Monitoring Annual Land Use/Land Cover Change in the Tucson Metropolitan Area with Google Earth Engine (1986–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Data and Pre-Processing
2.3. Image Transformation and Ancillary Data
2.4. Training and Validation Data
2.5. Classification and Post-Processing
3. Results
3.1. Variable Importance
3.2. Classification Accuracy Assessment
3.3. Trends in LULC Changes in the Upper Santa Cruz Watershed
4. Discussion
4.1. Urbanization Patterns in the Upper Santa Cruz Watershed
4.2. Main Drivers of Inaccuracies in Our Yearly Classifications
4.3. Paths for Expanding and Improving the Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheridan, T.E. Arizona: A History, Rev. ed.; Southwest Center Series; University of Arizona Press: Tucson, AZ, USA, 2012; ISBN 978-0-8165-0687-3. [Google Scholar]
- Devine, D. Tucson: A History of the Old Pueblo from the 1854 Gadsden Purchase; McFarland & Company, Inc.: Jefferson, NC, USA, 2015; ISBN 978-0-7864-9710-2. [Google Scholar]
- Norman, L.M.; Feller, M.; Villarreal, M.L. Developing Spatially Explicit Footprints of Plausible Land-Use Scenarios in the Santa Cruz Watershed, Arizona and Sonora. Landsc. Urban Plan. 2012, 107, 225–235. [Google Scholar] [CrossRef] [Green Version]
- U.S. Census Bureau. 2020 Census Results. Available online: https://data.census.gov/ (accessed on 14 April 2022).
- Le Tourneau, F.-M.; Dubertret, F. Space and water, key factors of urban growth in the South-Western United States: Case study of Tucson and Pima County (Arizona). Espace Géographique 2019, 48, 39–56. [Google Scholar] [CrossRef]
- Sheridan, T.E. Cows, Condos, and the Contested Commons: The Political Ecology of Ranching on the Arizona-Sonora Borderlands. Hum. Organ. 2001, 60, 141–152. [Google Scholar] [CrossRef]
- Vukomanovic, J.; Vogler, J.B.; Petrasova, A. Modeling the Connection between Viewscapes and Home Locations in a Rapidly Exurbanizing Region. Comput. Environ. Urban Syst. 2019, 78, 101388. [Google Scholar] [CrossRef]
- Niraula, R.; Meixner, T.; Norman, L.M. Determining the Importance of Model Calibration for Forecasting Absolute/Relative Changes in Streamflow from LULC and Climate Changes. J. Hydrol. 2015, 522, 439–451. [Google Scholar] [CrossRef]
- Norman, L.; Tallent-Halsell, N.; Labiosa, W.; Weber, M.; McCoy, A.; Hirschboeck, K.; Callegary, J.; Van Riper, C.; Gray, F. Developing an Ecosystem Services Online Decision Support Tool to Assess the Impacts of Climate Change and Urban Growth in the Santa Cruz Watershed; Where We Live, Work, and Play. Sustainability 2010, 2, 2044–2069. [Google Scholar] [CrossRef] [Green Version]
- Villarreal, M.L.; Norman, L.M.; Boykin, K.G.; Wallace, C.S.A. Biodiversity Losses and Conservation Trade-Offs: Assessing Future Urban Growth Scenarios for a North American Trade Corridor. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2013, 9, 90–103. [Google Scholar] [CrossRef]
- Norman, L.M.; Villarreal, M.L.; Lara-Valencia, F.; Yuan, Y.; Nie, W.; Wilson, S.; Amaya, G.; Sleeter, R. Mapping Socio-Environmentally Vulnerable Populations Access and Exposure to Ecosystem Services at the U.S.–Mexico Borderlands. Appl. Geogr. 2012, 34, 413–424. [Google Scholar] [CrossRef]
- Yang, Z.; Dominguez, F.; Gupta, H.; Zeng, X.; Norman, L. Urban Effects on Regional Climate: A Case Study in the Phoenix and Tucson “Sun Corridor”. Earth Interact. 2016, 20, 1–25. [Google Scholar] [CrossRef]
