Remote Prediction of Oilseed Rape Yield via Gaofen-1 Images and a Crop Model
Abstract
:1. Introduction
- (1)
- An effective yield estimation method was developed based on remote sensing images and a crop growth model.
- (2)
- The WOFOST crop growth model was localized for oilseed rape in which the MODIS data, meteorological data, and measured data are involved.
- (3)
- A method is proposed to estimate the yield of oilseed rape using Gaofen-1 images.
2. Materials and Methods
2.1. Study Area
2.2. Data Collections
2.2.1. Field Data
2.2.2. Satellite and Meteorological Data
2.3. Research Framework
- (1)
- The ground experiment is carried out to monitor the LAI changes at four stages with handheld equipment. The final yield is also measured.
- (2)
- The regression model between LAI and crop yield is built with the ground collected data.
- (3)
- Data are prepared for LAI prediction. Data from remote sensing satellites are collected and preprocessed with radiometric, geometric, and atmospheric corrections. Meteorological data and statistical yearbooks are downloaded.
- (4)
- The WOFOST model is calibrated with MODIS LAI and ground collected data for localization.
- (5)
- Time-series LAI are predicted with localized WOFOST, and are linked to vegetable indices from satellite images.
- (6)
- Separate models are combined to give the final prediction model from satellite images to the yield of oilseed rape.
- (7)
- The planting areas of oilseed rape are extracted using the pyramidal bottleneck residual network.
- (8)
- A field investigation is performed to validate the remote sensing estimated yield for oilseed rape.
2.4. Leaf Area Index Assimilated with the WOFOST Model
2.5. Extraction of Planting Areas with Convolutional Neural Networks
3. Results
3.1. Yield Evaluation by Ground LAI at Different Developmental Stages
3.2. Assimilated LAI Sequence
3.3. Ground LAI Estimation from Vegetable Indices
3.4. Integrated New Model and Operational Steps
- (1)
- At least two available Gaofen-1 WFV images are downloaded and preprocessed. The images are captured at the bolting and flowering stages, respectively.
- (2)
- The planting areas of oilseed rapes are extracted from the image captured at the flowering stage with the pyramid bottleneck residual network.
- (3)
- The vegetable indices are calculated separately using the equations in Table 4, including SR at the bolting stage and VARIgreen at the flowering stage.
- (4)
- The yield in each pixel location is calculated with Equation (5).
- (5)
- The total yield of oilseed rape is obtained by summing up the yields whose pixel locations belong to both planting areas and the interest region.
4. Validation and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neumann, K.; Verburg, P.H.; Stehfest, E.; Muller, C. The yield gap of global grain production: A spatial analysis. Agric. Syst. 2010, 103, 316–326. [Google Scholar] [CrossRef]
- Huang, J.X.; Tian, L.Y.; Liang, S.L.; Ma, H.Y.; Becker-Reshef, I.; Huang, Y.B.; Su, W.; Zhang, X.D.; Zhu, D.H.; Wu, W.B. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric. For. Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef] [Green Version]
- Du, M.M.; Noguchi, N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s within-Field Spatial Variations Using Color Images Acquired from UAV-camera System. Remote Sens. 2017, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Maresma, A.; Ariza, M.; Martinez, E.; Lloveras, J.; Martinez-Casasnovas, J.A. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef] [Green Version]
- Dempewolf, J.; Adusei, B.; Becker-Reshef, I.; Hansen, M.; Potapov, P.; Khan, A.; Barker, B. Wheat Yield Forecasting for Punjab Province from Vegetation Index Time Series and Historic Crop Statistics. Remote Sens. 2014, 6, 9653–9675. [Google Scholar] [CrossRef] [Green Version]
- Siyal, A.A.; Dempewolf, J.; Becker-Reshef, I. Rice yield estimation using Landsat ETM plus Data. J. Appl. Remote Sens. 2015, 9, 095986. [Google Scholar] [CrossRef]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. Near real-time prediction of US corn yields based on time-series MODIS data. Remote Sens. Environ. 2014, 147, 219–231. [Google Scholar] [CrossRef]
- Gong, Y.; Duan, B.; Fang, S.H.; Zhu, R.S.; Wu, X.T.; Ma, Y.; Peng, Y. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis. Plant Methods 2018, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Houborg, R.; Soegaard, H.; Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 2007, 106, 39–58. [Google Scholar] [CrossRef]
- Fang, H.L.; Liang, S.L.; Hoogenboom, G.; Teasdale, J.; Cavigelli, M. Corn-yield estimation through assimilation of remotely sensed data into the CSM-CERES-Maize model. Int. J. Remote Sens. 2008, 29, 3011–3032. [Google Scholar] [CrossRef]
