Comparison of the Spatial and Temporal Variability of Cloud Amounts over China Derived from Different Satellite Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. GEWEX Satellite Cloud Database
2.2. Station Cloud Amount Data
2.3. Variables for Comparison and Methodology
3. Results
3.1. Spatial Distribution of Clouds in China
3.2. Influence of Different Instruments and Inversion Algorithms
3.3. Impact of Observation Time on Satellite Observations
3.4. Seasonal Variations of Cloud Amount
3.5. Interannual Variations and Trends
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stephens, G.L. Cloud feedbacks in the climate system: A critical review. J. Clim. 2005, 18, 237–273. [Google Scholar] [CrossRef] [Green Version]
- Wild, M.; Folini, D.; Schar, C.; Loeb, N.; Dutton, E.G.; Konig-Langlo, G. The global energy balance from a surface perspective. Clim. Dyn. 2013, 40, 3107–3134. [Google Scholar] [CrossRef] [Green Version]
- Quante, M. The role of clouds in the climate system. J. Phys. IV France 2004, 121, 61–86. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, W.; Jensen, M.P.; Toto, T. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo. Atmos. Chem. Phys. 2011, 11, 7155–7170. [Google Scholar] [CrossRef] [Green Version]
- Manabe, S.; Strickler, R.F. Thermal Equilibrium of the Atmosphere with a Convective Adjustment. J. Atmos. Sci. 1964, 21, 361–385. [Google Scholar] [CrossRef]
- Norris, J.R.; Allen, R.J.; Evan, A.T.; Zelinka, M.D.; O’Dell, C.W.; Klein, S.A. Evidence for climate change in the satellite cloud record. Nature 2016, 536, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.G.; Shi, G.Y.; Zhao, C.S. Analyze the changes of global cloud amount in recent 20 years and their implications for climate using ISCCP D2 data. Chin. Sci. Bull. 2004, 49, 1105–1111. (In Chinese) [Google Scholar] [CrossRef]
- Ban-Weiss, G.A.; Jin, L.; Bauer, S.E.; Bennartz, R.; Liu, X.H.; Zhang, K.; Ming, Y.; Guo, H.; Jiang, J.H. Evaluating clouds, aerosols, and their interactions in three global climate models using satellite simulators and observations. J. Geophys. Res. Atmos. 2014, 119, 10876–10901. [Google Scholar] [CrossRef]
- Lacagnina, C.; Selten, F. Evaluation of clouds and radiative fluxes in the EC-Earth general circulation model. Clim. Dyn. 2014, 43, 2777–2796. [Google Scholar] [CrossRef]
- Jin, D.; Oreopoulos, L.; Lee, D. Simplified ISCCP cloud regimes for evaluating cloudiness in CMIP5 models. Clim. Dyn. 2017, 48, 113–130. [Google Scholar] [CrossRef]
- Dolinar, E.K.; Dong, X.Q.; Xi, B.K.; Jiang, J.H.; Su, H. Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Clim. Dyn. 2015, 44, 2229–2247. [Google Scholar]
- Furtado, K.; Field, P.; Boutle, I.; Morcrette, C.; Wilkinson, J. A physically based subgrid parameterization for the production and maintenance of mixed-phase clouds in a general circulation model. J. Atmos. Sci. 2016, 73, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sun, Z.; Liu, Y.; You, Q.; Chen, G.; Bao, Q. Top-of-Atmosphere Radiation Budget and Cloud Radiative Effects Over the Tibetan Plateau and Adjacent Monsoon Regions from CMIP6 Simulations. J. Geophys. Res. Atmos. 2021, 126, e2020JD034345. [Google Scholar]
