Polarimetric SAR Decomposition Method Based on Modified Rotational Dihedral Model
Abstract
1. Introduction
2. Modified Rotational Dihedral Model
2.1. Scattering Mechanism of Rotational Dihedral
2.2. Derivation of MRDM
2.3. Precision Analysis of MRDM
2.4. The Coherency Matrix of MRDM
3. Five-component Scattering Decomposition
3.1. Orientation Angle Estimation
3.2. Five-component Scattering Decomposition (MRDM-5SD)
3.3. Branch Conditions and Flowchart of MRDM-5SD
3.4. Solutions of MRDM-5SD
4. Experimental Results and Discussion
4.1. Validation by Spaceborne ALOS-2/PALSAR-2 Datasets
4.2. Validation by Spaceborne GF-3 Datasets
4.3. Validation by Airborne E-SAR Datasets
4.4. Building Detection for ALOS-2/PALSAR-2 Datasets
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.S.; Pottier, E. Overview of polarimetric radar imaging. In Polarimetric Radar Imaging from Basics to Applications; Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 5–13. [Google Scholar]
- Cloude, S.R. Depolarisation and scattering entropy. In Polarization Applications in Remote Sensing; Oxford University Press: Oxford, UK, 2010; pp. 71–118. [Google Scholar]
- Aghababaee, H.; Sahebi, M.R. Model-based target scattering decomposition of polarimetric SAR tomography. IEEE Trans. Geosci. Remote Sens. 2018, 56, 972–983. [Google Scholar] [CrossRef]
- Pallotta, L.; Orlando, D. Polarimetric covariance eigenvalues classification in SAR images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 746–750. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Q.; Lin, Y.; Hong, W. Anisotropy scattering detection from multiaspect signatures of circular polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 2018, 15, 1575–1579. [Google Scholar] [CrossRef]
- Liu, C.; Yang, J.; Ou, J.; Fan, D. Offshore bridge detection in Polarimetric SAR images based on water network construction using Markov tree. Remote Sens. 2022, 14, 3888. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Yang, Z.; Yin, J.; Yang, J. Ship detection from PolSAR imagery using the hybrid polarimetric covariance matrix. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1575–1579. [Google Scholar] [CrossRef]
- Li, H.; Cui, X.; Chen, S.; Yang, J. PolSAR ship detection with optimal polarimetric rotation domain features and SVM. Remote Sens. 2021, 13, 3932. [Google Scholar] [CrossRef]
- Richards, J.A. Interpretation based on structural models. In Remote Sensing with Imaging Radar; Springer: Berlin/Heidelberg, Germany, 2009; pp. 281–301. [Google Scholar]
- Cui, Y.; Yamaguchi, Y.; Yang, J.; Kobayashi, H.; Park, S.; Singh, G. On complete model-based decomposition of polarimetric SAR coherency matrix data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1991–2001. [Google Scholar] [CrossRef]