- Garfin, G.; Jardine, A.; Merideth, R.; Black, M.; LeRoy, S. Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment; A report by the Southwest Climate Alliance; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Gonzalez, P.; Garfin, G.M.; Breshears, D.; Brooks, K.; Brown, H.E.; Elias, E.; Gunasekara, A.; Huntly, N.; Maldonado, J.K.; Mantua, N.J.; et al. Chapter 25: Southwest. In Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; pp. 1101–1184. [Google Scholar] [CrossRef]
- Ghasemi Tousi, E.; O’Brien, W.; Doulabian, S.; Shadmehri Toosi, A. Climate Changes Impact on Stormwater Infrastructure Design in Tucson Arizona. Sustain. Cities Soc. 2021, 72, 103014. [Google Scholar] [CrossRef]
- Latifovic, R.; Homer, C.; Ressl, R.; Pouliot, D.A.; Hossian, S.; Colditz, R.; Olthof, I.; Chandra, G.; Victoria, A. North American Land Change Monitoring System. In Remote Sensing of Land Use and Land Cover: Principles and Applications; Giri, C.P., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 303–324. [Google Scholar] [CrossRef]
- Brown, J.F.; Tollerud, H.J.; Barber, C.P.; Zhou, Q.; Dwyer, J.L.; Vogelmann, J.E.; Loveland, T.R.; Woodcock, C.E.; Stehman, S.V.; Zhu, Z.; et al. Lessons Learned Implementing an Operational Continuous United States National Land Change Monitoring Capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) Approach. Remote Sens. Environ. 2020, 238, 111356. [Google Scholar] [CrossRef]
- Auch, R.F.; Wellington, D.F.; Taylor, J.L.; Stehman, S.V.; Tollerud, H.J.; Brown, J.F.; Loveland, T.R.; Pengra, B.W.; Horton, J.A.; Zhu, Z.; et al. Conterminous United States Land-Cover Change (1985–2016): New Insights from Annual Time Series. Land 2022, 11, 298. [Google Scholar] [CrossRef]
- Villarreal, M.; Norman, L.; Wallace, C.; van Riper, C. A Multitemporal (1979–2009) Land-Use/Land-Cover Dataset of the Binational Santa Cruz Watershed. In Open-File Report 2011–1131; U.S. Geological Survey: Reston, VA, USA, 2011; p. 26. [Google Scholar]
- Wickham, J.; Homer, C.; Vogelmann, J.; McKerrow, A.; Mueller, R.; Herold, N.; Coulston, J. The Multi-Resolution Land Characteristics (MRLC) Consortium—20 Years of Development and Integration of USA National Land Cover Data. Remote Sens. 2014, 6, 7424–7441. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Egorov, A.; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Turubanova, S.A.; Roy, D.P.; Goetz, S.J.; Loveland, T.R.; Ju, J.; et al. Monitoring Conterminous United States (CONUS) Land Cover Change with Web-Enabled Landsat Data (WELD). Remote Sens. Environ. 2014, 140, 466–484. [Google Scholar] [CrossRef] [Green Version]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S.; et al. Conterminous United States Land Cover Change Patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhu, Z.; Cao, W. A National Dataset of 30 m Annual Urban Extent Dynamics (1985–2015) in the Conterminous United States. Earth Syst. Sci. Data 2020, 12, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Lark, T.J.; Mueller, R.M.; Johnson, D.M.; Gibbs, H.K. Measuring Land-Use and Land-Cover Change Using the U.S. Department of Agriculture’s Cropland Data Layer: Cautions and Recommendations. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 224–235. [Google Scholar] [CrossRef]
