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Abstract: Various cloud cover products have been developed over the past few decades, but their
uncertainties have not been sufficiently assessed, especially at a regional scale, which is vital for the
application of satellite products to climate studies. In this study, we compare the spatial–temporal
variability of the cloud amount over China from the 11 datasets provided by the Global Energy and
Water Cycle Experiment (GEWEX) cloud assessment project at a horizontal resolution of 1◦ × 1◦

from the 1980s to 2000s, using the site data as a reference. The differences among these datasets
are quantified in terms of the standard deviations and the correlation coefficients between different
datasets. Most of the datasets show a similar spatial distribution of total cloud amounts (TCAs), but
their magnitudes differ. The standard deviations of the annual, winter, and summer mean TCA are
approximately 9–18% for the regional mean TCAs over the four typical regions of China, including the
northwestern region (NW), northeastern region (NE), Tibetan Plateau region (TP), and southern China
region (SC), with the largest standard deviations of 13–18% in the TP. By analyzing the factors that
influence the satellite inversion data, such as the observation instrument, inversion algorithm, and
observation time, we found that the difference caused by the observation instrument or algorithm is
greater than the effect of the observation time, and the satellite cloud datasets with better recognition
capability for cloud types show lower uncertainties when compared with the station observation.
In terms of seasonal cycle, except HIRS and MODIS-ST, most satellite datasets can reproduce the
observed seasonal cycle with the largest TCA in summer and the smallest TCA in autumn and winter.
For the interannual variation, ISCCP-D1, MODIS-CE, and MODIS-ST are most consistent with the
site data for the annual mean TCA, and two of the remaining datasets (PATMOSX and TOVSB) show
more consistent temporal variations with the site observation in summer than in winter, especially
over NW and NE regions. In general, MODIS-CE shows the best performance in reproducing the
spatial pattern and interannual variation of TCA amongst the 11 satellite datasets, and PATMOSX,
MODIS-ST, CALIPSO-GOCCP, and CALIPSO-ST also show relatively good performance.

Keywords: cloud amount; remote sensed cloud dataset; GEWEX cloud assessment database; observational
uncertainties

1. Introduction

Clouds play a significant role in Earth’s energy and water cycles. Approximately 2/3
of the global area is covered by clouds. Clouds greatly impact the Earth’s radiation budget
by reflecting the sun’s shortwave radiation back into space and absorbing and reemitting
longwave radiation back into the atmosphere [1,2]. Clouds also regulate the atmospheric
hydrological cycle by transporting water away from Earth’s surface and redistributing it
through precipitation [3].
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In climate models, cloud amount is one of the key parameters in the calculation of
cloud radiation–precipitation interactions [4,5]. To understand current climate changes
and predict future climatic variability, observationally based cloud fraction estimates have
been intensively studied for decades. Evidence of climate change has been identified in
satellite cloud records. For example, Norris et al. [6] found large-scale changes in the
cloud amount between the 1980s and 2000s using several independent and empirically
corrected satellite records, which are similar to those produced by climate models with
recent historical external radiative forcings. Ding et al. [7] used International Satellite Cloud
Climatology Project (ISCCP) data to analyze the total cloud amount (TCA) changes over
the past 20 years and their possible climatological impact, and they concluded that TCA
changes may initialize a positive feedback process in the climate system; the decreasing
TCA observed in recent years may cause the global climate to become warmer. In addition,
cloud products retrieved from observations have also been widely used in evaluating
model performance. Ban-Weiss et al. [8] evaluated clouds, aerosols, and their interactions
in three global climate models using Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite observations. Lacagnina and Selten [9] used ISCCP data to assess clouds
and radiative fluxes in the EC-Earth general circulation model and found a large cloud
amount bias in the tropics. Jin et al. [10] compared ISCCP-simulated data from the Coupled
Model Intercomparison Project Phase 5 (CMIP5) models with the corresponding ISCCP
observations based on the concept of cloud regimes. The results show that the model-
simulated clouds tended to optically be too thick and not as extensive as the observed
clouds. Dolinar et al. [11] evaluated CMIP5-simulated clouds and top of the atmosphere
(TOA) radiation budgets using CERES, MODIS, ISCCP, CloudSat, and CALIPSO. The results
show that the multi-model ensemble mean cloud fraction is underestimated compared to
all of the satellite datasets. It is also found that cloud amount is a primary modulator of
warming (or cooling) in the atmosphere. Compared with the CMIP5 model, the CMIP6
climate model has improved cloud parameterization processes [12]. However, there is still
a large deviation in the simulation of the clouds and their radiation effect [13].

Satellites are the only tools that document clouds at the global scale, but the definition
of a cloud depends on the cloud algorithm used and is not unique to different satellite
observations. The satellite-retrieved cloud data used to build the cloud climatology datasets
are affected by the type of instrument (passive, active), wavelength of the instrument, sen-
sitivity of the sensors, threshold of detection, and spatiotemporal sampling resolution [14],
which might lead to inconsistencies between different satellite cloud products. For example,
MODIS observes less mid-level cloud than the ISCCP [15]. High thin clouds are not observ-
able in the conventional ISCCP dataset, but can be detected by CALIPSO observations [16].
Marchand et al. [17] also found notable differences in the joint histograms of cloud top
height and optical depth produced from MODIS and the Multiangle Imaging Spectro-
Radiometer (MISR) and by the ISCCP. A comparison between various cloud climatology
derived from different satellites with passive and active remote sensing instruments was
performed by the Global Energy and Water Cycle Experiment (GEWEX) cloud assessment
project [18], with emphasis on the global climatological mean cloud amount, cloud height,
and other physical properties.

In addition, clouds exhibit remarkable regional characteristics due to their regionally
differing circulation systems and external forcings. In particular, the spatial–temporal
characteristics of clouds over the East Asian region are complicated. In summer, convective
activities occur frequently in eastern China and the area of the Tibetan Plateau [19]. In
winter and spring, southeast China is unique compared to other regions across the globe
because of the many stratiform clouds present in this region [20]. In addition to the winter
monsoon or summer monsoon period, sustained spring precipitation is also a unique
regional climatic phenomenon in southeastern China, where spring precipitation accounts
for more than 30% of the total annual precipitation [21]. Li et al. [22] showed that the strong
shortwave cloud radiative forcing in southeastern China occurred in winter and continued
throughout the spring, and the spring shortwave cloud radiative forcing in this region was
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the strongest at the same latitude in the northern hemisphere and the strongest among
the four seasons. In addition, spring is the transition season between winter and summer,
and the role of clouds in the radiation budget and atmospheric heating may affect the
movement of the East Asian summer monsoon circulation [23]. Significant efforts have
been made to investigate cloud processes and properties in East Asia using models and
observations, and it has been suggested that some of the model biases in reproducing the
observed climate conditions over East Asia can be attributed to the presence of clouds and
radiation processes [24,25]. The impact of anthropogenic aerosols on clouds in East Asia
has been investigated using climate models considering the direct, semidirect, and indirect
effects of aerosols [26]. The associations of cloud fraction with cloud radiative effects
and precipitation over East Asia have also been investigated using satellite observational
data [15], and the features of cloud overlap in Eastern Asia and its effect on cloud radiative
forcing have been analyzed using CloudSat observations [27].

