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Abstract: Various subpixel mapping (SPM) methods have been proposed as downscaling techniques
to reduce uncertainty in classifying mixed pixels. Such methods can provide category maps of a
higher spatial resolution than the original input images. The aim of this study was to explore and
validate the potential of SPM as an alternative method for obtaining land use/land cover (LULC)
maps of regions where high-spatial-resolution LULC maps are unavailable. An experimental design
was proposed to evaluate the feasibility of SPM for providing the alternative LULC maps. A case
study was implemented in the Jingjinji region of China. SPM results for spatial resolutions of
500-100 m were derived from a single 1-km synthetic fraction image using two representative SPM
methods. The 1-km synthetic fraction image was assumed to be error free. Accuracy assessment and
analysis showed that overall accuracies of the SPM results were reduced from about 85% to 75% with
increasing spatial resolution, and that producer’s accuracies varied considerably from about 62% to
93%. SPM performed best when handling areal features in comparison with linear and point features.
The highest accuracies were achieved for areas with the lowest complexity. The study concluded
that the results from SPM could provide an alternative LULC data source with acceptable accuracy,
especially in areas with low complexity and with a large proportion of areal features.

Keywords: subpixel mapping; downscaling; land use/land cover; experimental design

1. Introduction

Various aspects of land use and land cover (LULC) are important in geo-information,
environmental, and socioeconomic applications [1]. Remote sensing is a cost-effective and efficient
means to obtain data for LULC monitoring over large land surfaces at a variety of spatial and temporal
scales [2]. The presence of mixed pixels in remote sensing images, however, can cause difficulties in
the extraction of accurate LULC information because their spectral characteristics reflect the composite
signature of different LULC classes [3]. Soft classification (or spectral unmixing) methods have been
proposed to address this problem by estimating the memberships of LULC classes within a pixel [4].
Unfortunately, such techniques might be unable to provide any indication of the spatial distribution
of such LULC classes within each mixed pixel [5]. Alternatively, subpixel mapping (SPM) may be
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used as a post-processing step of soft classification to reduce the uncertainty in the spatial distribution
of the subpixels within each mixed pixel. SPM, initially proposed by Atkinson [5], decomposes
each mixed pixel into a fixed number of subpixels based on a zoom factor and it then assigns these
subpixels to specific LULC classes [6,7]. It can be considered a classifier that transforms fraction
images (i.e., the output of soft classifications) into a hard classification map at the subpixel scales [8].
In contrast to common classifiers, SPM can produce a LULC map with finer spatial resolution than
the original moderate- or low-spatial-resolution input image [8]. Thus, SPM offers a solution to the
tradeoff between the spatial resolution of a sensor and its spectrum. It can process mixed pixels in
low-, moderate-, and high-spatial-resolution imagery and thus save on the cost of obtaining images
with higher spatial resolution [9,10]. In particular, in the analysis of LULC time series data, e.g.,
for change detection, SPM can be applied to low- or moderate-resolution images acquired in an
earlier phase to produce LULC maps with spatial resolution consistent with maps produced from
high-spatial-resolution images acquired during the current phase. It is therefore attractive to use SPM
to derive finer-resolution LULC maps from coarser-resolution remote sensing images.

Since 1997, a number of techniques related to SPM have been developed. These include
Hopfield neural networks [9,11], back-propagation neural networks [12], pixel swapping [13,14],
spatial attraction models [15,16], indicator co-kriging [17,18], Markov random fields [19-21], advanced
artificial intelligence-based algorithms [22,23], interpolation-based methods [24-26], and geometric
methods [27,28]. To date, more than 200 articles on SPM methods have been published, a few of which
have focused on applications for special classes, such as urban tree identification [29], urban building
extraction [30], and lake area estimation [31]. Generally, however, these articles have focused on the
development of SPM methods and performed relatively well. Little if any consideration has been given
to whether SPM could feasibly provide alternative LULC data in practical applications for large and
complex regions where high-resolution LULC maps are lacking. Moreover, no research has examined
how landscape heterogeneity [32], the different spatial distribution patterns (i.e., areal, linear, or point
patterns) of geographical objects [8,33], and zoom factors affect the performance of SPM in practical
applications over large areas.

The objective of this study was to propose an experimental design to investigate the feasibility of
using SPM to obtain LULC data in the absence of high-spatial-resolution LULC maps. Meanwhile, a
combined index (CI) of landscape shape index (LSI) and areal pattern proportion (APP) was developed
to explore the relationship between land surface complexity and the performance of SPM results.
In the experimental design, the impact factors, such as zoom factor and land surface complexity, of
SPM were explored to provide indications regarding practical applications. Different to most previous
SPM studies that have concentrated on methodological development, this study was intended to
provide practical guidelines for users to obtain LULC data using SPM. To assess the effectiveness of
the experimental design, a case study of the Jingjinji region of China was implemented.

2. Experimental Design

The experimental design is presented in Figure 1. First, SPM is implemented to obtain
finer-resolution LULC maps. The specific steps include the extraction of fraction images and reference
data from remote sensing images or existing datasets, setting more than three zoom factors, and
selecting at least two representative SPM algorithms to generate SPM maps. Second, the performance
of the SPM is evaluated by analysis of the results, including accuracy assessment indices, i.e., overall
accuracy (OA), Kappa coefficient (KP), producer’s accuracy (PA), and user’s accuracy (UA), spatial
distribution patterns of geographical objects and landscape heterogeneity. Third, the impact of the
SPM results is analyzed based on the zoom factors, different class levels, and SPM results in different
subareas with different LSI, APP and CI.