- Farahani, M.; Mohammadzadeh, A. Domain Adaptation for Unsupervised Change Detection of Multisensor Multitemporal Remote-Sensing Images. Int. J. Remote Sens. 2020, 41, 3902–3923. [Google Scholar] [CrossRef]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification Using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Casu, F.; Manunta, M.; Agram, P.S.; Crippen, R.E. Big Remotely Sensed Data: Tools, Applications and Experiences. Remote Sens. Environ. 2017, 202, 1–2. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Huang, H.; Chen, W.; Zhang, Y.; Qiao, L.; Du, Y. Analysis of Ecological Quality in Lhasa Metropolitan Area during 1990–2017 Based on Remote Sensing and Google Earth Engine Platform. J. Geogr. Sci. 2021, 31, 265–280. [Google Scholar] [CrossRef]
- Xie, S.; Liu, L.; Zhang, X.; Yang, J.; Chen, X.; Gao, Y. Automatic Land-Cover Mapping Using Landsat Time-Series Data Based on Google Earth Engine. Remote Sens. 2019, 11, 3023. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land Cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Xiao, W.; He, T.; Deng, X.; Chen, W. Extraction of Built-up Area Using Multi-Sensor Data—A Case Study Based on Google Earth Engine in Zhejiang Province, China. Int. J. Remote Sens. 2021, 42, 389–404. [Google Scholar] [CrossRef]
- Souza, C.M., Jr.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Xia, H.; Zhao, J.; Qin, Y.; Yang, J.; Cui, Y.; Song, H.; Ma, L.; Jin, N.; Meng, Q. Changes in Water Surface Area during 1989–2017 in the Huai River Basin Using Landsat Data and Google Earth Engine. Remote Sens. 2019, 11, 1824. [Google Scholar] [CrossRef] [Green Version]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Diao, C.; Xian, G.; Yin, D.; Lu, Y.; Zou, S.; Erickson, T.A. A Summary of the Special Issue on Remote Sensing of Land Change Science with Google Earth Engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-Resolution Multi-Temporal Mapping of Global Urban Land Using Landsat Images Based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, C.; Chen, X.; Gao, Y.; Xie, S.; Zhang, B. Development of a Global 30 m Impervious Surface Map Using Multisource and Multitemporal Remote Sensing Datasets with the Google Earth Engine Platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Gu, Y.; Jiang, W.; Xue, Y.; Hu, Q.; LaGrange, T.; Bishop, A.; Drahota, J.; Li, R. Assessing Nebraska Playa Wetland Inundation Status during 1985–2015 Using Landsat Data and Google Earth Engine. Environ. Monit. Assess. 2016, 188, 654. [Google Scholar] [CrossRef] [PubMed]
- Floreano, I.X.; de Moraes, L.A.F. Land Use/Land Cover (LULC) Analysis (2009–2019) with Google Earth Engine and 2030 Prediction Using Markov-CA in the Rondônia State, Brazil. Environ. Monit. Assess. 2021, 193, 239. [Google Scholar] [CrossRef]
- Nechyba, T.J.; Walsh, R.P. Urban Sprawl. J. Econ. Perspect. 2004, 18, 177–200. [Google Scholar] [CrossRef] [Green Version]
- Dubertret, F.; Le Tourneau, F.-M.; Villareal, M.; Norman, L. Annual (1986–2020) Land-Use/Land Cover Maps of the Tucson Metropolitan Area, Arizona. U.S. Geological Survey. 2022. Available online: https://www.sciencebase.gov/catalog/item/61fc4f6cd34e622189cbd903 (accessed on 14 April 2022).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. USGS National Hydrography Dataset Plus High Resolution (NHDPlus HR) for 4-Digit Hydrologic Unit-1505 (Published 20180813). Available online: https://www.sciencebase.gov/catalog/item/5d30c292e4b01d82ce84aa32 (accessed on 14 April 2022).
- Global Administrative Areas Digital Geospatial Data. University of California, Berkeley, Museum of Vertebrate Zoology and the International Rice Research Institute. Available online: http://www.gadm.org/ (accessed on 14 April 2022).