- An, W.; Lin, M. An incoherent decomposition algorithm based on polarimetric symmetry for multilook polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2383–2397. [Google Scholar] [CrossRef]
- Mohanty, S.; Singh, G. Improved POLSAR model-based decomposition interpretation under scintillation conditions. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7567–7578. [Google Scholar] [CrossRef]
- Ainsworth, T.L.; Wang, Y.; Lee, J.S. Model-based polarimetric SAR decomposition: An L1 regularization approach. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5208013. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y.; Park, S. General four-component scattering power decomposition with unitary transformation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3014–3022. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Xiao, S.; Sato, M. General polarimetric model-based decomposition for coherency matrix. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1843–1855. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Sato, A.; Yamaguchi, Y.; Singh, G.; Park, S. Four-component scattering power decomposition with extended volume scattering model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 160–171. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Sato, A.; Boerner, W.; Sato, R.; Yamada, H. Four-component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y. Model-based six-component scattering matrix power decomposition. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5687–5704. [Google Scholar] [CrossRef]
- Singh, G.; Malik, R.; Mohanty, S.; Rathore, V.S.; Yamada, K.; Umemura, M.; Yamaguchi, Y. Seven-component scattering power decomposition of POLSAR coherency matrix. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8371–8382. [Google Scholar] [CrossRef]
- Maurya, H.; Panigrahi, R.K. PolSAR coherency matrix optimization through selective unitary rotations for model-based decomposition scheme. IEEE Geosci. Remote Sens. Lett. 2019, 16, 658–662. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Liu, X.; Wang, C.; Kuijper, A.; Guthe, S. Demonstration and analysis of an extended adaptive general four-component decomposition. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2020, 13, 2573–2586. [Google Scholar] [CrossRef]
- Yin, Q.; Xu, J.; Xiang, D.; Zhou, Y.; Zhang, F. Polarimetric decomposition with an urban area descriptor for compact polarimetric SAR data. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2021, 14, 10033–10044. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Wang, N.; Zou, B.; Liu, S. Scattering mechanism analysis of man-made targets via polarimetric SAR observation simulation. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2022, 15, 919–929. [Google Scholar] [CrossRef]