Remote Sens. 2016, 8, 360 3of 21

Soft classifier Aggregation

Remote sensing images Existing datasets

[ v

Classification system / Fraction images ;

i Application demand |

Set zoom factors

Select SPM methods

A 4 A 4
SPM results Reference data Hard classification

I I
[ |

Accuracy assessment

— | Entire image Each cl Y
g'; Ry asrsm? LSI and APP in subareas

,,,,,, Af (e.g., county)
v Each class
Accuracy assessment in subareas TLSI ;

(e.g., county)

| | SPM performance v 1
Different zoom factors Different LST Different APP Different CI
Allclasses Eachcla%% All classes Each Class All classes Each Class All classes Each Class
v
An assessment of SPM as an alternative method to obtain land use data

Zoom factor_| [ LSI | APP | Cl
1 I I

]
All classes

e oy —————— I S [ dorg ——>]

Figure 1. Flowchart of the experimental design.

2.1. Step 1: Implementation of SPM Methods

We first use SPM methods to obtain a classification map with a spatial resolution finer than that
of the input data. Input data for SPM are the fraction images that express the proportion of each class
within individual pixels. Fraction images can be used to determine the number of subpixels for each
class within mixed pixels with a given zoom factor. The zoom factor is set to determine how many
subpixels are in a pixel and to determine the spatial resolution of the SPM results.

2.1.1. Extracting Fraction Images and Reference Data

We distinguish two ways to obtain fraction images: soft classification from real remote sensing
images and generation from existing LULC datasets such as upscaled data from high spatial-resolution
classification data. For real remote sensing images, soft classification uses a classifier, such as a
Bayesian or a support vector machine soft classifier, to directly generate fraction images with values
ranging from 0 to 1 that indicate the proportion or possibility of pixels belonging to each class.
Another way to extract fraction images is to aggregate existing classification data to simulate the
output of soft classification, such as the Resources and Environmental Scientific Data Center of the
Chinese Academy of Sciences [34], National Land Cover Data 1992 [35], and Global Land Cover
datasets [36]. Usually, a mean filter (such as 3 x 3 pixels) or a regular polygon are used to calculate the
class proportions within the mean filter or the polygon from the existing classification data to produce
fraction images [7,13,17,18,33].

Reference data can be obtained in two ways: (1) validation points of ground truth for the SPM of
real remote sensing images; and (2) reference maps for the SPM of synthetic fraction images degraded
from existing classification data. Note that, for synthetic fraction images, each SPM map should have
its corresponding reference map to ensure they have the same spatial resolution and size. The reference
map is classified maps, which can be aggregated from existing classification datasets. More details for
the generation of the reference maps can be discussed in Section 3.1.
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2.1.2. Setting Zoom Factors

The zoom factor Z is a critical parameter that divides each coarse pixel in the fraction images
into Z x Z finer subpixels. With the zoom factor of Z, the number of subpixels for each class within
mixed pixels can be calculated by multiplying the class proportion by Z2. Theoretically, it could be
any integer value (>1) but an appropriate zoom factor should meet three requirements: (1) express the
surface adequately; (2) retain the accuracy within an acceptable range; and (3) provide SPM output at
the desired spatial resolution for practical applications, e.g., change detection requires maps with the
same spatial resolution pertaining to different times. Therefore, selection of the optimal zoom factor
could be considered the search for the optimal scale of SPM and several zoom factors should be tested
and compared.

2.1.3. Selecting the SPM Algorithm

Different methods are suited to different situations because each has its own characteristics.
Most SPM methods are based on spatial correlation, and therefore they are good at dealing with
areal patterns. Some of these, such as pixel swapping [13] and Hopfield neural networks [9], involve
iteration processes; thus, they require longer processing time. Others, such as geostatistics [37],
are based on pattern prediction, and are more suited to dealing with point features. These methods
use training images to predict subpixel distributions, and therefore auxiliary high-spatial-resolution
data are essential for the training sample. Selection of any SPM method should meet the requirements
of the application according to the specific situation, e.g., different land surfaces or types of LULC
classes. To explore the potential of different SPM methods, two or more representative SPM methods
should be used.

2.2. Step 2: Assessment of the SPM Output

SPM output is usually assessed using a confusion matrix and its statistical metrics. The reference
data for the accuracy assessment are considered the correct classification of the surface; thus, the
agreement between the SPM output and the reference data is considered to reflect the effectiveness
of the SPM. In SPM, the spatial pattern of LULC is also significant in determining the classification
results and to their accuracies. Thus, the SPM output is assessed in terms of accuracy assessments and
the values of the landscape pattern index [38].

2.2.1. Accuracy Assessment

The accuracy of the SPM output is evaluated using a confusion matrix [2]. This matrix presents
the differences between the SPM output and the reference data, where the diagonal elements show
correct classifications and the others represent commission and omission errors for each class [2].
Four accuracy assessment indices (OA, KP, PA, and UA) are extracted from the confusion matrices
to provide a quantitative assessment of the SPM results [2]. Both OA and KP measure the degree of
agreement between the classification results and the reference data [2]. The difference between OA
and KP is that KP excludes the possibility that a pixel might be classified correctly by randomness [2].
PA measures the ratio of pixels within a certain class in the reference map that are classified correctly
in the classification map. Similarly, UA measures the ratio of pixels classified as a specific class in the
classification map with those that are actually in that class in the reference map. In the experimental
design, the accuracy of the SPM results with different zoom factors, at different class levels, and using
different SPM methods are assessed and compared. Note, similar to traditional accuracy assessments
for classified maps of remote sensing imagery, all subpixels within both pure and mixed pixels of
fraction images can be used in the accuracy assessment, because the experimental design aims to
investigate the overall performance of SPM for practical applications and because the LSI and the APP
are calculated in an area including both pure and mixed pixels.
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2.2.2. Landscape Heterogeneity Analysis

The LSI represents the measurement of spatial patterns, which could be the measurement of
area/edge, shape, core area, and aggregation. It can be calculated at both the landscape and the class
level, reflecting the measurement of the spatial pattern of the classification data over an entire area
or for each class, respectively. Of the various indices, the LSI is chosen as a measurement of surface
complexity because it has a direct interpretation for landscape heterogeneity [39]. It is defined as the
total length of patch edges within a landscape, divided by the total area, and adjusted by a constant
for a square standard. It is represented as

LSI = E/4VA 1

where E is the edge length and A is the patch area. The value of LSI begins at one and increases without
limit as the landscape shape becomes increasingly irregular. Note that the calculation of LSI needs
classified maps and each classified map can produce a LSI value by Equation (1).