- Wallace, C.; Villarreal, M.; Norman, L. Development of a High-Resolution Binational Vegetation Map of the Santa Cruz River Riparian Corridor and Surrounding Watershed, Southern Arizona and Northern Sonora, Mexico. In Open-File Report 2011-1143; U.S. Geological Survey: Reston, VA, USA, 2011; p. 22. [Google Scholar] [CrossRef]
- Norman, L.; Donelson, A.; Pfeifer, E.; Lam, A. Colonia Development and Land Use Change in Ambos Nogales, United States-Mexican Border. In Open-File Report 2006-1112; U.S. Geological Survey: Reston, VA, USA, 2006; p. 121. [Google Scholar] [CrossRef]
- Norman, L.M.; Wallace, C.S.A. Mapping Land Use/Land Cover in the Ambos Nogales Study Area. In Open-File Report 2008-1378; U.S. Geological Survey: Reston, VA, USA, 2008. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Hagolle, O.; Colin, J. Several Issues Found in Recent Papers on Cloud Detection Published in MDPI Remote Sensing. Available online: https://labo.obs-mip.fr/multitemp/issues-with-mdpi-remote-sensing-recent-papers-on-cloud-detection/ (accessed on 14 April 2022).
- Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A General Method to Normalize Landsat Reflectance Data to Nadir BRDF Adjusted Reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS + C: A Modified Sun-Canopy-Sensor Topographic Correction in Forested Terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Dong, C.; Zhao, G.; Meng, Y.; Li, B.; Peng, B. The Effect of Topographic Correction on Forest Tree Species Classification Accuracy. Remote Sens. 2020, 12, 787. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Zhao, J.; Liu, L.; Wang, J. Comparision of Eight Topographic Correction Algorithms Applied to Landsat-8 OLI Imagery Based on the DEM. IOP Conf. Ser. Earth Environ. Sci. 2020, 428, 012051. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Jiménez, R.; Romero-Calcerrada, R.; Ramos-Bernal, R.; Arrogante-Funes, P.; Novillo, C. Topographic Correction to Landsat Imagery through Slope Classification by Applying the SCS + C Method in Mountainous Forest Areas. ISPRS Int. J. Geo-Inf. 2017, 6, 287. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Bramhe, V.S.; Ghosh, S.K.; Garg, P.K. Extraction of Built-Up Area by Combining Textural Features and Spectral Indices from LANDSAT-8 Multispectral Image. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 425, 727–733. [Google Scholar] [CrossRef] [Green Version]
- Rasul, A.; Balzter, H.; Ibrahim, G.R.F.; Hameed, H.M.; Wheeler, J.; Adamu, B.; Ibrahim, S.; Najmaddin, P.M. Applying Built-Up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates. Land 2018, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA Spatial Modeling of Plant Species Distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Weiss, A.D. Topographic Position and Landforms Analysis. In Proceedings of the ESRI User Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the Topographic Position Index to Heterogeneous Landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Practical Guidelines for Choosing GLCM Textures to Use in Landscape Classification Tasks over a Range of Moderate Spatial Scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Collins, J.B.; Woodcock, C.E. An Assessment of Several Linear Change Detection Techniques for Mapping Forest Mortality Using Multitemporal Landsat TM Data. Remote Sens. Environ. 1996, 56, 66–77. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a Tasselled Cap Transformation Based on Landsat 8 At-Satellite Reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K. Mapping Crop Cover Using Multi-Temporal Landsat 8 OLI Imagery. Int. J. Remote Sens. 2017, 38, 4348–4361. [Google Scholar] [CrossRef] [Green Version]
- OSM Contributors Planet Dump [Data File from 2021/04/12]. Available online: https://planet.openstreetmap.org (accessed on 14 April 2022).
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the Conterminous United States—Representing a Decade of Land Cover Change Information. Photogramm. Eng. Remote Sens. 2015, 81, 346–354. [Google Scholar] [CrossRef]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A New Generation of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for Land Cover Classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.K. The Random Subspace Method for Constructing Decision Forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- ESA Land Cover CCI Product User Guide Version 2. Technical Report. 2017. Available online: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 14 April 2022).