- Gordon, W. Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields. IEEE Trans. Antennas Propag. 1975, 23, 590–592. [Google Scholar] [CrossRef]
- Giorgio, F.; Riccio, D. Analytic formulations of electromagnetic scattering. In Scattering, Natural Surfaces, and Fractals; Elsevier: Burlington, MA, USA, 2006; p. 130. [Google Scholar]
- Chai, S.R.; Guo, L.X.; Li, K.; Li, L. Combining CS with FEKO for fast target characteristic acquisition. IEEE Trans. Antennas Propag. 2018, 66, 2494–2504. [Google Scholar] [CrossRef]
- Lee, J.S.; Schuler, D.L.; Ainsworth, T.L. Polarimetric SAR data compensation for terrain azimuth slope variation. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2153–2163. [Google Scholar]
- Chen, Q.; Jiang, Y.M.; Zhao, L.J.; Kuang, G.Y. Polarimetric scattering similarity between a random scatterer and a canonical scatterer. IEEE Geosci. Remote Sens. Lett. 2010, 7, 866–869. [Google Scholar] [CrossRef]
- Maurya, H.; Panigrahi, R.K. Investigation of branching conditions in model-based decomposition methods. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1224–1228. [Google Scholar] [CrossRef]
(37) | Carrier | Band | Resolution (Azimuth × Range) | Area | Ground Objects | Acquisition Data |
---|---|---|---|---|---|---|
ALOS-2/ PALSAR-2 | Spaceborne | L | 3.20 m 2.86 m | San Francisco, USA | Water, hills, urban area | 2015/3/24 |
GF-3 | Spaceborne | C | 8 m 8 m | Harbin, China | Water, farmland, urban area | 2017/7/23 |
E-SAR | Airborne | L | 3 m 2.2 m | Oberpfaffenhofen, Germany | Vegetation, grass land, urban area, airport | 2022/8/26 |
ROIs | Methods | |||||||
---|---|---|---|---|---|---|---|---|
Patch A1 | Y4O | 30.6 | 53.2 | 12.5 | 3.7 | - | - | - |
Y4R | 32.2 | 56.6 | 8.7 | 2.5 | - | - | - | |
G4U | 28.5 | 57.4 | 13.9 | 0.3 | - | - | - | |
6SD | 29.8 | 59.3 | 4.2 | 2.4 | 2.1 | 2.3 | - | |
7SD | 29.8 | 56.7 | 4.7 | 1.7 | 1.4 | 1.2 | 4.5 | |
MRDM-5SD | 32.5 | 57.4 | 6.2 | - | 2.0 | 1.9 | - | |
Patch A2 | Y4O | 21.5 | 28.2 | 42.4 | 7.9 | - | - | - |
Y4R | 27.5 | 52.0 | 16.3 | 4.2 | - | - | - | |
G4U | 23.0 | 53.1 | 23.5 | 0.4 | - | - | - | |
6SD | 24.5 | 57.0 | 7.7 | 3.3 | 3.7 | 3.8 | - | |
7SD | 21.7 | 44.1 | 9.5 | 1.4 | 3.7 | 2.4 | 17.2 | |
MRDM-5SD | 19.0 | 65.1 | 3.5 | - | 7.5 | 4.9 | - | |
Patch A3 | Y4O | 22.1 | 17.3 | 49.8 | 10.8 | - | - | - |
Y4R | 27.4 | 29.5 | 34.5 | 8.6 | - | - | - | |
G4U | 21.0 | 32.5 | 45.8 | 0.7 | - | - | - | |
6SD | 24.3 | 37.8 | 16.3 | 6.1 | 7.9 | 7.6 | - | |
7SD | 19.9 | 32.0 | 18.6 | 4.8 | 6.3 | 5.8 | 12.6 | |
MRDM-5SD | 22.3 | 50.4 | 10.7 | - | 8.6 | 8.0 | - | |
Patch A4 | Y4O | 21.0 | 10.0 | 57.2 | 11.8 | - | - | - |