2.2.3. Areal Pattern Proportion

The APP is an index with which to evaluate the areal spatial pattern, because most existing SPM
methods are suited to areal features [16,18,24,25,40]. The APP is equal to the area of features with areal
pattern, divided by the total area:

AIZT’L’EI

APP =
Agrea + Alinear + Apoint

@

where Agreq is the area of the areal features, Ay, is the area of features with linear pattern, and Aot
is the area of features with point pattern [33]. The sum of Aarea, Ajinear and Appint is the total area.
Aarea, Alinear and Apoiyt are extracted by a feature pattern recognition method [33]. First, all features are
segmented by the seeded region-growing model from each fraction image. Second, the shape-density
index is calculated for each extracted feature. Last, features are divided into the three types according
to different values of shape-density index. More details can be found in [33].

2.2.4. Combined Index

Both the LSI and the APP affect the performance of the SPM output. A CI of LSI and APP is
developed next to assess the performance of the SPM results:

Cl=axLSI+ B x APP 3)

where o and {3 are control parameters that balance the contribution of LSI and APP. To control the
range of parameters (—1 to 1) and of CI (0 to 1), the LSI is normalized into the range of 0 to 1.

2.2.5. Representative Spatial Pattern Classes

To investigate the performance of SPM in dealing with features with different spatial patterns,
some LULC classes are selected as representatives of areal, linear, and point features. In Geographical
Information Sciences research, geographical features are usually generalized and classified into
three types, i.e., polygon, polyline, and point, and these three patterns have been considered in
many applications [33]. Areal features refer to high-resolution (H-resolution) cases where pixels
are smaller than the features of interest, such as cropland and lakes, while point features refer
to low-resolution (L-resolution) cases where pixels are larger than the features of interest [8], e.g.,
buildings. Linear features differ from both areal and point features because pixels within this pattern
are both shorter and wider than the features of interest and they typically retain connectivity [33],
e.g., roads.



Remote Sens. 2016, 8, 360 6 of 21

2.3. Step 3: Analysis of SPM Performance

2.3.1. SPM Performance with Different Zoom Factors

Based on the accuracy assessment of all SPM output, the change of accuracy with different zoom
factors is analyzed. The accuracy might decrease with increasing zoom factor [6,24,40,41], and therefore
we are interested in establishing at which zoom factor the accuracy stabilizes.

2.3.2. SPM Performance of Different Classification Levels

Accuracies of SPM output at different classification levels are analyzed and compared.
In a hierarchical classification system, different classification levels reflect the surface to differing
degrees and they have different class amounts that also influence the SPM output.

2.3.3. SPM Performance of Different SPM Methods

The SPM output produced by different SPM methods is compared, and both similarities and
differences are explored. The accuracy range and its change over the entire study area and for each
class could also be discussed.

2.3.4. SPM Performance in Subareas with Different LSI Values

The spatial distribution of measurements calculated in subareas could be used to analyze SPM
performance with different LSI values. The change of accuracy with LSI value can be illustrated using
a scatterplot of measurements in subareas, where the LSI value is plotted as the x-axis and the accuracy
assessment, such as OA and PA, is plotted as the y-axis. The accuracy assessment for different LSI
ranges and the correlations between LSI and the accuracy assessment are calculated to explore the
relationship between accuracy and LSL

2.3.5. SPM Performance of Different Spatial Distribution Patterns

LULC classes with areal, linear, and point features are selected as representative features.
Their accuracy assessments are compared to investigate the performance of SPM in dealing with
different types of feature. Furthermore, the relationship between the APP values and accuracy
assessments is discussed, as are the scatterplots of measurements in subareas for the APP values and
accuracy assessments, and the correlation values between the APP and accuracy assessment.

2.3.6. Analysis of SPM Performance with CI Value

To analyze the relationship of SPM performance with both LSI and APP, the LSI and APP
values are used as variables in a regression of accuracy assessments to obtain an estimation equation.
Thus, when the LSI and APP values of a subarea are known, the equation could be used to estimate
the performance of SPM and consequently, to determine whether the use of SPM is appropriate.
Note, when exploring the relationship of the SPM results with the LSI, APP, and CI values, the LSI,
APP, and Cl indices and the accuracy of SPM results are calculated in county subareas.

3. Case Study

3.1. Study Area and Data

The study area of the Jingjinji region, encompassing Beijing, Tianjin, and Hebei provinces,
comprises an area of 220,000 km?. The Jingjinji region continues to play a considerable role in the
regional development of China because it contains the political and cultural center of Beijing and a
significant port city (Tianjin). The area mainly comprises cropland, most of which is represented by
dry land on the plains. The northern and western parts of the study area are characterized by hilly
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topography dominated by woodland and grassland. Built-up areas are dispersed widely throughout
the plains but are more concentrated along the coast.