- Radwan, T.M.; Blackburn, G.A.; Whyatt, J.D.; Atkinson, P.M. Global Land Cover Trajectories and Transitions. Sci. Rep. 2021, 11, 12814. [Google Scholar] [CrossRef]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land Cover Classification and Change Analysis of the Twin Cities (Minnesota) Metropolitan Area by Multitemporal Landsat Remote Sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Villarreal, M.L.; Norman, L.M.; Webb, R.H.; Turner, R.M. Historical and Contemporary Geographic Data Reveal Complex Spatial and Temporal Responses of Vegetation to Climate and Land Stewardship. Land 2013, 2, 194–224. [Google Scholar] [CrossRef]
- Munson, S.M.; Sankey, T.T.; Xian, G.; Villarreal, M.L.; Homer, C.G. Decadal Shifts in Grass and Woody Plant Cover Are Driven by Prolonged Drying and Modified by Topo-Edaphic Properties. Ecol. Appl. 2016, 26, 2480–2494. [Google Scholar] [CrossRef] [PubMed]
- Laushman, K.; Munson, S.; Villarreal, M. Wildfire Risk and Hazardous Fuel Reduction Treatments Along the US-Mexico Border: A Review of the Science (1986–2019). Air Soil Water Res. 2020, 13, 117862212095027. [Google Scholar] [CrossRef]
- Finco, M.; Quayle, B.; Zhang, Y.; Lecker, J.; Megown, K.A.; Brewer, C.K. Monitoring Trends and Burn Severity (MTBS): Monitoring Wildfire Activity for the Past Quarter Century Using Landsat Data. In Proceedings of the Forest Inventory and Analysis (FIA) Symposium, Baltimore, MD, USA, 4–6 December 2012. [Google Scholar]
- MTBS. Data Access Burned Areas Boundaries Dataset—MTBS Project (USDA Forest Service/U.S. Geological Survey). Available online: http://mtbs.gov/direct-download (accessed on 14 April 2022).
- U.S. Census Bureau. TIGER/Line Shapefile: Arizona, Current Place State-Based, 2020 [GIS Dataset]. Available online: https://www2.census.gov/geo/tiger/TIGER2020/PLACE/ (accessed on 14 April 2022).
- Heim, C.E. Leapfrogging, Urban Sprawl, and Growth Management: Phoenix, 1950-2000. Am. J. Econ. Sociol. 2001, 60, 245–283. [Google Scholar] [CrossRef]
- Auch, R.; Taylor, J.; Acevedo, W. Urban Growth in American Cities: Glimpses of U.S. Urbanization; U.S. Geological Survey: Reston, VA, USA, 2004. [CrossRef]
- Euzen, A.; Morehouse, B. De l’abondance à la raison: Manières d’habiter à travers l’usage de l’eau dans une région semi-aride, l’exemple de Tucson en Arizona. Norois 2014, 231, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Serrat-Capdevila, A. The Tucson Basin: Natural and Human History. In Water Bankruptcy in the Land of Plenty; CRC Press: Boca Raton, FL, USA, 2017; pp. 27–44. [Google Scholar]
- Poupeau, F.; Gupta, H.V.; Serrat-Capdevila, A.; Sans-Fuentes, M.A.; Harris, S.; Hayde, L.G. Water Bankruptcy in the Land of Plenty; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-138-02969-9. [Google Scholar]
- Logan, M.F. Fighting Sprawl and City Hall: Resistance to Urban Growth in the Southwest, 1945–1965; University of Arizona: Tucson, AZ, USA, 1994. [Google Scholar]
- Pima County. Multi-Species Conservation Plan for Pima County, Arizona: Final; The Arizona Ecological Services Office of the U.S. Fish and Wildlife Service: Tucson, AZ, USA, 2016.