Although there are previous studies on the different aspects of cloud features over
East Asia using satellite data, most of them are focused on one or a limited number of
cloud datasets [10,28–30], and inconsistencies in the analysis results can be found when
different satellite datasets are used [15–17]. Therefore, the systematic comparison of cloud
characteristics from different cloud datasets over China is imperative. The objective of this
study is to compare and verify the climatological characteristics of cloud fractions over
China between different satellite cloud datasets and meteorological station observations,
and to further quantify the uncertainties among them. This is vital for cloud change
detection and attribution research, as well as the model evaluation using satellite cloud
products.

2. Materials and Methods
2.1. GEWEX Satellite Cloud Database

The satellite cloud amount dataset used in this study is the GEWEX Cloud Assessment
database, which provides global L3 cloud products (gridded, monthly statistics), as listed in
Table 1. These products are retrieved from measurements of multispectral imagers (ISCCP,
PATMOS-x, MODIS-ST, MODIS-CE), IR sounders (HIRS-NOAA, TOVS Path-B, AIRS-
LMD), active lidar systems (CALIPSO-ST, CALIPSO-GOCCP), and multiangle multispectral
imagers (POLDER and MISR; POLDER also uses polarization). The horizontal resolution is
1◦ × 1◦ in latitude and longitude.

Table 1. Description of the GEWEX Cloud Assessment datasets used in this study.

Datasets Type of Sensors Local Observation Time Years References

ISCCP Multispectral imagers 03:00, 09:00, 15:00, 21:00 LT 1983–2007 [31]
AVHRR Pathfinder PATMOS-x Multispectral imagers 01:30, 07:30, 13:30, 19:30 LT 1982–2009 [32,33]

MODIS Science Team Multispectral imagers 01:30, 10:30, 13:30, 2230 LT 2001–2009 [34,35]
MODIS CERES Science Team Multispectral imagers 01:30, 10:30, 13:30, 2230 LT 2003–2008 [36]

HIRS-NOAA IR sounders 01:30, 07:30, 13:30, 19:30 LT 1987–2006 [37]
TOVS Path-B IR sounders 01:30, 07:30, 13:30, 19:30 LT 1987–1994 [38,39]
AIRS-LMD IR sounders 01:30, 13:30 LT 2003–2009 [40,41]

CALIPSO Science Team Lidar 01:30, 13:30 LT 2007–2008 [42]
CALIPSO-GOCCP Lidar 01:30, 13:30 LT 2007–2008 [43]

POLDER Multiangle imagers 13:30 LT 2006–2008 [44,45]
MISR Multiangle imagers 10:30 LT 2001–2009 [46]

L3 data for the common GEWEX Cloud Assessment database are produced by first
averaging the original L2 cloud products (given at instantaneous pixels) over each grid cell
(1◦ × 1◦) for each time step (day) and then averaging the daily data for the monthly mean.
These cloud amount products are available at the GEWEX Cloud Assessment website (URL:
http://climserv.ipsl.polytechnique.fr/gewexca/, accessed on 31 August 2017). The data
used in the study were obtained at the end of August 2017. For details, please refer to
Stubenrauch et al. [18]. The observation time for each product is also listed in Table 1.

http://climserv.ipsl.polytechnique.fr/gewexca/
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Multispectral imagers are radiometers that collect measurements for only a few dis-
crete wavelengths, usually from the solar to thermal infrared spectrum. At nadir viewing
with cross-track scanning capabilities, they have a spatial resolution ranging from ap-
proximately 0.5 to 7 km (at nadir) and are the only sensors aboard geostationary weather
satellites. The International Satellite Cloud Climatology Project (ISCCP) uses a combination
of these sensors from both geostationary and polar-orbiting satellites. The advanced very-
high-resolution radiometer (AVHRR, with 5 spectral channels) and moderate resolution
imaging spectroradiometer (MODIS with 36 spectral channels) are multispectral imagers
aboard polar-orbiting satellites.

Multiangle, multispectral imagers measure the same scene with different viewing
angles, allowing a stereoscopic retrieval of the cloud top height. With the use of polarization,
the thermodynamic phases of clouds can also be determined (since non-spherical ice
particles depolarize the reflected light less than liquid droplets). Such imagers include the
multiangle imaging spectroradiometer (MISR) and polarization and directionality of the
Earth’s reflectance (POLDER), both only operating during daylight conditions.

IR sounders, originally designed for the retrieval of atmospheric temperature and
humidity profiles, use IR channels in the absorption bands of CO2, water vapor, and ozone.
IR sounders include HIRS and AIRS. The operational high-resolution infrared radiation
sounder (HIRS, with 19 channels in the IR) is a multichannel radiometer, whereas the
atmospheric infrared sounder (AIRS) is an infrared spectrometer. Their spatial resolution
is approximately 15 km (at nadir). The good spectral resolution of these IR sounding
instruments enables the reliable identification of cirrus (semitransparent ice clouds) cloud
during day and night conditions. IR sounding methods are sensitive to thin cirrus clouds
with optical depths exceeding approximately 0.1, enabling them to provide reliable cirrus
properties during day and night conditions.

The active lidar of the CALIPSO mission is the most sensitive to thin cirrus (including
subvisible cirrus) clouds, and it also provides information on all cloud layers within the
atmosphere up to an optical depth of 3. The two cloud climatology systems (CALIPSO-ST
and CALIPSO-GOCCP) are built from the same CALIOP measurements composed of 532
nm attenuated backscatter lidar profiles (ATB) and a horizontal sampling of 1/3 km along
track and 70 m cross track; however, they use independent algorithms to detect clouds and
to construct a gridded climatology.

2.2. Station Cloud Amount Data

To evaluate the reliability of satellite products, the homogenized station total cloud
amount dataset developed by Xia et al. [47] is used in this study. This dataset was origi-
nally based on the surface station observations of monthly total cloud amount (TCA) at
614 meteorological sites of China Meteorological Administration (Figure 1), and is available
from the Climate Data Center, China Meteorological Administration (CDC/CMA). The
number of sites gradually increased from 340 in 1954 to 680 by 1960, and then remained
stable. Note that climate observations are often influenced by changes in station location,
exposure of the observational site, instrumentation type, or measurement procedure, and
thus they may be subject to shifts in the data records. To generate a homogenized dataset,
the RHtestV2 software package was adopted to detect and adjust for multiple shifts that
could exist in the original TCA series, as described in Xia et al. [47]. Here, the 614 stations
that reported data from 1982 to 2005 were selected to generate the homogenized dataset.

For the comparison of station data with the gridded satellite data (1◦ × 1◦), the station
data are interpolated to the 1◦ × 1◦ grid using iterative correction objective analysis, which
is widely used in meteorological research from the NCAR Command Language (NCL).
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2.3. Variables for Comparison and Methodology

In this study, the TCA, high-level cloud amount (CAH), mid-level cloud amount
(CAM), and low-level cloud amount (CAL) will be used for analysis. The clouds at different
levels are classified by cloud top pressure (CP) with the thresholds used in the ISCCP [31],
i.e., CAH (CP < 440 hPa), CAM (440 hPa ≤ CP < 680 hPa), and CAL (680 hPa ≤ CP).
For better comparison, note that the GEWEX Cloud Assessment database only keeps the
uppermost cloud layer in the case of multilayered clouds. Clouds at the middle level or
low level refer to the portion of clouds that are not overlaid by the clouds above, and thus,
their CAMs and CALs may be underestimated compared to the real cloud amount when
there are multilayered clouds present [18].