- Chepfer, H.; Cesana, G.; Winker, D.; Getzewich, B.; Vaughan, M.; Liu, Z. Comparison of Two Different Cloud Climatologies Derived from CALIOP-Attenuated Backscattered Measurements (Level 1): The CALIPSO-ST and the CALIPSO-GOCCP. J. Atmos. Ocean. Technol. 2013, 30, 725–744. [Google Scholar]
- Pincus, R.; Platnick, S.; Ackerman, S.A.; Hemler, R.S.; Hofmann, R.J.P. Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument Simulators. J. Clim. 2012, 25, 4699–4720. [Google Scholar] [CrossRef]
- Kodama, C.; Noda, A.T.; Satoh, M. An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO and CloudSat satellite simulators. J. Geophys. Res. Atmos. 2012, 117, D12210. [Google Scholar] [CrossRef] [Green Version]
- Marchand, R.; Ackerman, T.; Smyth, M.; Rossow, W.B. A review of cloud top height and optical depth histograms from MISR, ISCCP and MODIS. J. Geophys. Res. Atmos. 2010, 115, D16206. [Google Scholar] [CrossRef]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.; Guignard, A.; Heidinger, A.; et al. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Ding, Y.H.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Li, Y.Y.; Gu, H. Relationship between middle stratiform clouds and large scale circulation over eastern China. Geophys. Res. Lett. 2006, 33, L09706. [Google Scholar] [CrossRef]
- Wu, X.; Mao, J. Interdecadal modulation of ENSO-related spring rainfall over South China by the Pacific Decadal Oscillation. Clim. Dyn. 2016, 47, 3203–3220. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.-C.; Dong, X.; Mao, J. Cloud-radiation-precipitation associations over the Asian monsoon region: An observational analysis. Clim. Dyn. 2017, 49, 3237–3255. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, T.; Wang, M.; Qian, Y. Impact of cloud radiative heating on East Asian summer monsoon circulation. Environ. Res. Lett. 2015, 10, 074014. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Wu, G. Cloud radiative forcing in Asian monsoon region simulated by IPCC AR4 AMIP models. Adv. Atmos. Sci. 2009, 26, 923–939. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Wu, T.W. Radiation budget biases in AMIP5 models over the East Asian monsoon region. J. Geophys. Res. Atmos. 2014, 119, 13400–13426. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Yang, X.-Q.; Wang, M. A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmos. Environ. 2013, 70, 51–63. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, J.; Jing, X.; Li, J. The features of cloud overlapping in Eastern Asia and their effect on cloud radiative forcing. Sci. China Earth Sci. 2012, 56, 737–747. (In Chinese) [Google Scholar] [CrossRef]
- Cesana, G.; Chepfer, H. Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP. J. Geophys. Res. Atmos. 2013, 118, 7922–7937. [Google Scholar] [CrossRef]
- Wang, F.; Xin, X.G.; Wang, Z.Z.; Cheng, Y.J.; Zhang, J.; Yang, S. Evaluation of cloud vertical structure simulated by recent BCC_AGCM versions through comparison with CALIPSO-GOCCP data. Adv. Atmos. Sci. 2014, 31, 721–733. [Google Scholar] [CrossRef]
- Klein, S.A.; Zhang, Y.Y.; Zelinka, M.D.; Pincus, R.; Boyle, J.; Gleckler, P.J. Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res. Atmos. 2013, 118, 1329–1342. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef] [Green Version]