The fraction images are degraded from land use data with 30-m spatial resolution
(Figure 2a,b), which are derived from Landsat TM imagery by means of human-machine interactive
interpretation [42]. The input data for the SPM are synthetic land use fraction images with 1-km
spatial resolution from 2005 (Figure 2c,d), provided by the Resources and Environmental Scientific
Data Center of the Chinese Academy of Sciences. This land use data mainly focus on classes associated
with human activities. In contrast to this, land cover data is more related to the physical and biological
cover of the earth’s land. To meet the requirements of many land resource management and ecological
applications in China, the Chinese Academy of Sciences launched a project for generating land use
datasets over China. This project was supported by many Chinese key technology research and
development programs. The 1-km land use fraction images can be freely obtained from the Resources
and Environmental Scientific Data Center, whereas the original 30-m spatial resolution classification
data are not freely available. The steps for the generation of 1-km-resolution fraction images and
reference data are as follows. (1) Polygons of the grids (such as the 1-km? grid) covering the Jingjinji
region are produced; (2) Proportions of the classes within each polygon are determined by dividing the
area of each class by the area of the polygon; (3) The estimated class proportions within each polygon
are converted into fraction images; (4) Reference maps are obtained by transforming (or hardening)
these fraction images with different spatial resolutions into labeled maps [16]. Additional details about
the 1-km fraction images and the 30-m land used data can be found at [34].

In practice, 1-km-spatial-resolution land use datasets are often too coarse to meet the requirements
of many geo-information applications [42]. Therefore, according to the experimental design,
SPM methods are employed to produce land use maps at a scale finer than 1-km spatial resolution and
they are freely provided for practical applications. The downscaling of these 1-km land use fraction
images serves as an alternative means for sharing these data. Reference data used in the accuracy
assessment are aggregated from the 30-m land use map and they have the same spatial resolution as
the SPM output. Errors in the generation of the 30-m land use maps from the remote sensing imagery
are not considered here, i.e., we assume the 30-m land use map is error free.

The classification system used for these data consists of several land use categories grouped into a
hierarchical nomenclature at two levels with names and codes, as shown in Table 1. The classification
system was designed by the Resources and Environmental Scientific Data Center of the Chinese
Academy of Sciences [34]. To explore the performance of SPM for different classification systems,
the two classification levels are tested. Level I contains six land use categories: cropland, woodland,
grassland, water, built-up, and bare land areas, each of which is separated into several subcategories at
Level II. The study area incorporates all six land use categories at Level I and 22 of the 25 land use
subcategories at Level II.

Table 1. Classification system used in this study at hierarchical levels I and II.

Level I Level 11
Cropland 11. paddy land, 12. dry land;
Woodland 21. forest land, 22. shrub land, 23. open forest land, 24. other forest land;

Grassland 31. high coverage grassland, 32. medium coverage grassland, 33. low coverage grassland;
Water 41. river, 42. lake, 43. reservoir, 44. glaciers and permanent snowfield *,
45. intertidal area, 46. beach;
Built-up 51. urban area, 52. rural area, 53. others construction land;
61. sandy, 62. Gobi ¥, 63. saline-alkali soil, 64. marshland, 65. bare land, 66. rock land,
Bareland

67. other unused land *.

*: Not included in study area.
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Figure 2. Original land use map with 30-m spatial resolution and fraction imagery with 1-km spatial
resolution. (a) Original map at Level I; (b) original map at Level II; (c) fraction imagery at Level I; and
(d) fraction imagery at Level II ((d-1) Paddy land; (d-2) Dry land; (d-3) Forest land; (d-4) Shrub land;
(d-5) Open Forest land; (d-6) Other Forest land; (d-7) High-coverage grassland; (d-8) Medium-coverage
grassland; (d-9) Low-coverage grassland; (d-10) River; (d-11) Lake; (d-12) Reservoir; (d-13) Intertidal
area; (d-14) Beach; (d-15) Urban area; (d-16) Rural area; (d-17) Other construction; (d-18) Sandy;
(d-19) Saline-alkali soil; (d-20) Marsh land; (d-21) Bare land; (d-22) Rock land).
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3.2. Experiments and Methods

To apply the experimental design as described in Section 2, the 1-km land use fraction images as
the input of SPM and reference data are generated by the four steps described in Section 3.1. The zoom
factor of the SPM is set at values from 2 up to 10 to generate the SPM results with spatial resolutions
of 500, 333, ... , and 100 m. For each zoom factor, there is a reference map that has the same spatial
resolution as the corresponding SPM result. For the accuracy assessment of the entire study area,
confusion matrices are calculated by comparing the SPM results with the corresponding reference
images. The OA, KP, PA, and UA values are extracted as statistical indices from the confusion matrices.
Note that, when exploring the relationships of LSI, APP, and CI to the accuracies of the SPM results,
the LSI, APP and, CI are calculated in units of county from the 250 m reference map at Level I while
OA and PA are also calculated in units of county by comparing the 250 m reference map with 250 m
SPM maps at Level L.

To explore the potential of different SPM methods, two representative SPM methods based
on spatial dependence are chosen: spatial-attraction-model-based subpixel mapping (SAMSPM)
and vectorial-boundary-based subpixel mapping (VBSPM). SAMSPM was proposed originally by
Mertens et al. (2006) and, subsequently, it has been applied successfully in several tests [6,16,22,23].
It is considered an efficient method for predicting the spatial distribution of LULC classes at subpixel
scale. VBSPM was proposed by Ge et al. (2014) to improve the geometric SPM method [28]. Similar to
SAMSPM, VBSPM is based on spatial dependence. These two SPM methods were chosen because
neither involves iteration and they are both more efficient than other methods, e.g., pixel-swapping [13,14]
for the generation of SPM maps with 22 classes over a large and complex area.

3.2.1. SAMSPM

SAMSPM uses the attraction between a subpixel and its neighboring pixels to represent the
measurement of spatial dependence in estimating the spatial distribution of subpixels within a mixed
pixel [15]. The attraction between a subpixel and its neighboring pixels is calculated using fraction
values in the neighborhood as

B Pij(c)
Pab(c) = Avg m“’ﬁ € Nt [pap) 4)

where p,;(c) is the raw attraction of subpixel py, (2, b=1,2, ..., S; S is the zoom factor) for class ¢
(c=1,2,...,C; Cis the class number); P,-]-(c) is the fraction value of pixel Pl-]- i=12 ..., M,
j=1,2,...,N;Mand N are the width and length of the image, respectively) for class c in neighborhood
Ni[pap] of subpixel pgp; d(pap,Pjj) is the distance between pixel P;; and subpixel p,p. Avgf} is the operator
that gets the mean of its arguments. Further details about SAMSPM can be found in [15].