When not specifically mentioned in the text, climatological averages are computed
over the years when the observations are available (Table 1). For seasonal results, winter
refers to December–February (DJF), spring refers to March–May (MAM), summer refers to
June–August (JJA), and fall refers to September–November (SON). To compare the satellite
data with the site data, the site data are interpolated to a 1◦ × 1◦ grid.

To better quantify the differences among the cloud observations in different climatic
regimes, China is divided into four subregions in this study, as shown in Figure 1. The
northwestern region (NW, 38◦N–46◦ N, 80◦E–115◦ E) is dry throughout the year. The
northeastern region (NE, 40◦N–52◦ N, 115◦E–130◦ E) is humid and cloudy in summer, but
dry and less cloudy in winter. The Tibetan Plateau region (TP, 28◦N–38◦ N, 80◦E–100◦ E) has
a higher altitude, and southern China (SC, 20◦N–35◦ N, 100◦E–120◦ E) is a typical monsoon
region with summer convective clouds and large amounts of stratus in winter.

3. Results
3.1. Spatial Distribution of Clouds in China

Figure 2 shows the spatial distribution of the annual mean TCA over China for
11 satellite-retrieved datasets and meteorological station observations. From the ground
observation map (Figure 2l), it is found that the TCA gradually decreases from south China
to north China and towards the dry areas in northwest China, with the largest TCA found
over the Sichuan Basin and adjacent regions east of the Tibetan Plateau. The annual mean
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TCA can reach up to 80% in the Sichuan Basin, while it is less than 30% in some areas
of Inner Mongolia and even lower than 10% in a large part of Xinjiang. We can see from
Figure 2 that most satellite datasets can reproduce similar spatial patterns to the station
observations, including the ISCCP, PATMOSX, MODIS-CE, MODIS-ST, GOCCP, POLDER,
and MISR. However, the HIRS dataset could not reproduce the maximum TCA center in the
Sichuan Basin, with an underestimated TCA value of 50–60% in the region. For the TOVSB
dataset, the region with the maximum annual TCA is found from Sichuan to the regions
further west, including the Tibetan Plateau and part of Xinjiang, which is inconsistent with
the station observations. For the CALIPSO-ST and AIRS-LMD datasets, although a larger
TCA could be found in Sichuan and south China, the region with a large TCA is more
geographically extended compared with the observed TCA distribution, especially for the
CALIPSO-ST product. The cloud amount in Xinjiang is distinctly overestimated in the
CALIPSO-ST product.

Figure 2. The spatial distribution of the annual average TCA (units: %) in China based on different
satellite datasets: (a) ISCCP, (b) PATMOSX, (c) MODIS-CE, (d) MODIS-ST, (e) HIRS, (f) TOVSB,
(g) AIRS-LMD, (h) CALIPSO-GOCCP, (i) CALIPSO-ST, (j) POLDER, (k) MISR, and (l) site observation
data, units: %. The upper right corner of each panel shows the mean of the annual average TCA
over China.

Overall, the annual averaged TCA over China measured by station observations is
57%, but the annual TCAs across the individual datasets differ by 25% on average, ranging
from 43.6% to 68.2%, with the largest regional averaged TCA being 68.2% for CALIPSO-ST
(Figure 2i) and the smallest TCA being 43.6% for MISR (Figure 2k). The TCA derived from
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PATMOSX is 57.6%, which is the closest to the observed coverage. The TCA from the ISCCP
is also close to the observed measurements, with an average amount of 59.9%. However,
the CALIPSO-ST TCA is much higher than the observed value, with a TCA of 68.2%, while
the TCAs from HIRS and MISR are the lowest, with a TCA of 43.6% for MISR and 45.2%
for HIRS.

The aforementioned differences in the TCAs can mainly be explained by the different
instrument sensitivities and inversion methods used. The active lidar used for CALIPSO-ST
and CALIPSO-GOCCP is a highly sensitive measurement that can even detect subvisible
cirrus, which is why the TCA in the CALIPSO dataset is larger than the ensemble means
of all of the datasets (Figure 2h,i). In addition, CALIPSO-ST detects 8% more cloud than
CALIPSO-GOCCP in China, which can be ascribed to the different horizontal averaging
methods and cloud detection thresholds used in the two algorithms, as stated in Section 2.
IR sounding along the CO2 absorption band (HIRS-NOAA, TOVSB, AIRS-LMD) and
methods that implement IR spectral differences (MODIS-ST) are also powerful for thin
cirrus identification. Using CERES classification algorithms, MODIS-CE showed a lower
sensitivity than MODIS-ST, leading to approximately 10% fewer clouds in China compared
with the MODIS-ST dataset (Figure 2c,d). The amount of cloud in MODIS-ST is less than
that of CALIPSO-ST by 7% due to its lesser sensitivity when detecting very thin cirrus
clouds in MODIS. The use of HIRS-NOAA is less efficient for detecting low-level clouds,
especially those over land with a minimal thermal contrast, as stated in Section 2. Therefore,
the difference in the cloud amount in HIRS-NOAA relative to the ensemble mean shows
an obvious land–sea contrast, with a lower cloud amount over land (Figure 2e). The TCA
of POLDER is in the lower range reported for all of the datasets because only clouds with
optical depths larger than 2 are accounted for (Figure 2g). The threshold optical depth
value is much larger than 0.1, which is the value used for the ISCCP (during the day),
CALIPSO-GOCCP, PATMOS-x, MODIS-ST, AIRS-LMD, HIRS-NOAA, and TOVSB. The
cloud amount of MISR refers to clouds for which the stereoscopic cloud height may be
determined. Since cloud detection over land is more difficult, MISR shows less sensitivity
when detecting thin cirrus clouds over the land than over the ocean. Therefore, compared
to the other datasets, MISR tends to provide the lowest TCA over land in China (Figure 2k).

Figure 3 shows the ensemble mean and standard deviations of the annual and seasonal
cloud amounts (total, high-level, middle-level, and low-level) from 11 cloud datasets in four
subregions of China, i.e., northeast, northwest, south China, and the Tibetan Plateau. In
this study, we firstly calculate the regionally averaged results for each set of cloud amount
data, and then calculate the ensemble mean and standard deviation of the 11 satellite
datasets. The annual mean TCA is the largest over SC (68 ± 7.9%) and second largest
over the TP (56 ± 11.5%), while it is relatively small in NE (50 ± 8%) and NW (45 ± 9.9%)
China. The TCA in summer also shows similar characteristics; the largest TCA in the SC
region reaches 75%, and the smallest TCA in the NW region has a magnitude of around
50%. The characteristics of winter are different from those of summer, with the minimum
TCA of 41% found in the NE region. Moreover, the TCA in summer is larger than that in
winter in all regions. The region with the largest seasonal difference between TCA in winter
and summer is the NE region, with an average difference of up to 18%, and the smallest
difference of 6% occurs in the NW region. The standard deviations of TCA for annual mean,
winter, and summer range from 7.2 to 15.2%, with the largest standard deviation occurring
in the TP region in winter and the smallest standard deviation occurring in the SC region
in winter. Of the four regions, the TP shows the largest standard deviations, indicating that
the largest range among the 11 datasets occurs in this region, while SC shows relatively
smaller standard deviations compared to the 11 datasets.
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Figure 3. The annual average (ANN), summer (JJA) and winter (DJF) TCA of satellite cloud products
in different regions of China and the mean and standard deviation of the cloud amount of high-,
mid- and low-level clouds, unit: %. (a) CA: total cloud amount, (b) CAH: high-level cloud amount,
(c) CAM: mid-level cloud amount, (d) CAL: low-level cloud amount, where CAH + CAM + CAL = CA.
Red line segments represent standard deviations across all satellite datasets, and the numbers shown
at the bottom of the histogram represent the mean of all satellite datasets; red triangles represent
site-observed values.