- Verhoeye, J.; De Wulf, R. Land Cover Mapping at Sub-Pixel Scales Using Linear Optimization Techniques. Remote Sens. Environ. 2002, 79, 96–104. [Google Scholar] [CrossRef]
- Ge, Y.; Jiang, Y.; Chen, Y.; Stein, A.; Jiang, D.; Jia, Y. Designing an Experiment to Investigate Subpixel Mapping as an Alternative Method to Obtain Land Use/Land Cover Maps. Remote Sens. 2016, 8, 360. [Google Scholar] [CrossRef] [Green Version]
- MacLachlan, A.; Roberts, G.; Biggs, E.; Boruff, B. Subpixel Land-Cover Classification for Improved Urban Area Estimates Using Landsat. Int. J. Remote Sens. 2017, 38, 5763–5792. [Google Scholar] [CrossRef]
Variable | Formula | Refs. |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | [56] | |
Normalized Difference Water Index (NDWI) | [57] | |
Normalized Difference Built-up Index (NDBI) | [58] | |
Built-up Area Extraction Index (BAEI) | [58] | |
Normalized Difference Bareness Index (NDBai) | [58] | |
Dry Built-up Index (DBI) | [59] | |
Dry Bare-Soil Index (DBSI) | [59] | |
Topographic Position Index (TPI) | Elevation—Mean (Elevation in 15 pixel radius) | [43,60,61,62] |
Gray-Level Co-Occurrence Matrix (GLCM) Textural Correlation | [63] | |
Gray-Level Co-Occurrence Matrix (GLCM) Textural Contrast | [63] | |
Multitemporal Kauth-Thomas (MKT) | See references | [64,65,66] |
Class | Description (Percentages Are Indicative) |
---|---|
11. Water | Area dominated by open water (>50%). |
21. Developed, Roads | Mixture of constructed material (<20%) and vegetation. |
22. Urban, Low Density | Mixture of constructed material (20 to 50%) and vegetation. |
23. Urban, Medium Density | Mixture of constructed material (50 to 80%) and vegetation. |
24. Urban, High Density | Mostly constructed material (80 to 100%). |
31. Barren, Washes | Barren lands (vegetation < 15%) in intermittent streams washes (Arroyos). |
32. Barren, Mines | Barren lands (vegetation < 15%) in mines (pits, tailings, etc.). |
41. Deciduous Forest | Area dominated by mesquite (>20%) greater than 2 m tall and shedding their foliage. Mostly along floodplains and arroyos. |
42. Evergreen Forest | Area dominated by trees (>20%) greater than 5 m tall with permanent foliage. Mostly oaks, junipers and pine. |
43. Rocky Outcrops1 | Occasional outcrops of bedrock in evergreen-dominated areas. |
52. Shrubs | Area dominated by shrubs and cacti (>20%) less than 5 m tall. |
53. Shrubs, Dark1 | Shrubs on dark, volcanic ground influencing spectral signature. |
54. Shrubs, Bright1 | Shrubs on bright, sandy ground influencing spectral signature. |
71. Grassland | Areas dominated by graminoid or herbaceous vegetation (>80%). Natural vegetation which can be used for grazing. |
81. Pasture and Parks | Perennial areas of grasses (>20%) planted for livestock grazing or for recreational areas (parks, golfs, etc.). |
82. Cultivated Crops | Areas used for the production of annual crops (>20%). |
83. Nut-Tree Plantations1 | Areas used for the production of nuts trees (>20%), mostly pecan. |
91. Riparian Forest | Areas dominated by woody vegetation (>20%) greater than or equal to 5 m in height. Mostly cottonwoods in arroyos. |