- Heidinger, A.K.; Evan, A.T.; Foster, M.J.; Walther, A. A Naive Bayesian Cloud-Detection Scheme Derived from CALIPSO and Applied within PATMOS-x. J. Appl. Meteorol. Climatol. 2012, 51, 1129–1144. [Google Scholar] [CrossRef]
- Walther, A.; Heidinger, A.K. Implementation of the daytime cloud optical and microphysical properties algorithm (DCOMP) in PATMOS-x. J. Appl. Meteorol. Climatol. 2012, 51, 1371–1390. [Google Scholar] [CrossRef]
- Menzel, W.P.; Frey, R.A.; Zhang, H.; Wylie, D.P.; Moeller, C.C.; Holz, R.E.; Maddux, B.; Baum, B.A.; Strabala, K.I.; Gumley, L.E. MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteorol. Climatol. 2008, 47, 1175–1198. [Google Scholar] [CrossRef] [Green Version]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riedi, J.C.; Frey, R.A. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Minnis, P.; Sun-Mack, S.; Young, D.F.; Heck, P.W.; Garber, D.P.; Chen, Y.; Spangenberg, D.A.; Arduini, R.F.; Trepte, Q.Z.; Smith, W.L., Jr.; et al. CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data-Part I: Algorithms. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4374–4400. [Google Scholar] [CrossRef]
- Wylie, D.; Jackson, D.L.; Menzel, W.P.; Bates, J.J. Trends in global cloud cover in two decades of HIRS observations. J. Clim. 2005, 18, 3021–3031. [Google Scholar] [CrossRef]
- Stubenrauch, C.; Chédin, A.; Rädel, G.; Scott, N.; Serrar, S. Cloud properties and their seasonal and diurnal variability from TOVS Path-B. J. Clim. 2006, 19, 5531–5553. [Google Scholar] [CrossRef]
- Radel, G.; Stubenrauch, C.J.; Holz, R.; Mitchell, D.L. Retrieval of effective ice crystal size in the infrared: Sensitivity study and global measurements from TIROS-N Operational Vertical Sounder. J. Geophys. Res. Atmos. 2003, 108, 4281. [Google Scholar] [CrossRef]
- Stubenrauch, C.J.; Cros, S.; Guignard, A.; Lamquin, N. A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat. Atmos. Chem. Phys. 2010, 10, 7197–7214. [Google Scholar] [CrossRef] [Green Version]
- Guignard, A.; Stubenrauch, C.J.; Baran, A.J.; Armante, R. Bulk microphysical properties of semi-transparent cirrus from AIRS: A six year global climatology and statistical analysis in synergy with geometrical profiling data from CloudSat-CALIPSO. Atmos. Chem. Phys. 2012, 12, 503–525. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Chepfer, H.; Bony, S.; Winker, D.; Cesana, G.; Dufresne, J.L.; Minnis, P.; Stubenrauch, C.J.; Zeng, S. The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP). J. Geophys. Res. Atmos. 2010, 115, D00H16. [Google Scholar] [CrossRef]
- Parol, F.; Buriez, J.C.; Vanbauce, C.; Riedi, J.; Labonnote, L.C.; Doutriaux-Boucher, M.; Vesperini, M.; Seze, G.; Couvert, P.; Viollier, M.; et al. Review of Capabilities of Multi-Angle and Polarization Cloud Measurements from POLDER. In Climate Change Processes in the Stratosphere, Earth-Atmosphere-Ocean Systems and Oceanographic Processes from Satellite Data; Schlussel, P., Stuhlmann, R., Campbell, J.W., Erickson, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 33, pp. 1080–1088. [Google Scholar]
- Ferlay, N.; Thieuleux, F.; Cornet, C.; Davis, A.B.; Dubuisson, P.; Ducos, F.; Parol, F.; Riedi, J.; Vanbauce, C. Toward New Inferences about Cloud Structures from Multidirectional Measurements in the Oxygen a Band: Middle-of-Cloud Pressure and Cloud Geometrical Thickness from POLDER-3/PARASOL. J. Appl. Meteorol. Climatol. 2010, 49, 2492–2507. [Google Scholar] [CrossRef]