Y4R | 20.0 | 13.4 | 55.7 | 10.9 | - | - | - | |
G4U | 17.0 | 15.1 | 67.7 | 0.2 | - | - | - | |
6SD | 18.4 | 22.4 | 18.3 | 7.0 | 16.0 | 17.9 | - | |
7SD | 19.5 | 27.0 | 12.2 | 6.0 | 12.7 | 11.0 | 11.6 | |
MRDM-5SD | 24.0 | 42.8 | 13.2 | - | 9.2 | 10.8 | - | |
Patch A5 | Y4O | 34.3 | 22.9 | 35.0 | 7.8 | - | - | - |
Y4R | 37.5 | 31.2 | 25.1 | 6.2 | - | - | - | |
G4U | 32.5 | 33.3 | 33.7 | 0.5 | - | - | - | |
6SD | 34.7 | 37.3 | 12.8 | 4.4 | 5.5 | 5.3 | - | |
7SD | 32.8 | 33.6 | 14.4 | 3.4 | 4.1 | 3.7 | 8.0 | |
MRDM-5SD | 33.9 | 45.6 | 8.8 | - | 6.3 | 5.4 | - | |
Patch A6 | Y4O | 78.2 | 7.8 | 8.2 | 5.8 | - | - | - |
Y4R | 78.7 | 8.1 | 7.7 | 5.5 | - | - | - | |
G4U | 76.1 | 8.2 | 9.3 | 6.4 | - | - | - | |
6SD | 65.8 | 7.3 | 9.1 | 5.8 | 6.0 | 6.0 | - | |
7SD | 82.1 | 4.4 | 13.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
MRDM-5SD | 82.9 | 8.8 | 7.1 | - | 0.6 | 0.6 | - | |
Patch A7 | Y4O | 24.0 | 6.6 | 58.5 | 10.9 | - | - | - |
Y4R | 25.5 | 10.2 | 53.7 | 10.6 | - | - | - | |
G4U | 19.6 | 13.5 | 66.0 | 0.9 | - | - | - | |
6SD | 23.1 | 18.1 | 31.7 | 6.9 | 10.2 | 10.0 | - | |
7SD | 20.2 | 15.9 | 34.2 | 5.9 | 9.0 | 8.8 | 6.0 | |
MRDM-5SD | 26.7 | 22.5 | 32.0 | - | 9.5 | 9.3 | - |
ROIs | Methods | |||||||
---|---|---|---|---|---|---|---|---|
Patch B1 | Y4O | 25.4 | 52.8 | 17.1 | 4.7 | - | - | - |
Y4R | 26.2 | 57.0 | 13.4 | 3.4 | - | - | - | |
G4U | 22.9 | 58.2 | 18.8 | 0.1 | ||||
6SD | 22.3 | 62.5 | 6.7 | 3.1 | 2.7 | 2.7 | - | |
7SD | 22.1 | 60.6 | 6.4 | 2.6 | 2.2 | 2.0 | 4.1 | |
MRDM-5SD | 22.9 | 61.2 | 10.6 | - | 2.7 | 2.6 | - | |
Patch B2 | Y4O | 8.9 | 22.3 | 55.3 | 13.5 | - | - | - |
Y4R | 10.7 | 42.6 | 38.7 | 8.0 | - | - | - | |
G4U | 8.6 | 43.9 | 47.4 | 0.1 | - | - | - | |
6SD | 10.4 | 45.8 | 9.7 | 8.5 | 16.1 | 9.5 | - | |
7SD | 10.1 | 40.4 | 3.9 | 6.1 | 11.3 | 5.6 | 22.6 | |
MRDM-5SD | 9.0 | 67.2 | 7.5 | - | 10.3 | 6.0 | - | |
Patch B3 | Y4O | 6.6 | 7.0 | 76.2 | 10.2 | - | - | - |
Y4R | 6.7 | 10.5 | 73.4 | 9.4 | - | - | - | |
G4U | 5.3 | 11.0 | 83.6 | 0.1 | - | - | - | |
6SD | 5.5 | 12.8 | 22.6 | 7.5 | 27.7 | 23.9 | - | |
7SD | 5.3 | 13.6 | 6.8 | 5.2 | 23.4 | 20.6 | 25.1 | |
MRDM-5SD | 8.4 | 60.6 | 13.8 | - | 8.5 | 8.7 | - | |
Patch B4 | Y4O | 36.3 | 11.9 | 39.8 | 12.0 | - | - | - |
Y4R | 37.8 | 15.1 | 36.4 | 10.7 | - | - | - | |
G4U | 30.9 | 17.8 | 47.6 | 3.7 | - | - | - | |
6SD | 26.3 | 23.8 | 21.0 | 6.9 | 11.4 | 10.6 | - | |
7SD | 21.6 | 27.9 | 22.6 | 4.8 | 10.1 | 8.9 | 4.1 | |
MRDM-5SD | 34.2 | 26.7 | 23.1 | - | 8.3 | 7.7 | - | |
Patch B5 | Y4O | 14.1 | 1.2 | 71.2 | 13.5 | - | - | - |
Y4R | 13.4 | 2.6 | 70.9 | 13.1 | - | - | - | |
G4U | 9.8 | 4.0 | 86.1 | 2.1 | - | - | - | |
6SD | 12.2 | 7.6 | 35.3 | 9.1 | 17.7 | 18.1 | - | |
7SD | 10.6 | 9.3 | 30.9 | 8.1 | 16.4 | 16.7 | 8.0 | |