- De Wit, A.; Boogaard, H.; Fumagalli, D.; Janssen, S.; Knapen, R.; van Kraalingen, D.; Supit, I.; van der Wijngaart, R.; van Diepen, K. 25 years of the WOFOST cropping systems model. Agric. Syst. 2019, 168, 154–167. [Google Scholar] [CrossRef]
- Peng, X.; Han, W.; Ao, J.; Wang, Y. Assimilation of LAI Derived from UAV Multispectral Data into the SAFY Model to Estimate Maize Yield. Remote Sens. 2021, 13, 1094. [Google Scholar] [CrossRef]
- Vandiepen, C.A.; Wolf, J.; Vankeulen, H.; Rappoldt, C. WOFOST—A simulation-model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar]
- Iqbal, M.A.; Shen, Y.; Stricevic, R.; Pei, H.; Sun, H.; Amiri, E.; Penas, A.; del Rio, S. Evaluation of the FAO Aqua Crop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agric. Water Manag. 2014, 135, 61–72. [Google Scholar] [CrossRef]
- Wang, E.; Robertson, M.J.; Hammer, G.L.; Carberry, P.S.; Holzworth, D.; Meinke, H.; Chapman, S.C.; Hargreaves, J.N.G.; Huth, N.I.; McLean, G. Development of a generic crop model template in the cropping system model APSIM. Eur. J. Agron. 2002, 18, 121–140. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production—A process model-based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Duchemin, B.; Maisongrande, P.; Boulet, G.; Benhadj, I. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Model. Softw. 2008, 23, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Ferencz, C.; Bognar, P.; Lichtenberger, J.; Hamar, D.; Tarscai, G.; Timar, G.; Molnar, G.; Pasztor, S.; Steinbach, P.; Szekely, B.; et al. Crop yield estimation by satellite remote sensing. Int. J. Remote Sens. 2004, 25, 4113–4149. [Google Scholar] [CrossRef]
- Campos, I.; Neale, C.M.U.; Arkebauer, T.J.; Suyker, A.E.; Goncalves, I.Z. Water productivity and crop yield: A simplified remote sensing driven operational approach. Agric. For. Meteorol. 2018, 249, 501–511. [Google Scholar] [CrossRef]
- Huang, J.X.; Sedano, F.; Huang, Y.B.; Ma, H.Y.; Li, X.L.; Liang, S.L.; Tian, L.Y.; Zhang, X.D.; Fan, J.L.; Wu, W.B. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 2016, 216, 188–202. [Google Scholar] [CrossRef]
- Behrens, T.; Muller, J.; Diepenbrock, W. Utilization of canopy reflectance to predict properties of oilseed rape (Brassica napus L.) and barley (Hordeum vulgare L.) during ontogenesis. Eur. J. Agron. 2006, 25, 345–355. [Google Scholar] [CrossRef]
- Botwright, T.L.; Condon, A.G.; Rebetzke, G.J.; Richards, R.A. Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust. J. Agric. Res. 2002, 53, 1137–1145. [Google Scholar] [CrossRef]
- Vina, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Vina, A.; Arkebauer, T.; Rundquist, D. Green Leaf Area Index Estimation in Maize and Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef] [Green Version]
- Baez-Gonzalez, A.D.; Kiniry, J.R.; Maas, S.J.; Tiscareno, M.; Macias, J.; Mendoza, J.L.; Richardson, C.W.; Salinas, J.; Manjarrez, J.R. Large-area maize yield forecasting using leaf area index based yield model. Agron. J. 2005, 97, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Moriondo, M.; Maselli, F.; Bindi, M. A simple model of regional wheat yield based on NDVI data. Eur. J. Agron. 2007, 26, 266–274. [Google Scholar] [CrossRef]
- Dente, L.; Satalino, G.; Mattia, F.; Rinaldi, M. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote Sens. Environ. 2008, 112, 1395–1407. [Google Scholar] [CrossRef]
- Sulik, J.J.; Long, D.S. Spectral considerations for modeling yield of canola. Remote Sens. Environ. 2016, 184, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Zang, Y.; Chen, X.; Chen, J.; Tian, Y.; Shi, Y.; Cao, X.; Cui, X. Remote Sensing Index for Mapping Canola Flowers Using MODIS Data. Remote Sens. 2020, 12, 3912. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Wittkop, B.; Snowdon, R.J.; Friedt, W. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 2009, 170, 131–140. [Google Scholar] [CrossRef]
- Fang, S.H.; Tang, W.C.; Peng, Y.; Gong, Y.; Dai, C.; Chai, R.H.; Liu, K. Remote Estimation of Vegetation Fraction and Flower Fraction in Oilseed Rape with Unmanned Aerial Vehicle Data. Remote Sens. 2016, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Morrison, M.J.; Stewart, D.W. Heat stress during flowering in summer Brassica. Crop Sci. 2002, 42, 797–803. [Google Scholar] [CrossRef]
- Gan, Y.; Angadi, S.V.; Cutforth, H.; Potts, D.; Angadi, V.V.; McDonald, C.L. Canola and mustard response to short periods of temperature and water stress at different developmental stages. Can. J. Plant Sci. 2004, 84, 697–704. [Google Scholar] [CrossRef]
