, 50–65. (In Russian) [Google Scholar]
- Vihma, T. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef]
- Ballinger, T.J.; Lee, C.C.; Sheridan, S.C.; Crawford, A.D.; Overland, J.E.; Wang, M. Subseasonal atmospheric regimes and ocean background forcing of Pacific Arctic sea ice melt onset. Clim. Dyn. 2019, 52, 5657–5672. [Google Scholar] [CrossRef]
- Johnson, M.; Eicken, H. Estimating Arctic sea-ice freeze-up and break-up from the satellite record: A comparison of different approaches in the Chukchi and Beaufort Seas. Elem. Sci. Anthr. 2016, 4, 4248–4261. [Google Scholar] [CrossRef] [Green Version]
- Zabolotskikh, E.V.; Gurvich, I.A.; Chapron, B. New areas of polar lows over the Arctic as a result of the decrease in sea ice extent. Izv. Atmos. Ocean. Phys. 2015, 51, 1021–1033. [Google Scholar] [CrossRef]
- Zabolotskikh, E.V.; Gurvich, I.A.; Chapron, B. Polar Lows over the Eastern Part of the Eurasian Arctic: The Sea-Ice Retreat Consequence. Geosci. Remote Sens. Lett. 2016, 13, 1492–1496. [Google Scholar] [CrossRef] [Green Version]
- Pichugin, M.K.; Gurvich, I.A.; Zabolotskikh, E.V. Severe Marine Weather Systems During Freeze-Up in the Chukchi Sea: Cold-Air Outbreak and Mesocyclone Case Studies From Satellite Multisensor Measurements and Reanalysis Datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3208–3218. [Google Scholar] [CrossRef]
- Heinemann, G.; Claud, C. Report of a Workshop on Theoretical and Observational Studies of Polar Lows” of the European Geophysical Society Polar Lows Working Group. Bull. Am. Meteorol. Soc. 1997, 78, 2643–2658. [Google Scholar] [CrossRef] [Green Version]
- Zabolotskikh, E.V.; Mitnik, L.M.; Chapron, B. New approach for severe marine weather study using satellite passive microwave sensing. Geophys. Res. Lett. 2013, 40, 3347–3350. [Google Scholar] [CrossRef] [Green Version]
- Mitnik, L.M.; Mitnik, M.L.; Zabolotskikh, E.V. Japan satellite GCOM-W1: Simulation, calibration and first results of the retrievals of atmospheric and oceanic parameter. Curr. Probl. Remote Sens. Earth Space 2013, 10, 135–141. [Google Scholar]
- Zabolotskikh, E.V.; Mitnik, L.M.; Reul, N.; Chapron, B. New possibilities for geophysical parameter retrievals opened by GCOM-W1AMSR2. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 4248–4261. [Google Scholar] [CrossRef] [Green Version]
- Zabolotskikh, E.V.; Khvorostovsky, K.S.; Chapron, B. An Advanced Algorithm to Retrieve Total Atmospheric Water Vapor Content From the Advanced Microwave Scanning Radiometer Data Over Sea Ice and Sea Water Surfaces in the Arctic. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3123–3135. [Google Scholar] [CrossRef]
- Zabolotskikh, E.; Mitnik, L.; Chapron, B. GCOM-W1 AMSR2 and MetOp-A ASCAT wind speeds for the extratropical cyclones over the North Atlantic. Remote Sens. Environ. 2014, 147, 89–98. [Google Scholar] [CrossRef]
- Wentz, F.J.; Ricciardulli, L.; Gentemann, C.; Meissner, T.; Hilburn, K.A.; Scott, J. Remote Sensing Systems Coriolis WindSat. 2013. Available online: https://www.remss.com/missions/windsat (accessed on 1 June 2022).
- Manaster, A.; Ricciardulli, L.; Meissner, T. Validation of High Ocean Surface Winds from Satellites Using Oil Platform Anemometers. J. Atmos. Ocean. Technol. 2019, 36, 803–818. [Google Scholar] [CrossRef]
- Portabella, M.; Stoffelen, A.; Lin, W.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera-Poy, J. Rain effects on ASCAT-retrieved winds: Toward an improved quality control. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2495–2506. [Google Scholar] [CrossRef]
- Pineau-Guillou, L.; Ardhuin, F.; Bouin, M.N.; Redelsperger, J.L.; Chapron, B.; Bidlot, J.R.; Quilfen, Y. Strong winds in a coupled wave-atmosphere model during a North Atlantic storm event: Evaluation against observations. Q. J. R. Meteorol. Soc. 2018, 144, 317–332. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.L.; Coauthors. The CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. 2008, 113, D00A18. [Google Scholar] [CrossRef]
- Gurvich, I.A.; Mitnik, L.M.; Mitnik, M.L.; Pichugin, M. Multisensory satellite study of mesoscale cyclones over the Northern Pacific. In Proceedings of the 92nd American Meteorological Society Annual Meeting, New Orleans, LA, USA, 22–26 January 2012; pp. 13–22. Available online: https://ams.confex.com/ams/92Annual/webprogram/Manuscript/Paper195196/AMS_manuscrip_22Feb.pdf (accessed on 1 January 2020).