For clouds at different levels, the CAH class makes up a higher proportion than the
CAM and CAL classes in general. The largest CAH is in the TP and SC regions and occurs in
summer, reaching 47%, while the smallest CAH occurs in the NE region in winter, reaching
8.5%. The contrast of the CAH value between winter and summer is larger than that of
TCA in the NE, NW, and SC regions. The standard deviations of the CAH are also larger
than those of the TCA in most cases. This suggests a larger dispersion in the CAH values
among datasets than that of the TCA. The CAM value is smaller than the CAH in most
cases, with magnitudes of 13–26%, and shows less seasonal variability between summer
and winter in most regions, excluding SC, where the seasonal difference is approximately
10%. The standard deviation of CAM in the 11 datasets is approximately 7.6–10.4%, which
is almost on the same order of magnitude as CAM, indicating that the CAM products of
the different datasets exhibit larger differences. The CAL is comparable to the CAM in the
NE and SC regions, but is only half of the CAM in the NW region. In the TP region, due to
the high elevation, there are few low-level clouds, so the CAL is very small in both summer
and winter. Similar to CAM, the CAL is relatively larger in winter than in summer, and
more low-level clouds can be found in the SC region than in other regions; the largest CAL
can reach 21 ± 9.4%.

3.2. Influence of Different Instruments and Inversion Algorithms

It is noted that cloud characteristics are very complicated over China, and the satellite
datasets exhibit different performances across different regions and seasons. Therefore, the
differences and applicability of the different cloud products will be further discussed for the
different seasons and regions. In order to quantify the impact of observation instruments
or inversion algorithms on the uncertainties of retrieved cloud amount, the satellite cloud
amount data with observation time at 13:30 are selected for comparison, and this is because
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the cloud amount varies at different observation times due to its strong diurnal cycle. Here,
neither the ISCCP nor MISR cloud amount datasets are included for comparison, as there
is no observation at 13:30 for these datasets.

Figure 4 shows the TCA, CAH, CAM, and CAL in four subregions of China in summer
from the nine observation datasets. In the NW region (Figure 4a), the averaged TCA is
approximately 50%, and the average CAH is more than 30%, suggesting that CAH accounts
for a large proportion (60%) of the total cloud amount. However, the proportions of CAM
and CAL are rather low, with approximately 10% of average CAM, and 3% for CAL. In
other regions, the CAH is also much larger than the CAM and CAL in summer. Amongst
the four subregions, the SC region has the largest TCA, with the average value reaching
78% and an average CAH of approximately 50%. For mid- and low-level clouds, there are
fewer single-layer clouds in summer, and the average values of CAM and CAL are less
than 20% in all regions.
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Figure 4. Averaged summer total cloud amount (TCA), high-level cloud amount (CAH), mid-level
cloud amount (CAM), and low-level cloud amount (CAL) at 13:30 local time across different satellite
datasets over four subregions of China: (a) NW region; (b) NE region; (c) TP region; and (d) SC region
(unit: %), with symbols marked for different datasets. The box–whisker plot shows the maximum,
minimum, upper quartile, lower quartile, and median for all datasets, and the black dots represent
the algorithm mean. The specific values of the maximum and minimum values are also marked on
the box–whisker plot.
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Among all of the regions, the TP region shows the largest TCA spread from 36.1%
to 85%, while the NW region has the smallest TCA spread from 35.1% to 67%. The CAH
spread in the SC and TP regions is the largest, while it is relatively small in the NW and NE
regions. In addition, the spread of mid-level clouds is significantly larger than that of low-
level clouds. When analyzing the range of deviations, it was determined that the results
of some of the datasets are very different from those of other datasets, which is the main
reason for the dispersion of the observed results. The large CAH spread can be essentially
explained by limitations in the instrument’s performance when identifying thin cirrus
cloud. As analyzed earlier, the active lidar used for CALIPSO-ST and CALIPSO-GOCCP
is highly sensitive. Although the TCA of POLDER is close to the other observational
datasets, the CAH is the smallest in all regions. This is mainly because POLDER only
considers clouds with optical thicknesses greater than 2 and is insensitive to thin clouds, so
POLDER is not suitable for analyzing high-level clouds. The TCA of HIRS is the smallest
value obtained across all regions, mainly because HIRS cannot easily identify low-level or
middle-level clouds on land, so the HIRS dataset is not applicable to mid- and low-level
clouds. In addition to low-level and middle-level clouds, HIRS shows lower high-level
cloud amount in TP, which may be ascribed to the lower thermal contrast between the land
surface and cloud top in the region compared to the other three regions.

In general, the AIRS-LMD, CALIPSO-GOCCP, CALIPSO-ST, MODIS-CE, MODIS-
ST, PATMOSX, and TOVSB datasets are more consistent with the TCA from ground-
based observations in summer than the remaining products. Based on these datasets, the
spread and standard deviation of the different datasets are recalculated. The dispersion is
significantly reduced, and the difference in the TCAs between the four regions is reduced
from 33–49% (standard deviation is 10–14%) to 14–23% (standard deviation is 5–10%). The
difference in the CAH in the four regions decreases from 40–54% (standard deviation is
13–17%) to 18–24% (standard deviation is 7–11%).