3.2.2. VBSPM

VBSPM first geometrically partitions a mixed pixel and then estimates the locations and lengths
of the segments for each LULC class polygon within the mixed pixel using a vectorial boundary
extraction model, as shown in Equation (5). A ray-crossing algorithm is then used to determine the
LULC class of each subpixel within each vectorial boundary [27]:

] Pit1)c
Vie = Vi, © + { - PIC)P(H—I)CJFP(I'—])C’P(H'l)c # Pli1)e )
(1- D)k, Piiy1ye = Plic1ye

where V;.(?) and V. are the start and final locations of segment i (i =0,1,...,7) corresponding to
pixel P; (i=0,1,...,7)ofclassc (c=1,2, ..., C); Pi, Pi,1)., and P(.q) indicate the proportions of
class c in pixel P; and to the left and right of neighboring pixel P;, respectively. Further details can be
found in [27].
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3.3. Results and Analysis

3.3.1. SPM Output and Accuracies

Using the 1-km fraction images in Figure 2c,d as the inputs of SPM methods, representative
output of SAMSPM and VBSPM with spatial resolutions of 500 m (i.e., zoom factor = 2) and 100 m
(i.e., zoom factor = 10) at Levels I and II are shown in Figure 3. A similar spatial pattern is observed from
the study area and more detail is obviously resolved with increasing spatial resolution. It indicates
that SPM can produce maps at different spatial resolutions from the 1-km fraction images and that
these maps are visually similar to the original classification map.

(a-1) SASPM 500m gt (a-2) SASPM 100m _g (a-3) VBSPM 500m

0 100 200 - {o
KM &

Woodland - Grassland - Water - Built-up - Bareland

(b-2) SASPM 100m (b-3) VBSPM 500 (b-4) VBSPM 100

100 200

& KM

tevtt [ Jcropiand [N

(b-1) SASPM 500

SN 100 200
ha 0 KM KM
U left - Level 11
1 Paddyland [l other forest land [ %Y [ Urban land Saline-alkali soil

113°58'34"E
42° 55/ 27" N Dry land - High coverage grassland - Reservoir - Rural residential arca - Marshland
Lower right: Forest land - Medium coverage grassland - Intertidal area - Other construction land - Bare land
118°59'39"E - Shrub land - Low coverage grassland - Beach Sandy - Rock land

35°42'52"N - Open forest land - River

Figure 3. SPM output for spatial resolutions of 500 and 100 m: (a-1) and (a-2) SAMSPM output at Level I;
(a-3) and (a-4) VBSPM output at Level I; (b-1) and (b-2) SAMSPM output at Level II; and (b-3) and
(b-4) VBSPM output at Level II.

Entire Area

The OAs, KPs, PAs, and UAs of the SPM output obtained for Levels I and II are presented in
Figure 4. It shows that OA decreases from 85% to 77% at Level I and from 83% to 75% at Level I, as the
spatial resolution changes from 500 to 100 m. Similarly, KP decreases from 0.761 to 0.661 and from
0.751 to 0.656 at Levels I and II, respectively. Note, for a zoom factor greater than five, the accuracy
assessments remain stable with a value of OA approximately equal to 78% at Level I and to 75% at
Level II; generally, the OA is 2%—-3% larger at Level I than at Level II.
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Figure 4. OA, KP, PA, and UA of SAMSPM and VBSPM at Levels I and II. (a) OA and KP values of
SAMSPM and VBSPM at Level I and Level II; (b) PA and UA values of SAMSPM and VBSPM at Level I;
(c) PA and UA of SAMSPM and VBSPM values at Level I1.
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Each Class

At Level I, the PAs of the classes in SAMSPM have the same rank as in VBSPM for all zoom
factors. Cropland and woodland are highest, followed by grassland and water, and bare land and
built-up areas are the lowest, as shown in Figure 4. Cropland, which is distributed mainly in plain
areas, is the dominant land use class. It has the highest accuracy among the six classes at Level I
with a range of 83%-93% because of the large proportion of areal features. Woodland is distributed
mainly in the mountains and foothills. Its accuracy is the second highest among the six classes with
a range of 82%-89%, which is also attributable to the relatively large proportion of areal features.
Grassland is distributed mainly in the mountains, plateaus, and foothills. Its accuracy follows cropland
and woodland with a range of 66%-76% because it has a relatively complex distribution. Water is
distributed mainly in the plain and valley areas. It has relatively low accuracy with a range of 62%-88%
because of the large proportion of linear and point features. The built-up area is distributed mainly
in the plain areas. It has relatively low accuracy because of the large proportion of point features.
Bare land has accuracy of up to 82% because of the various pattern features. Note, the influence of
bare land on OA is limited because it accounts for only a very small proportion of the entire area.