Classes | 11 | 21 | 22 | 23 | 24 | 31 | 32 | 41 | 42 | 52 | 71 | 81 | 82 | 91 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11. Water | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.02% | 0.01% | 0.01% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.06% | |
21. Developed. Roads | 0.11% | 0.01% | 0.05% | 0.17% | |||||||||||
22. Urban. Low Density | 0.16% | 1.38% | 0.35% | 1.89% | |||||||||||
23. Urban. Med. Density | 0.02% | 1.43% | 0.43% | 1.88% | |||||||||||
24. Urban. High Density | 0.05% | 0.26% | 0.50% | 0.81% | |||||||||||
31. Barren. Washes | 0.00% | 0.02% | 0.10% | 0.02% | 0.03% | 0.13% | 1.00% | 0.06% | 1.93% | 0.10% | 0.04% | 0.04% | 0.07% | 3.55% | |
32. Barren. Mines | 0.03% | 0.01% | 0.20% | 0.26% | 0.17% | 0.10% | 0.03% | 0.03% | 1.13% | 0.00% | 0.01% | 0.01% | 0.00% | 1.98% | |
41. Deciduous Forest | 0.01% | 0.09% | 0.14% | 0.00% | 0.01% | 0.73% | 0.04% | 5.16% | 14.43% | 7.49% | 0.08% | 0.19% | 0.37% | 28.75% | |
42. Evergreen Forest | 0.01% | 0.01% | 0.04% | 0.01% | 0.00% | 0.06% | 0.02% | 4.47% | 2.41% | 0.02% | 0.00% | 0.01% | 0.07% | 7.13% | |
52. Shrubs | 0.01% | 0.19% | 1.14% | 0.22% | 0.14% | 1.71% | 1.37% | 14.63% | 2.18% | 9.91% | 0.13% | 0.49% | 0.00% | 32.13% | |
71. Grassland | 0.00% | 0.00% | 0.01% | 0.00% | 0.00% | 0.09% | 0.01% | 7.74% | 0.02% | 11.33% | 0.01% | 0.03% | 0.00% | 19.23% | |
81. Pasture and Parks | 0.00% | 0.00% | 0.05% | 0.01% | 0.01% | 0.03% | 0.01% | 0.09% | 0.00% | 0.04% | 0.00% | 0.17% | 0.01% | 0.42% | |
82. Cultivated Crops | 0.00% | 0.00% | 0.02% | 0.00% | 0.00% | 0.04% | 0.01% | 0.26% | 0.01% | 0.57% | 0.04% | 0.18% | 0.04% | 1.17% | |
91. Riparian Forest | 0.00% | 0.00% | 0.01% | 0.00% | 0.00% | 0.10% | 0.00% | 0.53% | 0.12% | 0.02% | 0.00% | 0.01% | 0.04% | 0.84% | |
Total | 0.06% | 0.55% | 3.51% | 2.42% | 1.20% | 2.87% | 1.61% | 28.75% | 7.60% | 31.86% | 17.57% | 0.46% | 0.98% | 0.57% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubertret, F.; Le Tourneau, F.-M.; Villarreal, M.L.; Norman, L.M. Monitoring Annual Land Use/Land Cover Change in the Tucson Metropolitan Area with Google Earth Engine (1986–2020). Remote Sens. 2022, 14, 2127. https://doi.org/10.3390/rs14092127
Dubertret F, Le Tourneau F-M, Villarreal ML, Norman LM. Monitoring Annual Land Use/Land Cover Change in the Tucson Metropolitan Area with Google Earth Engine (1986–2020). Remote Sensing. 2022; 14(9):2127. https://doi.org/10.3390/rs14092127
Chicago/Turabian StyleDubertret, Fabrice, François-Michel Le Tourneau, Miguel L. Villarreal, and Laura M. Norman. 2022. "Monitoring Annual Land Use/Land Cover Change in the Tucson Metropolitan Area with Google Earth Engine (1986–2020)" Remote Sensing 14, no. 9: 2127. https://doi.org/10.3390/rs14092127
APA StyleDubertret, F., Le Tourneau, F. -M., Villarreal, M. L., & Norman, L. M. (2022). Monitoring Annual Land Use/Land Cover Change in the Tucson Metropolitan Area with Google Earth Engine (1986–2020). Remote Sensing, 14(9), 2127. https://doi.org/10.3390/rs14092127