Figure 5 shows the TCA, CAH, CAM, and CAL in the four subregions of China in
winter from the nine observation datasets. From the characteristics of the clouds observed
in the NW region (Figure 5a), in the TCA (approximately 45%), the high-level cloud class
accounts for a relatively large proportion, with an average CAH reaching 20%, an average
CAM of approximately 10%, and a CAL of approximately 13%. In the TP region (Figure 5c),
high-level clouds also account for a relatively large proportion of the TCA, with an average
CAH reaching 30% and an average CAM of approximately 15%. However, in the NE and
SC regions, the mid- and low-level cloud classes dominate in winter. In the SC region, the
average CAM and CAL are more than 20%, while the CAH is less than 20%. The TCA in
the four subregions is in the range of 27–56%, as shown in Figure 5, revealing significant
regional variability. The consistency of the results in the SC region is the best, where the
TCA spread ranges from 49.3% to 76.2%. The NE region shows the highest TCA values,
reaching up to 56%. The range of the CAL in the NE area is the largest, reaching 63%, while
the range of CAL in the SC area is the smallest, reaching 34%. It is worth noting that in
the NW and NE regions, the larger difference in the TCA is mainly because the TCAs of
MODIS-ST and TOVSB are larger than those of the other datasets. In the NW region, there
are many high-level clouds. CALIPSO is the most sensitive to thin cirrus clouds. AIRS-LMD
and TOVSB also have a strong ability to recognize thin cirrus clouds. However, the TCAs of
MODIS-ST and TOVSB are much larger than those of the CALIPSO-ST, CALIPSO-CE, and
AIRS-LMD datasets in the NW and NE regions. Wang et al. [19] analyzed the differences in
the TCA between the ISCCP products and ground observations and noted that in snow
covered areas in the north, satellites sometimes misclassified snow as low-level clouds,
resulting in falsely high satellite observations. From the cloud amounts at different heights,
the CALs of MODIS-ST and TOVSB are abnormally large, likely due to misclassification
caused by snow cover in winter, so the MODIS-ST and TOVSB datasets are not suitable for
analyzing clouds in the north in winter; however, this issue does not exist in the south. In
conclusion, the AIRS-LMD, CALIPSO-GOCCP, CALIPSO-ST, MODIS-CE, and PATMOSX
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datasets show the strong ability to identify the TCA and different types of clouds across
the different regions.
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Figure 5. Averaged winter total cloud amount (TCA), high-level cloud amount (CAH), mid-level
cloud amount (CAM), and low-level cloud amount (CAL) at 13:30 local time across different satellite
datasets over four subregions of China: (a) NW region; (b) NE region; (c) TP region; and (d) SC region
(unit: %), with symbols marked for different datasets. The box–whisker plot shows the maximum,
minimum, upper quartile, lower quartile, and median for all datasets, and the black dots represent
the algorithm mean. The specific values of the maximum and minimum values are also marked on
the box–whisker plot.

If the range and standard deviation of the different datasets are recalculated based on
these datasets, the results show that the range of TCA is decreased from 27–56% (standard
deviation is 8–16%) to 6–18% (standard deviation is 2–8%) in winter. Excluding the TP
region, the range of the CALs decreases from 34–63% (standard deviation is 11–19%) to
7–21% (standard deviation is 3–10%). In summer, the range of TCA decreases from 32–49%
(standard deviation is 11–15%) to 12–23% (standard deviation is 5–10%). In summary, if
the datasets with cloud identification issues are excluded, the range of TCA caused by the
observation instruments and inversion algorithms is increased from 6% to 23%, among
which the summer observations vary widely, from 12% to 23%, and the difference in winter
observations is small, ranging from 6% to 18%.
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The results of all observation times were considered in the previous section, while in
this section, the influence of the observation time is excluded. The standard deviations of
TCA in the NW, NE, TP, and SC regions in the previous section are different from those
reported in this section, suggesting that the observation time can have an impact on the
dispersion of the satellite cloud amount products.

3.3. Impact of Observation Time on Satellite Observations

In order to quantitatively understand the contribution of observation time on the TCA
difference amongst 11 satellite datasets, we further present the observation time and the
corresponding TCA over SC in Table 2 (summer) and Table 3 (winter) for each satellite
cloud dataset, as well as the mean cloud amount averaged over all observation times and
different satellite datasets.

Table 2. Total cloud amount across the different observation times (local time) and different datasets
in summer over south China (unit: %). M_mean is the mean cloud amount averaged over all datasets
at each specific observation time; M_range is the TCA range for all satellite datasets; T_mean is
the mean cloud amount averaged over all observation times for each satellite dataset; and T_range
is the TCA range among different observation times. Bold value with an underscore is the mean
value averaged over 11 satellite datasets at all observation times, and bold and italic value is for
station observation.

01:30 03:00 07:30 09:00 10:30 13:30 15:00 19:30 21:00 22:30 T_mean T_range

ISCCP-D1 66.5 75.4 80.8 69.2 72.9 14.3
PATMOSX 74.7 67 80.6 74.8 75.8 13.6
MODIS-CE 66.9 71.8 76.9 67.2 70.4 10
MODIS-ST 79.1 79.1 83 75.5 78.5 7.5

HIRS 55.3 51.3 51.3 55.2 53.2 4
TOVSB 79.2 76.7 84.1 80.4 79.9 7.4

AIRS-LMD 82 81.9 81.9 0.1
CALIPSO-GOCCP 78.6 83.6 81.6 5

CALIPSO-ST 85.5 89.6 88.2 4.1
POLDER 74.2 74.2 0

MISR 65.9 65.9 0
M_mean 75.2 66.5 65.0 75.4 72.3 78.4 80.8 70.1 69.2 71.4 74.8 6.0
M_range 30.2 0 25.4 0 13.2 38.3 0 25.2 0 8.3 35
station 74.6

Table 3. Total cloud amount across the different observation times (local time) and different datasets
in winter over south China (unit: %). M_mean is the mean cloud amount averaged over all datasets at
each specific observation time; M_range is the TCA range for all satellite datasets; T_mean is the mean
cloud amount averaged over all observation times for each satellite dataset; and T_range is the TCA
range among different observation times. Bold value with an underscore is the mean value averaged
over 11 satellite datasets at all observation times, and bold and italic value is for station observation.

01:30 03:00 07:30 09:00 10:30 13:30 15:00 19:30 21:00 22:30 T_mean T_range

ISCCP-D1 47.4 56.3 68.1 50.3 55.5 20.7
PATMOSX 58.6 65.6 57.6 52.3 58.5 13.3
MODIS-CE 54.3 60.7 63.7 53.8 58.2 9.9
MODIS-ST 75.6 70.8 69.8 71 71.8 5.8

HIRS 59.8 58.9 49.3 54 55.1 10.6
TOVSB 57.1 56.3 69.1 50.7 56.2 18.4

AIRS-LMD 57.8 76.2 66.9 18.4
CALIPSO-GOCCP 69.6 71.4 69.4 1.8

CALIPSO-ST 78.3 76 76.8 3.3
POLDER 65.1 65.1 0

MISR 56.3 56.3 0
M_mean 63.9 47.4 60.3 56.3 62.6 66.4 68.1 52.3 50.3 62.4 62.7 9.3
M_range 24 0 9.3 0 14.5 26.9 0 3.3 0 17.2 21.7
station 63.6
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In summer (Table 2), based on the observation results collected at different times, the
TCA is largest in the afternoon. The observation result of the ISCCP dataset at 0300 PM
is 80.8%, and the average observation result of all other satellite datasets at 13:30 reaches
78.4%. The average observation result at 0730 AM is the smallest, reaching 65%. The
difference in the TCA between the different datasets in the afternoon is the largest, reaching
38.3%. From the results of the daily variability in the TCA in the different datasets, the
summer diurnal change in the TCA of the ISCCP dataset is the largest, reaching 14.3%,
followed by PATMOSX, reaching 13.6%. The daily change in the TCA of the remaining
datasets does not exceed 10%.

The diurnal variation in the TCA in winter (Table 3) is similar to that in summer, and
it also reaches its maximum in the afternoon. Among them, the observation result of the
ISCCP dataset at 0300 PM is 68.1%, and the average result of the other datasets is 66.4%.
In the afternoon, the range of the different datasets is the largest, reaching 26.9%. From
the perspective of the diurnal variation seen in the different datasets, the dataset with the
largest diurnal variation in the TCA in winter is ISCCP, reaching 20.7%, followed by TOVSB
and AIRS-LMD, both of which exceeded 18%. In general, the diurnal variation in the TCA
in south China in winter is greater than that in summer.