At Level II, the PA and UA values vary much more than at Level I, as shown in Figure 4.
Paddy land and dry land, subdivided from cropland at Level I, have accuracies ranging from 79%
to 94%. The accuracies of forest, shrub land, and open forest land, subdivided from woodland at
Level I, all range from 63% to 86% because they have similar areal features. The high, medium, and
low coverages of grassland, subdivided from grassland at Level I, have similar patterns and accuracies
ranging from 63% to 77%. Rivers, lakes, reservoirs, intertidal areas, and beaches, subdivided from
water at Level I, have various accuracies. Intertidal areas have the highest accuracy because of the
areal features distributed along the shoreline. Lakes and reservoirs also have relatively high accuracy
ranging from 74% to 87% because of their areal patterns, whereas rivers have lower accuracy (<68%)
because of their linear patterns. Urban areas, rural areas, and other construction land, subdivided from
built-up areas in Level I, have varying accuracies. Urban areas have high accuracy ranging from 87%
to 92% because most urban areas have a large patch size. Rural areas have relatively low accuracy
(<70%) because the class patches are small, even though some are smaller or similar to the fraction
pixel size (1 km?). Other construction land has relatively high accuracy ranging from 72% to 90%.
Classes subdivided from bare land at Level I also have various accuracies. For example, marshland
and saline-alkali soil have relatively high accuracies of 71% and 65%, respectively, whereas rock land
with linear pattern and bare and sandy land with complex patterns have relatively low accuracies at
Level II of about 30%, 40%, and 53%, respectively.

3.3.2. Relationship between LSI and Accuracies within Subareas

Figure 5 shows the LSI values calculated in units of county from the reference map (Level I) at a
spatial resolution of 250-m. Generally, the mountainous areas in the north and west have relatively
high LSI values, whereas the plains in central and southeastern areas have relatively low LSI values.
At the class level, the mountainous areas in the north and east have relatively low LSI values for
cropland, woodland, and grassland. Woodland in central parts and water both have LSI values with
only small differences.

To explore the relationship between LSI and the accuracy measurements in units of county, the
OA and PA values (y-axis) are plotted against LSI (x-axis) in Figure 6. Apparently, the OA values show
a declining trend as LSI grows. The same trend is found for the classes of cropland and built-up areas.
Water has relatively low LSI values but its PA values are widely separated. The plotted dots for built-up
areas can be separated into two groups: one group has the same trend as the OA (i.e., the PA values
decline as LSI grows), and the other group shows the PA values tending to increase with the increase
of LSI. This may be due to the presence of two types of spatial pattern features: point features with LSI
values of near one and low SPM accuracy, and areal features with high SPM accuracy. Figure 6 shows
that OA has a relatively strong negative correlation of —0.75 with LSI, whereas PA has a low correlation
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with LSl in grassland, woodland and built-up areas. Less complex areas, with low LSI values, usually
have high accuracy because of the stronger spatial correlation between pixels/subpixels and lower
uncertainty in class allocation. Some classes, however, might contain many regular point features with
low LSI values and low class accuracy. The reason for this may be that spatial correlation only works if
the patch size is smaller than the pixel size. When predicting subpixel classes using neighboring pixel
information, SPM may not perform well. This reveals that areas with low LSI values and classes with
areal features usually have high accuracy.
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Figure 5. LSI values calculated for each county: (a) LSI for all classes; (b-1)—(b-6) LSI for each class.
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Figure 6. Correlation between LSI value (x-axis) and accuracy assessment (y-axis).
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The average OA and PA values in units of county within the different LSI ranges are displayed
in Table 2. It shows that units of county with an LSI range of 14 have an average OA of 85%, units
of county with an LSI range of 4-7 have an average OA of 79%, units of county with an LSI range
of 7-10 have an average OA of 75%, and units of county with an LSI value >10 have an average OA
of 70%—71%. The PA values for cropland tend to decline with the increase of LSI. The PA values for
grassland and water are relatively low for small LSI values but they remain relatively high for median
LSI values. The average PA values for woodland are relatively low (61.48%) when the value of LSI is
within the range 14, whereas they remain relatively high when the value of LSI is within the range
4-13. The PA values for built-up areas tend to increase with the increase of LSI. Furthermore, some
average PA values show large jumps that could be caused by extreme values.

Table 2. Average OA and PA in units of county with different LSI ranges.

LSI Range 1-4 4-7 7-10 10-13 13-16 16-19 19-22

Overall 84.75%  79.09%  7515%  71.52% 7117%  71.58% -
Cropland  88.52% 80.45%  70.56% 63.88%  62.82% 64.34%  64.52%

Woodland  61.48%  79.00% 78.42% 79.43%  81.86% - -
Grassland  56.56%  71.37% 70.41% 67.07% 61.78% 59.30%  61.63%

Water 55.07%  70.61% - - - - -
Built-up 50.12%  52.98%  53.97% -
Bareland 68.33% 64.33% 54.70%  76.94% - - -

3.3.3. Three Spatial Distribution Patterns and APP Values within Subareas

A representative subarea containing all three spatial patterns is chosen to explore the SPM
performance for different spatial patterns and the results and accuracy assessments of the subarea
are shown in Figure 7. In this subarea, woodland is a typical areal feature with the highest accuracy.
Cropland, distributed in a linear pattern along the valley, has relatively lower accuracy than woodland.
The built-up area, representative of a point pattern class, has the lowest accuracy.

Classes with areal patterns where class patches are much larger than the pixel size always have
high accuracy, e.g., woodland at Level I with PA and UA values >94% (Figure 7). Classes with linear
patterns, such as cropland (Figure 7) with PA and UA values ranging from 48% to 77%, have accuracies
between those of areal and point features. The accuracy of classes with point patterns such as built-up
areas (Figure 5), which are the so-called L-resolution cases [8], is the lowest among the three classes.

Figure 8 shows the APP values calculated in units of county. It can be seen that the spatial pattern
of the APP values is similar to that of the LSI values.