MRDM-5SD | 18.4 | 16.9 | 37.8 | - | 13.2 | 13.7 | - |
ROIs | Methods | |||||||
---|---|---|---|---|---|---|---|---|
Patch C1 | Y4O | 33.0 | 54.2 | 11.1 | 1.7 | - | - | - |
Y4R | 33.2 | 54.6 | 10.6 | 1.6 | - | - | - | |
G4U | 31.1 | 54.6 | 13.9 | 0.4 | - | - | - | |
6SD | 32.9 | 56.9 | 5.8 | 1.5 | 1.6 | 1.3 | - | |
7SD | 34.0 | 56.0 | 4.9 | 1.3 | 0.8 | 1.2 | 1.8 | |
MRDM-5SD | 31.3 | 56.0 | 10.4 | - | 1.3 | 1.0 | - | |
Patch C2 | Y4O | 24.1 | 21.9 | 48.4 | 5.6 | - | - | - |
Y4R | 27.2 | 28.0 | 39.4 | 5.4 | - | - | - | |
G4U | 21.8 | 29.2 | 48.4 | 0.6 | - | - | - | |
6SD | 20.8 | 38.4 | 17.7 | 2.1 | 8.9 | 12.1 | - | |
7SD | 20.8 | 36.7 | 19.4 | 2.0 | 2.0 | 19.7 | 5.4 | |
MRDM-5SD | 26.2 | 47.8 | 17.1 | - | 5.2 | 3.7 | - | |
Patch C3 | Y4O | 57.6 | 5.8 | 31.1 | 5.5 | - | - | - |
Y4R | 65.4 | 12.3 | 18.6 | 3.7 | - | - | - | |
G4U | 66.0 | 9.9 | 24.0 | 0.1 | - | - | - | |
6SD | 50.2 | 23.8 | 20.5 | 1.5 | 2.5 | 1.5 | - | |
7SD | 34.9 | 9.3 | 48.0 | 2.2 | 1.5 | 1.7 | 2.4 | |
MRDM-5SD | 52.7 | 32.0 | 11.5 | - | 3.1 | 0.7 | - | |
Patch C4 | Y4O | 80.7 | 7.6 | 5.9 | 5.8 | - | - | - |
Y4R | 80.5 | 7.8 | 5.9 | 5.8 | - | - | - | |
G4U | 80.3 | 7.9 | 6.0 | 5.8 | - | - | - | |
6SD | 71.7 | 7.3 | 5.3 | 5.2 | 5.3 | 5.2 | - | |
7SD | 86.6 | 8.2 | 4.2 | 0.2 | 0.3 | 0.3 | 0.2 | |
MRDM-5SD | 86.5 | 8.7 | 3.5 | - | 0.6 | 0.7 | - | |
Patch C5 | Y4O | 21.0 | 26.8 | 49.7 | 2.5 | - | - | - |
Y4R | 21.2 | 26.9 | 49.3 | 2.6 | - | - | - | |
G4U | 18.3 | 27.8 | 53.5 | 0.4 | - | - | - | |
6SD | 24.8 | 30.0 | 36.8 | 2.6 | 3.1 | 2.7 | - | |
7SD | 27.5 | 28.7 | 32.9 | 2.4 | 2.9 | 2.9 | 2.7 | |
MRDM-5SD | 25.3 | 22.3 | 48.2 | - | 2.2 | 2.0 | - |
Decomposition Methods | Precision Rate (%) | False Alarm Rate (%) | Miss Rate (%) |
---|---|---|---|
Y4R | 87.50 | 4.83 | 6.00 |
G4U | 85.03 | 6.00 | 5.35 |
6SD | 85.14 | 5.96 | 5.14 |
7SD | 85.54 | 5.63 | 7.40 |
MRDD-5SD | 92.33 | 2.87 | 3.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, L.; Zou, B.; Gu, G. Polarimetric SAR Decomposition Method Based on Modified Rotational Dihedral Model. Remote Sens. 2023, 15, 101. https://doi.org/10.3390/rs15010101
Chen Y, Zhang L, Zou B, Gu G. Polarimetric SAR Decomposition Method Based on Modified Rotational Dihedral Model. Remote Sensing. 2023; 15(1):101. https://doi.org/10.3390/rs15010101
Chicago/Turabian StyleChen, Yifan, Lamei Zhang, Bin Zou, and Guihua Gu. 2023. "Polarimetric SAR Decomposition Method Based on Modified Rotational Dihedral Model" Remote Sensing 15, no. 1: 101. https://doi.org/10.3390/rs15010101
APA StyleChen, Y., Zhang, L., Zou, B., & Gu, G. (2023). Polarimetric SAR Decomposition Method Based on Modified Rotational Dihedral Model. Remote Sensing, 15(1), 101. https://doi.org/10.3390/rs15010101