Generally, the results for the NW, NE, and TP regions (shown in Supplementary
Materials) are similar to those for the SC region. The total cloud cover in these three regions
also reaches the maximum in the afternoon, the diurnal variation in winter is greater than
in summer, and the ISCCP dataset has the largest diurnal variation in all regions in summer,
which is consistent with the results in the SC region. However, in winter, the diurnal
variation of the PATMOSX dataset is even larger, reaching 36.9% in the NW region.

To further quantify the impact of the diurnal cycle on the uncertainties of TCA between
different datasets, six datasets with four observation times per day were selected for
comparison: the ISCCP, PATMOSX, MODIS-CE, MODIS-ST, HIRS, and TOVSB datasets.
The observation time of the ISCCP dataset lags by one and a half hours behind the other
four sets of data.

Figures 6 and 7 show the TCA and the cloud amount at different heights at four obser-
vation times in summer and winter, respectively. For most datasets, the TCA is the largest
at noon and the smallest occurs at night, which is consistent with previous research [48], in-
dicating that the formation of land clouds is affected by the underlying surface temperature
or the effect of local geothermal convection caused by heating. According to the results of
Liu et al. [48], the peak CAL appears at the same time as the peak TCA, while the high-level
cloud shows a different feature; the maximum cloud amount appears during the period
ranging from afternoon to night. In addition, the unique circulation caused by topography
in China regulates the time of the peak high-level cloud amounts. Therefore, the peak CAH
appears at 18:00, but in the lower reaches of the Tibetan Plateau, the peak CAH lags to
03:00. The similar diurnal cycle feature of the high- and low-level clouds can be found in
Figures 6 and 7. It is also found that the different datasets have different diurnal cycles of
the TCA, resulting in different dispersions between the datasets at each observation time.
For example, the TCA of PATMOSX in summer varies from 67% to 80.6%, with the TCA
being the largest in the afternoon and smallest in the morning and evening. Conversely,
the TCA of HIRS is the smallest in the afternoon and largest at night. This results in a
greater dataset dispersion in the afternoon. At different observation times in summer, the
differences between the datasets range from 23.9% to 32.8%, with the largest difference
occurring in the afternoon and the smallest difference occurring in the early morning.
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According to the analysis described above, HIRS has erroneous observations of the
TCA. HIRS shows a diurnal cycle with the smallest TCA in the afternoon and the largest
cloud amount at night, which is the opposite of the other datasets. This is mainly because
HIRS poorly identifies low- and mid-level clouds. Therefore, the diurnal cycle of TCA
in the HIRS dataset is similar to that of CAH. If the HIRS dataset is excluded, the range
of TCA observations is reduced from 23.9–32.8% to 7.2–13.2%. There are also issues with
the diurnal cycling of cloud amounts of different heights introduced by using the ISCCP
dataset. These problems may result from the misclassification of thin and high-level clouds
above the low-level clouds as mid-level clouds, and may also be due to the worse inversion
results reported at night than during the daytime. Further investigation into the calibration
and algorithm is needed to uncover the reasons for the erroneous diurnal cycles of TCA
by HIRS.

The diurnal cycle of the TCA in winter is similar to that in summer. The difference
between the datasets ranges from 14.5% to 28.2%. The difference between the observations
is the smallest in the morning and is the largest at dawn. In addition to the aforementioned
issues associated with the HIRS dataset, the diurnal cycle of MODIS-ST is also the opposite
of that of other datasets, mainly because the CAL is significantly larger at night in winter.
If the MODIS-ST and HIRS datasets are excluded, the range of TCAs can be reduced from
20.6–28.2% to 4.5–11.5%. The TCA deviation range of the different observation times is
far less than the difference of approximately 20% resulting from the different observation
instruments or inversion algorithms.

3.4. Seasonal Variations of Cloud Amount

Figure 8 shows the seasonal variations in the TCA for each dataset and the ensemble
mean across the four regions. The yearly peaks are also shown in the gray area. The station
data show that there are distinct seasonal variations in the cloud amount across the four
regions. In the NW region, the maximum value of TCA is 56%, which appears in June, and
the minimum value is 32.6%, which appears in November, with a span of 23.4%. In the
NE region, the maximum value of TCA appears in July, reaching 66.9%, and the minimum
value appears in January, reaching 28.7%. The TP region has the largest seasonal variation,
with the difference between the maximum value in July (69.9%) and the minimum value in
November (29.2%) reaching 43.1%. The SC region has the smallest seasonal variation of
only 21.9%, of which the maximum value occurs in June (78%) and the minimum value
occurs in December (56.1%). Most datasets show similar seasonal variability, with the
largest cloud amount occurring in summer and the smallest cloud amount occurring in fall
and winter in most datasets, although the magnitudes are quite different. Slight regional
differences in the seasonal cycle can also be found, with the peak ensemble mean TCAs
found in June for the SC, NE, and NW regions, but in July and August for the TP region.
Of the four regions, SC shows the smallest standard deviation among all datasets for all
12 months, with the smallest standard deviation seen in February and the largest standard
deviation seen in August. The TP region shows the largest standard deviations for all
12 months, with a minimum standard deviation in October and a maximum standard
deviation in February and March. Despite the similarity between most datasets, there are
some datasets that show quite different seasonal variation features from the other compared
datasets in certain regions. In the NW and NE regions, the TCAs from MODIS-ST and HIRS
show their peaks in December and January, and the smallest TCAs are found in September
and October. In the TP region, the HIRS TCA shows the smallest cloud amount from June
to October and the largest cloud amount from January to March, which is the opposite of
the features seen in other datasets.
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Figure 8. The seasonal cycle characteristics of TCA in different regions of China. The station represents
the observation data of the station, and the shading indicates the month of the peak. (a) NW region;
(b) NE region; (c) TP region; and (d) SC region. The thick red line with a red pentagram is for station
observation data.

Note that the satellite estimates of TCA (in terms of the means of multiple datasets) are
systematically larger than the ground-based observations in winter in most regions (except
SC). This can be explained by the fact that the northern China and Tibetan Plateau regions
are covered with snow at times in winter, and snow may be misjudged as low clouds in
satellite observations, leading to the overestimation of TCA [49]. In addition, the northern
region is mainly covered by thin high clouds in winter, which may be missed by the station
observation made manually by the meteorological observers. This underestimation of
station observation may be more pronounced at night.

3.5. Interannual Variations and Trends

Figure 9 shows the interannual variations in the TCA in summer and winter across
the four regions. From the results of the TCA derived from the site data, it can be seen that
there are differences in the interannual variability of the TCA across the different regions. In
summer, the NW region has the smallest interannual variability of only 2.1%. The summer
interannual variabilities in the NE, TP, and SC regions are 3.8%, 3.8%, and 3.3%, respectively.
The SC area in winter is the area that shows the most significant interannual variability of
4.4%. The other three regions report values of 3.8%, 2.6%, and 3.8%. In summer, except that
the TCA of the HIRS dataset is relatively small in all regions, other datasets are close to
the site data, especially in the TP and SC regions, where the satellite observation results
are more concentrated. The interannual variation of TCA in winter is greater than that in
summer, especially in the NW, NE, and TP regions. The results of satellite data in winter
are highly dispersed, and only the data in the SC region are concentrated.
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Figure 9. Interannual variation characteristics of the TCA in summer and winter in the different
regions of China. (a,b) NW region; (c,d) NE region; (e,f) TP region; and (g,h) SC region. The
red pentagram (red lines) represents site observations, and the other colored symbols represent
results from different satellite datasets. The bold lines denote the linear regressions for the three
satellites (HIRS, ISCCP, PATMOSTX) with more than 20-year observations available and for the
station observation.