- Di Girolamo, L.; Menzies, A.; Zhao, G.; Mueller, K.; Moroney, C.; Diner, D. MISR level 3 cloud fraction by altitude algorithm theoretical basis. Jet Propuls. Lab. Rep 2010, 24, 18–23. [Google Scholar]
- Xia, X. Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J. Geophys. Res. Atmos. 2010, 115, D00K06. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Fu, Y.F. The Climatological Feature of Diurnal Variation of Cloud Amount Over the Tropics. J. Trop. Meteor. 2009, 25, 717–724. (In Chinese) [Google Scholar]
- Li, Y.; Yu, R.; Xu, Y.; Zhang, X. Spatial Distribution and Seasonal Variation of Cloud over China Based on ISCCP Data and Surface Observations. J. Meteorol. Soc. Jpn. 2004, 82, 2702–2713. [Google Scholar] [CrossRef] [Green Version]
- Bodas-Salcedo, A.; Webb, M.J.; Bony, S.; Chepfer, H.; Dufrense, J.-L.; Klein, S.A.; Zhang, Y.; Marchand, R.; Haynes, J.M.; Pincus, R.; et al. COSP Satellite simulation software for model assessment. Bull. Am. Meteorol. Soc. 2011, 92, 1023–1043. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Y. A review of cloud detection methods in remote sensing images. Remote Sens. Land Resour. 2017, 4, 6–12. (In Chinese) [Google Scholar]
- Mahajan, S.; Fataniya, B. Cloud detection methodologies: Variants and development—A review. Complex Intell. Syst. 2020, 6, 251–261. [Google Scholar] [CrossRef] [Green Version]
Datasets | Type of Sensors | Local Observation Time | Years | References |
---|---|---|---|---|
ISCCP | Multispectral imagers | 03:00, 09:00, 15:00, 21:00 LT | 1983–2007 | [31] |
AVHRR Pathfinder PATMOS-x | Multispectral imagers | 01:30, 07:30, 13:30, 19:30 LT | 1982–2009 | [32,33] |
MODIS Science Team | Multispectral imagers | 01:30, 10:30, 13:30, 2230 LT | 2001–2009 | [34,35] |
MODIS CERES Science Team | Multispectral imagers | 01:30, 10:30, 13:30, 2230 LT | 2003–2008 | [36] |
HIRS-NOAA | IR sounders | 01:30, 07:30, 13:30, 19:30 LT | 1987–2006 | [37] |
TOVS Path-B | IR sounders | 01:30, 07:30, 13:30, 19:30 LT | 1987–1994 | [38,39] |
AIRS-LMD | IR sounders | 01:30, 13:30 LT | 2003–2009 | [40,41] |
CALIPSO Science Team | Lidar | 01:30, 13:30 LT | 2007–2008 | [42] |
CALIPSO-GOCCP | Lidar | 01:30, 13:30 LT | 2007–2008 | [43] |
POLDER | Multiangle imagers | 13:30 LT | 2006–2008 | [44,45] |
MISR | Multiangle imagers | 10:30 LT | 2001–2009 | [46] |
01:30 | 03:00 | 07:30 | 09:00 | 10:30 | 13:30 | 15:00 | 19:30 | 21:00 | 22:30 | T_mean | T_range | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ISCCP-D1 | 66.5 | 75.4 | 80.8 | 69.2 | 72.9 | 14.3 | ||||||
PATMOSX | 74.7 | 67 | 80.6 | 74.8 | 75.8 | 13.6 | ||||||
MODIS-CE | 66.9 | 71.8 | 76.9 | 67.2 | 70.4 | 10 | ||||||
MODIS-ST | 79.1 | 79.1 | 83 | 75.5 | 78.5 | 7.5 | ||||||
HIRS | 55.3 | 51.3 | 51.3 | 55.2 | 53.2 | 4 | ||||||
TOVSB | 79.2 | 76.7 | 84.1 | 80.4 | 79.9 | 7.4 | ||||||
AIRS-LMD | 82 | 81.9 | 81.9 | 0.1 | ||||||||
CALIPSO-GOCCP | 78.6 | 83.6 | 81.6 | 5 | ||||||||
CALIPSO-ST | 85.5 | 89.6 | 88.2 | 4.1 | ||||||||
POLDER | 74.2 | 74.2 | 0 | |||||||||
MISR | 65.9 | 65.9 | 0 | |||||||||
M_mean | 75.2 | 66.5 | 65.0 | 75.4 | 72.3 | 78.4 | 80.8 | 70.1 | 69.2 | 71.4 | 74.8 | 6.0 |