- Gurvich, I.A.; Pichugin, M.K. Research of characteristics of intensive mesoscale cyclones over the Far Eastern Seas on the basis of satellite multisensor sounding. Curr. Probl. Remote Sens. Earth Space 2013, 10, 51–59. [Google Scholar]
- Forsythe, J.M.; Haynes, J.M. CloudSat observes a Labrador Sea polar low. Bull. Am. Meteorol. Soc 2015, 96, 1229–1231. [Google Scholar] [CrossRef]
- Sergeev, D.E.; Renfrew, J.A.; Spengler, T.; Dorling, S.R. Structure of a shear. J. R. Meteorol. Soc. 2017, 143, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Saha, S.; Coauthors. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Gelaro, R.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.; Chuang, H.; Iredell, M.; et al. The Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Zappa, G.; Shaffrey, L.; Hodges, K. Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERA-Interim reanalysis? Mon. Weather Rev. 2014, 142, 2596–2608. [Google Scholar] [CrossRef]
- Verezemskaya, P.; Tilinina, N.; Gulev, S.; Renfrew, I.A.; Lazzara, M. Southern Ocean mesocyclones and polar lows from manually tracked satellite mosaics. Geophys. Res. Lett. 2017, 44, 7985–7993. [Google Scholar] [CrossRef] [Green Version]
- Zahn, M.; Storch, H.V. Tracking polar lows in CLM. Meteorol. Z. 2008, 17, 445–453. [Google Scholar] [CrossRef]
- Tachibana, Y.; Komatsu, K.K.; Alexeev, V.A.; Cai, L.; Ando, Y. Warm hole in Pacific Arctic sea ice cover forced mid-latitude Northern Hemisphere cooling. Sci. Rep. 2019, 9, 5567. [Google Scholar] [CrossRef] [Green Version]
- Landgren, O.A.; Seierstad, I.A.; Iversen, T. Projected future changes in Marine Cold-Air Outbreaks associated with Polar Lows in the Northern North-Atlantic Ocean. Clim. Dyn. 2019, 53, 2573–2585. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, J.E.; Golubkin, P.A.; Bobylev, L.P.; Zabolotskikh, E.V.; Chapron, B. Polar low climatology over the Nordic and Barents seas based on satellite passive microwave data. Geophys. Res. Lett. 2015, 42, 5603–5609. [Google Scholar] [CrossRef] [Green Version]
- Matrosov, S.Y. Potential for attenuation-based estimations of rainfall rate from CloudSat. Geophys. Res. Lett. 2007, 34, 5817. [Google Scholar] [CrossRef] [Green Version]
- Matrosov, S.Y. Observations of wintertime U.S. West Coast precipitating systems with W-Band Satellite Radar and other spaceborne instruments. J. Hydrometeorol. 2012, 13, 223–238. [Google Scholar] [CrossRef]
- Listowski, C.; Rojo, M.; Claud, C.; Delanoë, J.; Rysman, J.F.; Cazenave, Q.; Noer, G. New insights into the vertical structure of clouds in Polar Lows, using Radar-Lidar satellite observations. Geophys. Res. Lett. 2020, 47, e2020GL088785. [Google Scholar] [CrossRef]
PLs | ERA5 | CFSv2 | MERRA-2 |
---|---|---|---|
-based tracking algorithm | |||
PL1 | 50 | 60 | 90 |
PL2 | - | - | - |
PL3 | 60 | 70 | 80 |
PL4 | - | + * | - |
SLP-based tracking algorithm | |||
PL1 | 60 | - | 90 |
PL2 | - | - | - |
PL3 | 60 | 90 | 90 |
PL4 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurvich, I.; Pichugin, M.; Baranyuk, A. Satellite Multi-Sensor Data Analysis of Unusually Strong Polar Lows over the Chukchi and Beaufort Seas in October 2017. Remote Sens. 2023, 15, 120. https://doi.org/10.3390/rs15010120
Gurvich I, Pichugin M, Baranyuk A. Satellite Multi-Sensor Data Analysis of Unusually Strong Polar Lows over the Chukchi and Beaufort Seas in October 2017. Remote Sensing. 2023; 15(1):120. https://doi.org/10.3390/rs15010120
Chicago/Turabian StyleGurvich, Irina, Mikhail Pichugin, and Anastasiya Baranyuk. 2023. "Satellite Multi-Sensor Data Analysis of Unusually Strong Polar Lows over the Chukchi and Beaufort Seas in October 2017" Remote Sensing 15, no. 1: 120. https://doi.org/10.3390/rs15010120
APA StyleGurvich, I., Pichugin, M., & Baranyuk, A. (2023). Satellite Multi-Sensor Data Analysis of Unusually Strong Polar Lows over the Chukchi and Beaufort Seas in October 2017. Remote Sensing, 15(1), 120. https://doi.org/10.3390/rs15010120