The temporal correlation coefficients of the TCA between the satellite datasets and site
data in the NW, NE, SC, and TP regions are calculated and shown in Table 4. For correlation
calculations, the observation periods need to be long enough. Only the products with more
than 5 years of the same observation year are selected to calculate the correlation coefficients.
In total, seven datasets (HIRS, ISCCP-D1, MISR, MODIS-CE, MODIS-ST, PATMOSX, and
TOVSB) are used to calculate the correlation coefficients (Table 4).
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Table 4. The temporal correlation coefficients (TCC) of the TCA between the satellite datasets and
station data over NW, NE, TP, and SC regions of China in summer and winter, respectively. The STD
represents the interannual variability of TCA for each dataset.

JJA DJF

TCC STD (%) TCC STD (%)

NW

Station data - 2.1 - 3.8
HIRS 0.13 2.2 0.34 3.7

ISCCP-D1 0.75 2.0 0.80 3.4
MISR 0.08 2.2 0.86 4.7

MODIS-CE 0.91 2.4 0.57 4.4
MODIS-ST 0.95 2.5 0.98 3.8
PATMOSX 0.52 3.3 0.21 6.7

TOVSB 0.97 2.8 −0.12 1.3

NE

Station data - 3.8 - 2.6
HIRS −0.08 1.7 0.18 4.8

ISCCP-D1 0.75 2.6 0.50 3.9
MISR 0.77 5.0 −0.47 3.1

MODIS-CE 0.93 4.0 0.57 2.8
MODIS-ST 0.95 4.9 0.98 4.0
PATMOSX 0.84 4.7 −0.23 8.0

TOVSB 0.88 2.6 0.30 1.4

TP

Station data - 3.8 - 3.8
HIRS 0.09 4.0 −0.19 4.3

ISCCP-D1 0.76 2.3 0.82 4.7
MISR 0.49 2.0 0.58 4.3

MODIS-CE 0.83 2.1 0.78 3.8
MODIS-ST 0.91 2.8 0.89 4.3
PATMOSX 0.68 3.6 0.65 6.9

TOVSB 0.90 3.3 0.86 2.8

SC

Station data - 3.3 - 4.4
HIRS 0.23 4.7 0.06 4.1

ISCCP-D1 0.82 2.8 0.73 2.9
MISR 0.72 2.6 0.83 4.2

MODIS-CE 0.90 2.9 0.79 4.4
MODIS-ST 0.93 2.7 0.78 3.5
PATMOSX 0.79 4.0 0.72 4.6

TOVSB 0.99 3.2 0.71 4.8

In summer, the temporal correlation coefficients of TCAs between most satellite
datasets and site data are greater than 0.7, which indicates that the results of the satellite
datasets are consistent with the site data, except for HIRS. In winter, the SC region and the
TP region are the regions with the best correlation between the TCA of satellite observations
and the TCA of the site data, while the NE region is the region with the worst temporal
correlation. In general, ISCCP-D1, MODIS-CE, and MODIS-ST have the best correlation
with the site data, and the temporal correlation coefficient can reach more than 0.5 in all
regions. The TCA of the PATMOSX dataset also has high temporal correlation with that of
the site data, except for the NW and NE regions in winter.

Note that two satellite products (MISR and TOVSB) deviate significantly from the
station observations, with a low correlation coefficient (around zero) in certain seasons
(summer for MISR, winter for TOVSB). This may be linked to the caveats in the algorithm
or calibration of these satellite retrievals, and further investigation is needed to uncover
the reasons.

For trend analysis, three datasets with more than 20-year observations (HIRS, ISCCP,
PATMOSTX) are used for the comparison with station observation (Figure 9). The station
observations show that TCA decreases with a linear trend of −0.05/year and −0.01/year
for summer and winter, respectively, in NW during 1986–2005. The TCA also decreases
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in NE, but with a stronger decreasing trend (−0.2/year and −0.08/year for summer and
winter, respectively) than in NW. Different trends of TCA are found for summer (0.22/year)
and winter (−0.03/year) in TP. In SC, there is an increasing trend of TCA in both summer
(0.1/year) and winter (0.06/year).

Compared to the station observation, none of the three datasets (HIRS, ISCCP, PAT-
MOSTX) capture the trend of TCA except in TP, where all three datasets show an increasing
trend of summer TCA. In particular, the increasing trend of summer TCA in TP shown in
HIRS (0.24/year) and PATMOSTX (0.19/year) is close to the station observation (0.22/year).
PATMOSTX also captures the decreasing trend of summer TCA in NE well (−0.24/year)
compared to the station observation (0.2/year). In addition, although HIRS shows the
opposite trend of winter TCA in NW (0.14/year) compared to the station observation
(−0.01/year), HIRS captures the decreasing trend of summer TCA well, with a similar
magnitude (−0.06/year) to the station observation (−0.05/year). Similarly, ISCCP captures
the increasing trend of summer TCA in SC (0.15/year), but shows a very weak trend (near
zero) compared to the increasing trend of winter TCA in SC (0.06/year). All three datasets
show a decreasing trend of winter TCA in SC, which is the opposite of the increasing trend
in the station observation. Overall, the three products show different trends of TCA in most
regions, and none of them overperforms the other datasets in any region.

Here, the comparison of temporal variations of TCA between satellites and station
observations are based on the season mean in summer and winter. In fact, the difference
between satellite and station observations for a specific month (e.g., June, July, August)
is generally similar to that for the seasonal mean (Figure 10). The root mean square error
(RMSE) in monthly TCA between the satellites and station observation is close to that in
seasonal mean TCA. This suggests that the conclusion for the difference in seasonal mean
TCA can be applied to that for monthly TCA.
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Figure 10. Temporal variations of TCA averaged over four regions of China in June, July, and August.
(a–c) NW region; (d–f) NE region; (g–i) TP region; and (j–l) SC region. The red pentagram (red
lines) represents site observations, and the other colored symbols represent results from different
satellite datasets.
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4. Discussion

Satellite measurement is the only approach that can provide a continuous survey of
cloud distribution at the continental to the global scale and has been widely used for climate
change and variability studies, as well as for model evaluation and improvement. The
differences in the cloud amount and its seasonal and interannual variation in China found
among 11 current cloud products not only reveal the complexity of the cloud features in the
East Asian monsoon region, but also demonstrate the large uncertainties and difficulties
associated with cloud retrievals from different satellite observations.

This study compares the 11 satellite cloud products with ground station observations.
However, it should be noted that the ground station data themselves also involve a consid-
erable amount of uncertainty, especially in the Tibetan Plateau, where the ground stations
are sparsely distributed. Meanwhile, the interpolation of station data to grid points also
introduces new errors. In the future, cloud products in the Tibetan Plateau should be further
evaluated so that they can be better applied in model evaluation and climate research.

The remarkable differences in the cloud amounts over China can be attributed to
the different sensitivities of the observational instruments to thin clouds (e.g., cirrus)
and classification algorithms for each cloud type. The partitioning of the individual
contributions from these two factors to the uncertainty associated with cloud detection
needs to be further investigated in the future.