The OA and PA values (y-axis) are plotted against APP (x-axis) in Figure 9. For all classes,
OA does not show a significant increasing trend with the increase of APP in Figure 9, but there is a
slight increase from 78.52% to 84.43% in Table 3. However, the trend of increase of PA with the increase
of APP is apparent in all of the classes, as shown in Figure 9. The reason for this increase in PA with
APP value may be that higher APP values mean a greater proportion of areal features that usually
have higher accuracy in SPM. Figure 9 shows PA has relatively strong correlation with APP, while the
relationship between OA and APP is less obvious (correlation coefficient: 0.21). Less complex areas
with low APP values usually have high accuracy because of their stronger spatial correlation between
pixels/subpixels and lower uncertainty in class allocation. Some classes, however, may contain many
regular point features with low APP values and low accuracy. The reason for this is spatial correlation
works well for features where the patch size is smaller than the pixel size. This indicates that areas
with low APP values and classes with areal features usually have high accuracy.
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resolution of 1 km; (b) reference map with spatial resolution of 30 m; (c-1)-(c-5) upscaled reference map
with zoom factor of 2, 4, 6, 8, and 10; (d-1)—(d-5) VBSPM results with zoom factor of 2, 4, 6, 8 and 10;
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Table 3. Average OA and PA in units of county with different APP ranges.

APP Range 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

Overall 78.52% 79.62% 82.00% 80.75% 84.43%
Cropland - 52.55% 57.96% 64.70% 83.25%
Woodland 43.03% 48.91% 65.35% 71.35% 83.32%
Grassland 51.43% 59.88% 63.22% 72.01% 78.43%

Water 52.57% 62.50% 69.26% 75.45% 84.70%
Built-up 44.63% 50.13% 62.31% 78.54% 88.24%
Bareland - 60.19% 60.19% 66.21% 93.65%

The average OA and PA values of subareas within different APP ranges are shown in Table 3.
It can be seen that subareas with an APP range of 0-0.2 have an average OA of 79%, subareas with
an APP range of 0.2-0.4 have an average OA of 80%, subareas with an APP range of 0.4-0.6 have an
average OA of 82%, subareas with an APP range of 0.6-0.8 have an average OA of 81%, and subareas
with an APP value >0.8 have an average OA of 84%. The PA values for cropland tend to increase
with the increase of APP. For example, cropland with an APP value of <0.8 has an average PA value
of <65%, whereas cropland with an APP value of >0.8 has an average PA value of about 83%. The PA
values for woodland, grassland, water, bare land, and built-up areas are similar to cropland, showing
an increase of the average PA value with increasing APP. Generally, the greater the proportion of the
areal feature, as indicated by higher APP values, the higher the accuracy of SPM.

3.3.4. Impact of CI (Combined Index of LSI and APP) on SPM Results

To evaluate the impact of the CI on the SPM results, linear regression is used to determine the
most suitable parameters for each CI of all classes and each class. The CI regression equations and
plots of CI (x-axis) against OA and PA (y-axes) are shown in Figure 10.

For all classes, LSI mainly affects the OA values, while the relationship between APP and OA is
not significant. For each class, both LSI and APP are involved in the CI formulations of the six classes
and the CI values have relatively good agreement with PA. It is noteworthy that some classes have low
correlations between PA and either LSI or APP, while they have relatively high correlations with CI.
For example, grassland and woodland do not show a declining trend in OA with increasing LSI values
(see Figure 6), whereas they do show good linear relationships between PA and CI (see Figure 10).
Thus, although LSI and APP may not effectively characterize the relationship with PA for some classes,
Cl is an effective solution for measuring the relationship between landscape heterogeneity and areal
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feature proportions with PA. Therefore, CI represents an alternative index of the relationship between
PA and land surface complexity.
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Figure 10. Correlation between CI value (x-axis) and accuracy (y-axis) at landscape level.

4. Discussion

4.1. SPM Performance with Change of Zoom Factor

This study shows that OA and KP generally decrease as the spatial resolution of the SPM results
becomes finer with the increase of the zoom factor. The reason for this can be attributed to the increase
in the number of subpixels within a coarse pixel as the zoom factor increases; thus, greater uncertainty
is generated regarding class allocation of the subpixels [25,40]. The reason for the stability of the
accuracy assessment when the zoom factor is above five is that the proportion of mixed pixels within
the 1-km fraction images becomes stable at this zoom factor. This is because the criterion defining
mixed or pure pixels depends upon the zoom factor. As an illustration, it can be seen that the spatial
resolution changes from 500 to 200 m when the zoom factor increases from 2 to 5, whereas it changes
from 200 to 100 m when the zoom factor increases from 5 to 10.

4.2. SPM Performance at the Two Classification Levels

Comparing the accuracy assessments of the SPM results at the two classification levels reveals
that classes with areal patterns at Level II, subdivided from Level I, have similar PA and UA values
as those at Level I because of the similarities in their distribution patterns. For example, the PA of
dry land (83%-94%), subdivided from cropland, is close to cropland (83%-93%). Classes with linear
or point patterns, however, are different from classes with areal patterns. For example, the classes of
intertidal areas and rivers at Level II, subdivided from water, have different accuracies. Intertidal areas
have high accuracy (>90%) and rivers have low accuracy (<68%), whereas the accuracy of water is
62%—-88%. Another example is built-up areas (58%—64%) at Level I, which has the subclass of rural
areas (<40%) with a point pattern.

4.3. Performances of SAMSPM and VBSPM

Both SAMSPM and VBSPM perform well in the experiments and produce equivalent accuracies in
different areas, but some differences remain in the detail (Figure 10). VBSPM produces slightly better
results with greater OA (range: 0.3%-1.1%) than SAMSPM. VBSPM, however, generates results for
built-up areas at Level I and rivers, rural areas, and rock land at Level II that are slightly less accurate
(<1%) than SAMSPM with a low zoom factor (<4). This is because these classes do not represent
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H-resolution cases, for which VBSPM is most applicable [27]. The different performances between
SAMSPM and VBSPM in these classes, however, have only minor influence on the OA.