M_range | 30.2 | 0 | 25.4 | 0 | 13.2 | 38.3 | 0 | 25.2 | 0 | 8.3 | 35 | |
station | 74.6 |
01:30 | 03:00 | 07:30 | 09:00 | 10:30 | 13:30 | 15:00 | 19:30 | 21:00 | 22:30 | T_mean | T_range | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ISCCP-D1 | 47.4 | 56.3 | 68.1 | 50.3 | 55.5 | 20.7 | ||||||
PATMOSX | 58.6 | 65.6 | 57.6 | 52.3 | 58.5 | 13.3 | ||||||
MODIS-CE | 54.3 | 60.7 | 63.7 | 53.8 | 58.2 | 9.9 | ||||||
MODIS-ST | 75.6 | 70.8 | 69.8 | 71 | 71.8 | 5.8 | ||||||
HIRS | 59.8 | 58.9 | 49.3 | 54 | 55.1 | 10.6 | ||||||
TOVSB | 57.1 | 56.3 | 69.1 | 50.7 | 56.2 | 18.4 | ||||||
AIRS-LMD | 57.8 | 76.2 | 66.9 | 18.4 | ||||||||
CALIPSO-GOCCP | 69.6 | 71.4 | 69.4 | 1.8 | ||||||||
CALIPSO-ST | 78.3 | 76 | 76.8 | 3.3 | ||||||||
POLDER | 65.1 | 65.1 | 0 | |||||||||
MISR | 56.3 | 56.3 | 0 | |||||||||
M_mean | 63.9 | 47.4 | 60.3 | 56.3 | 62.6 | 66.4 | 68.1 | 52.3 | 50.3 | 62.4 | 62.7 | 9.3 |
M_range | 24 | 0 | 9.3 | 0 | 14.5 | 26.9 | 0 | 3.3 | 0 | 17.2 | 21.7 | |
station | 63.6 |
JJA | DJF | ||||
---|---|---|---|---|---|
TCC | STD (%) | TCC | STD (%) | ||
NW | Station data | - | 2.1 | - | 3.8 |
HIRS | 0.13 | 2.2 | 0.34 | 3.7 | |
ISCCP-D1 | 0.75 | 2.0 | 0.80 | 3.4 | |
MISR | 0.08 | 2.2 | 0.86 | 4.7 | |
MODIS-CE | 0.91 | 2.4 | 0.57 | 4.4 | |
MODIS-ST | 0.95 | 2.5 | 0.98 | 3.8 | |
PATMOSX | 0.52 | 3.3 | 0.21 | 6.7 | |
TOVSB | 0.97 | 2.8 | −0.12 | 1.3 | |
NE | Station data | - | 3.8 | - | 2.6 |
HIRS | −0.08 | 1.7 | 0.18 | 4.8 | |
ISCCP-D1 | 0.75 | 2.6 | 0.50 | 3.9 | |
MISR | 0.77 | 5.0 | −0.47 | 3.1 | |
MODIS-CE | 0.93 | 4.0 | 0.57 | 2.8 | |
MODIS-ST | 0.95 | 4.9 | 0.98 | 4.0 | |
PATMOSX | 0.84 | 4.7 | −0.23 | 8.0 | |
TOVSB | 0.88 | 2.6 | 0.30 | 1.4 | |
TP | Station data | - | 3.8 | - | 3.8 |
HIRS | 0.09 | 4.0 | −0.19 | 4.3 | |
ISCCP-D1 | 0.76 | 2.3 | 0.82 | 4.7 | |
MISR | 0.49 | 2.0 | 0.58 | 4.3 | |
MODIS-CE | 0.83 | 2.1 | 0.78 | 3.8 | |
MODIS-ST | 0.91 | 2.8 | 0.89 | 4.3 | |
PATMOSX | 0.68 | 3.6 | 0.65 | 6.9 | |
TOVSB | 0.90 | 3.3 | 0.86 | 2.8 | |
SC | Station data | - | 3.3 | - | 4.4 |
HIRS | 0.23 | 4.7 | 0.06 | 4.1 | |
ISCCP-D1 | 0.82 | 2.8 | 0.73 | 2.9 | |
MISR | 0.72 | 2.6 | 0.83 | 4.2 | |
MODIS-CE | 0.90 | 2.9 | 0.79 | 4.4 | |
MODIS-ST | 0.93 | 2.7 | 0.78 | 3.5 | |
PATMOSX | 0.79 | 4.0 | 0.72 | 4.6 | |
TOVSB | 0.99 | 3.2 | 0.71 | 4.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lin, Z.; Wu, C. Comparison of the Spatial and Temporal Variability of Cloud Amounts over China Derived from Different Satellite Datasets. Remote Sens. 2022, 14, 2173. https://doi.org/10.3390/rs14092173
Wang Y, Lin Z, Wu C. Comparison of the Spatial and Temporal Variability of Cloud Amounts over China Derived from Different Satellite Datasets. Remote Sensing. 2022; 14(9):2173. https://doi.org/10.3390/rs14092173
Chicago/Turabian StyleWang, Yuxi, Zhaohui Lin, and Chenglai Wu. 2022. "Comparison of the Spatial and Temporal Variability of Cloud Amounts over China Derived from Different Satellite Datasets" Remote Sensing 14, no. 9: 2173. https://doi.org/10.3390/rs14092173
APA StyleWang, Y., Lin, Z., & Wu, C. (2022). Comparison of the Spatial and Temporal Variability of Cloud Amounts over China Derived from Different Satellite Datasets. Remote Sensing, 14(9), 2173. https://doi.org/10.3390/rs14092173