In the report of the GEWEX cloud assessment project, only the results of the different
situations of the world, land, and sea areas were analyzed, and the conditions in East Asia
were not analyzed. However, the principle behind cloud satellite detections and inversion
mechanisms are applicable to all regions of the world. For example, the conclusion that the
CALIPSO satellites are more sensitive to thin cloud detection, that MISR is not sensitive
to cirrus clouds on land, and that HIRS is not sensitive to low-level clouds on land are
still applicable to East Asia. However, the simulation results of some models across
the individual regions are abnormal, which cannot be explained by the abovementioned
reasons. For example, MODIS-ST reports abnormal winter CAL in the NW and NE regions,
but no abnormalities in the TP and SC regions. This may be due to the presence of snow
in winter, which causes MODIS-ST to misclassify low-level clouds. In this regard, further
analysis is needed in the future.

When analyzing the temporal variability of clouds, this report pointed out that day-
night and daytime sampling differences among the datasets with no change in method
(IR sounders and lidar) reflect random differences expressed in a change in the resulting
coverage percentage. CALIPSO seems to have a slightly smaller detection sensitivity for
thin cirrus during the day. Day–night differences in the TCA for ISCCP correspond to less
than 10% over land. It also pointed out that most datasets show a similar seasonal cycle.
These conclusions are more consistent with the analysis results in China.

Cloud statistics depend on the instrument’s retrieval capability to detect clouds. These
satellite cloud products are very valuable for climate studies and model evaluation. When
they are used for comparisons with climate models, observation times and retrieval filtering
must be considered. This can be achieved by the Cloud Feedback Model Intercomparison
Project (CFMIP) Observation Simulator Package (COSP) [50]. COSP is a software tool that
facilitates the use of satellite data to evaluate models in a consistent way.

5. Conclusions

In this study, we compare the spatial and temporal variations in TCA over China
from the 11 datasets provided by the GEWEX cloud assessment project, and use the
site data as a reference. Our results show that all of the products show similar spatial
distributions of clouds over China, with the largest cloud amount observed in the Sichuan
Basin and adjacent regions located east of the Tibetan Plateau, and the smallest cloud
amount observed in the arid regions of northern China and Mongolia. However, the
magnitude of the annual mean cloud amount differs significantly, with amplitudes up to
40–60% in certain regions, and the regional averaged difference over China reaches 20%.
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Over the four typical subregions, the largest cloud amount difference among the datasets
is found in the TP region, with the standard deviation of the annual cloud amount being
approximately 13%; the smallest difference is found in the SC region, with the standard
deviation being approximately 9%. Moreover, differences in the cloud amount are larger
in winter (17.6% for TP and 11% for SC) than in summer (13.5% for TP and 10.1% for SC).
In terms of the different levels of cloud amount, the high-level cloud amount (CAH) is
found to exhibit large standard deviations, which are very similar to those for the TCA. In
summer, the CAH shows larger standard deviations than the TCA.

The influence of different instruments or inversion algorithms and observation times
are further analyzed in this study. First, we discuss the differences and applicability of the
different cloud products separately for different seasons and regions after eliminating the
influence of observation time. The results indicate that the ISCCP, MODIS-ST, and TOVSB
datasets are not suitable for analyzing clouds in the north in winter, but this issue does
not exist in the south. The AIRS-LMD, CALIPSO-GOCCP, CALIPSO-ST, MODIS-CE, and
PATMOSX datasets show a strong ability to identify the TCA and different types of clouds
in different regions both in summer and winter. The difference in the TCA caused by the
observation instruments and the inversion algorithms reaches approximately 20%, among
which the summer observations vary widely from 14% to 23%, and the difference in winter
observations is small, ranging from 6% to 17%. Second, we analyze the influence of the
observation time using the ISCCP, PATMOSX, MODIS-CE, MODIS-ST, HIRS, and TOVSB
datasets. In summer, the TCA of HIRS shows a diurnal cycle feature, which is the opposite
of the other datasets. If the HIRS dataset is excluded, the difference between the remaining
observations is reduced from 23.9–32.8% to 7.2–13.2%. In winter, the TCAs of HIRS and
MODIS-ST show a diurnal cycle feature in contrast to the other datasets. If the MODIS-ST
and HIRS datasets are excluded, the difference between the TCAs can be reduced from
20.6–28.2% to 4.5–11.5%. The TCA deviation range across the different observation times
is far less than the difference of approximately 20% caused by the different observation
instruments or inversion algorithms.

For the seasonal variations, most cloud products show similar features, with the largest
cloud amount in summer and smallest in fall and winter. The standard deviations of the
monthly cloud amount are the largest on the TP, ranging from 10.6% in October to 16% in
February and March, and they are the smallest in SC, with standard deviations generally
less than 8.8%. Furthermore, different seasonal cycles are found in two datasets (MODIS-ST
and HIRS) over the northern part of China (NW and NE), where the largest cloud amount
is found in winter and the smallest is found in September and October. In addition, in the
TP region, HIRS tends to provide a seasonal cycle that is the opposite of the other datasets.

In terms of interannual variation, seven datasets (HIRS, ISCCP-D1, MISR, MODIS-
CE, MODIS-ST, PATMOSX, and TOVSB) are selected here to investigate the interannual
variability in the TCA. By analyzing the correlation between the interannual variation
of the total cloud amount of satellite datasets and site data, it is found that the temporal
correlation coefficients of TCAs between most satellite datasets and site data are greater
than 0.7 in summer. In winter, the TCAs of satellite datasets in the SC and TP regions are
more consistent with the TCA of the site data. The ISCCP-D1, MODIS-CE, and MODIS-ST
have better performance in interannual variation. The temporal characteristics of the total
cloud amount of PATMOSX in summer are more consistent with the site data than in winter.
In general, the temporal and spatial characteristics of the MODIS-CE in China show the best
performance when compared with other satellite datasets. As for ISCCP-D1, the temporal
variation characteristics are quite consistent with the site data, but there are problems with
the spatial distribution.

Overall, the findings from this study further suggest the complicated features of the
cloud characteristics over China, and the large uncertainties amongst current satellite cloud
products. More caution should be taken when selecting a satellite cloud product for the
evaluation of climate model performance in the cloud simulation. In this respect, the results
shown here are very useful for the selection of satellite cloud products in different aspects of
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climate studies, including spatial distribution, seasonal cycles, and interannual variations.
For example, some satellite products deviate greatly from the station observation for the
interannual variations of TCA for one season, yet can exhibit high reliability for another
season (Table 4), and it is therefore necessary to select the product with high reliability for
interannual variability studies.

Note that some differences between the satellite measurements and station obser-
vations shown in this study may partly result from the uncertainties in the station ob-
servations, although these uncertainties are unavailable and, thus, are not provided in
the dataset. Therefore, the quantification of measurement uncertainties as well as the
further development of station observations are also desirable to improve the datasets for
validating satellite measurements. In addition, further improvements to cloud detection
methodologies are also necessary for the development of new cloud products for climate
studies in the future [51,52].
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summer over NE region (unit: %), Table S4: Total cloud amount across the different observation times
and different datasets in winter over NE region (unit: %), Table S5: Total cloud amount across the
different observation times and different datasets in summer over TP region (unit: %), Table S6: Total
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