4.4. SPM Performance in Subareas with Different Landscape Heterogeneity

A scatterplot is used to investigate the relationship between accuracy and LSI values. It shows
that the OA and PA both decline with increasing surface complexity, which is measured by LSI. For the
entire image, the less complex the surface, the better SPM performs. The complexity of the surface for
the entire area and for each class can be measured separately by LSI at both the landscape (all classes)
and the class level. For example, the experiment shows that subareas with LSI values in the range
1-4 have OA values of about 85%, subareas with LSI values in the range 4-10 have OA values of
about 77%, and subareas with LSI values >10 have average OA values of about 70%. However, at
the class level, PA is not always consistent with the LSI value. Usually, classes with H-resolution
features (e.g., cropland and woodland) have relatively high PA values. Some classes with point features
(e.g., water and built-up areas) have relatively low LSI and low PA values, because SPM does not
perform well when dealing with point features. Areal features with lower LSI values have higher PA
values than point features with low LSI values.

4.5. SPM Performance of Point, Linear, and Areal Pattern Classes

Among the three spatial patterns, classes with areal pattern have the highest accuracy.
One explanation for this is that areal features have strong spatial correlation between pixels and
subpixels; thus, those SPM methods based on the assumption of spatial dependence are well able to
deal with such correlation, especially VBSPM. A second explanation is that the object size of areal
features is generally much larger than the pixel size; thus, it contains a relatively large proportion of
pure pixels that can lead to relatively high accuracy in the downscaled classification. Because the SPM
methods used in this study are based on the assumption of spatial correlation, land use classes with
linear patterns, such as rivers, often do not remain contiguous in the SPM results; thus, their accuracy
is not high, especially for linear features with small widths. However, classes with point patterns have
the lowest accuracy assessment among the three spatial patterns. This is because greater uncertainty in
predicting the spatial locations of point features is generated because of the fewer constraints or lack
of complementary information. Atkinson [8] stated that the goal of SPM for point features is to predict
patterns rather than to generate an accurate prediction on a subpixel-by-subpixel basis. Thus, some
SPM algorithms based on pattern prediction may be more suited to mapping land use classes with
point patterns [33].

4.6. Analysis of SPM Performance with CI Value

The CI is a linear combination of the LSI and APP, which are the two indices related to SPM
performance. The values of the regression parameters reveal that the contributions of the two indices
may vary for different areas and different classes. For all classes, CI is similar to LSI, which indicates
that the less complex the area, the less impact APP has and the better SPM may perform. At the class
level, CI has different combinations of the LSI and APP. The SPM performance is better for smaller
values of LSI and larger values of APP. Generally, CI could be used as an indicator to predict the
performance of SPM prior to its use in practical applications.

4.7. Uncertainty of SPM Caused by Fraction Images of Soft Classification

The experiment uses the error free fraction images to avoid the impact of the uncertainty in soft
classification on the SPM results. Actually, uncertainty or errors in soft classification are inevitable
when classifying real remote sensing images [27]. As a result, uncertainty or errors from the soft
classification of real remote sensing images would be propagated into SPM and the accuracy of SPM
would be decreased. Ge [4] proposed a solution using the multiple-point simulation to reduce the
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uncertainty or errors in soft classification and it can be used in future SPM experiments on real remote
sensing images.

4.8. Potential of SPM as an Alternative Method for Generating LULC Maps

Using the 1-km synthetic fraction images, the SPM methods based on the assumption of spatial
dependence are able to produce land use maps at subpixel scales, with OA values of 77%—-85% and
75%-83% for the six classes at Level I and 22 classes at Level II, respectively, over the large area
of Jingjinji region in China. These accuracies decline with the increase of S, and stabilize at an OA
of approximately 78% at Level I and 75% at Level I, when the zoom factor reaches five. The two
SPM methods produce the highest accuracy for areal pattern classes (e.g., cropland, woodland, and
grassland), medium accuracy for linear pattern classes (e.g., water), and the lowest accuracy for point
pattern classes (e.g., bare land and built-up areas). In the subareas (i.e., counties), less complex areas
exhibit higher accuracy; i.e., subareas with high LSI values have lower accuracy, and subareas with LSI
values of <18 generate SPM results with OAs of >80%.

In summary, according to the SPM output, SPM has the potential to generate alternative LULC
maps for regions where high-spatial-resolution maps are unavailable, especially in less complex areas
with a large proportion of areal features. Thus, when using SPM to obtain finer-resolution LULC
maps from real coarse remote sensing images or existing fraction images in future applications, the
experimental design can be used. A primary assessment of the LSI and APP can be done to provide an
indication of the most suitable method and to determine the appropriate zoom factor and classification
system to use.

5. Conclusions

The objective of this study was to investigate the feasibility of using subpixel mapping (SPM)
to obtain land use/land cover (LULC) data in the absence of high-spatial-resolution LULC maps.
An experimental design was proposed to evaluate its feasibility for providing alternative LULC maps
based on accuracy assessments and landscape measurements. In accordance with the experimental
design, a case study was implemented in the Jingjinji region of China using 1-km land use fraction
imagery as input data, the landscape shape index (LSI) as the measurement of surface complexity,
and areal pattern proportion as the measurement of the spatial distribution pattern of geographical
features. The results and analysis showed that overall accuracy (OA) was approximately 80% and
that the accuracy declined with increasing zoom factor before stabilizing at a zoom factor of five.
The accuracy of SPM was apparently associated with both the complexity and spatial pattern of the
geographical features. Higher accuracy was obtained in less complex areas and when handling areal
features, compared with handling linear and point features. Subareas with LSI values <4 showed OA
values of approximately 85%, subareas with LSI values of 4-10 showed OA values of approximately
77%, and subareas with LSI values >10 had OA values of approximately 70%.

This experiment used an existing proportional land use dataset. In the future, soft classification
results derived from remote sensing images should also be practicable. Moreover, other newly
developed SPM methods, such as pattern-prediction-based SPM, might be worth consideration.
Therefore, it would be interesting in the future to repeat this experiment using other SPM algorithms
and actual remotely sensed images.
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