- Ma, N.; Yuan, J.Z.; Li, M.; Li, J.; Zhang, L.Y.; Liu, L.X.; Naeem, M.S.; Zhang, C.L. Ideotype Population Exploration: Growth, Photosynthesis, and Yield Components at Different Planting Densities in Winter Oilseed Rape (Brassica napus L.). PLoS ONE 2014, 9, e114232. [Google Scholar] [CrossRef]
- Pearse, G.D.; Watt, M.S.; Morgenroth, J. Comparison of optical LAI measurements under diffuse and clear skies after correcting for scattered radiation. Agric. For. Meteorol. 2016, 221, 61–70. [Google Scholar] [CrossRef]
- Pearse, G.D.; Morgenroth, J.; Watt, M.S.; Dash, J.P. Optimising prediction of forest leaf area index from discrete airborne lidar. Remote Sens. Environ. 2017, 200, 220–239. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wan, Y.; Wang, B.; Kang, Y.F.; Xiong, J.X. Automatic processing of Chinese gf-1 wide field of view images. In Proceedings of the 36th International Symposium on Remote Sensing of Environment, Berlin, Germany, 11–15 May 2015; Volume 47, pp. 729–734. [Google Scholar]
- Peng, Y.; Zhu, T.; Li, Y.; Dai, C.; Fang, S.; Gong, Y.; Wu, X.; Zhu, R.; Liu, K. Remote prediction of yield based on LAI estimation in oilseed rape under different planting methods and nitrogen fertilizer applications. Agric. For. Meteorol. 2019, 271, 116–125. [Google Scholar] [CrossRef]
- Fang, S.H.; Le, Y.; Liang, Q.; Liu, X.J. Leaf Area Index Estimation Using Time-Series MODIS Data in Different Types of Vegetation. J. Indian Soc. Remote Sens. 2014, 42, 733–743. [Google Scholar] [CrossRef]
- Van Ittersum, M.K.; Leffelaar, P.A.; van Keulen, H.; Kropff, M.J.; Bastiaans, L.; Goudriaan, J. On approaches and applications of the Wageningen crop models. Eur. J. Agron. 2003, 18, 201–234. [Google Scholar] [CrossRef]
- Supit, I.; van Diepen, C.A.; de Wit, A.J.W.; Wolf, J.; Kabat, P.; Baruth, B.; Ludwig, F. Assessing climate change effects on European crop yields using the Crop Growth Monitoring System and a weather generator. Agric. For. Meteorol. 2012, 164, 96–111. [Google Scholar] [CrossRef]
- Lecerf, R.; Ceglar, A.; Lopez-Lozano, R.; Van Der Velde, M.; Baruth, B. Assessing the information in crop model and meteorological indicators to forecast crop yield over Europe. Agric. Syst. 2019, 168, 191–202. [Google Scholar] [CrossRef]
- Huang, J.X.; Gomez-Dans, J.L.; Huang, H.; Ma, H.Y.; Wu, Q.L.; Lewis, P.E.; Liang, S.L.; Chen, Z.X.; Xue, J.H.; Wu, Y.T.; et al. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Ma, G.N.; Huang, J.X.; Wu, W.B.; Fan, J.L.; Zou, J.Q.; Wu, S.J. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Math. Comput. Model. 2013, 58, 634–643. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Shuffled Complex Evolution Approach for Effective and Efficient Global Minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Sorooshian, S.; Gupta, V.K. Optimal Use of the SCE-UA Global Optimization Method for Calibrating Watershed Models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, P.; Zhao, L.; Wang, G.; Zhang, W.; Liu, J. Air quality predictions with a semi-supervised bidirectional LSTM neural network. Atmos. Pollut. Res. 2021, 12, 328–339. [Google Scholar] [CrossRef]
- Peng, L.; Rajiv Ranjan, L.W.G.H. A Survey on Active Deep Learning: From Model-driven to Data-driven. ACM Comput. Surv. 2022. [Google Scholar] [CrossRef]
- Huang, Y.K.; Wei, J.B.; Tang, W.C.; He, C.Q.; IEEE. Pyramid convolutional neural networks and bottleneck residual modules for classification of multispectral images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1949–1952. [Google Scholar]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.J.; Pla, F. Deep Pyramidal Residual Networks for Spectral-Spatial Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 740–754. [Google Scholar] [CrossRef]
- Diepenbrock, W. Yield analysis of winter oilseed rape (Brassica napus L.): A review. Field Crops Res. 2000, 67, 35–49. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Jauhiainen, L. Association of growth dynamics, yield components and seed quality in long-term trials covering rapeseed cultivation history at high latitudes. Field Crops Res. 2008, 108, 101–108. [Google Scholar] [CrossRef]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.J.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. In NASA Special Publication; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1974; Volume 351, p. 309. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
Purpose | Coverage | Acquisition Date | Phenology Stage |
---|---|---|---|
Model building | Jingzhou City | 7 January 2015 | Bolting Stage |
21 Match 2015 | Flowering Stage | ||
21 January 2017 | Bolting Stage | ||
1 April 2017 | Flowering Stage | ||
Macheng City | 21 January 2017 | Bolting Stage | |
8 Match 2017 | Flowering Stage | ||
Tianmen City | 22 January 2017 | Bolting Stage | |
8 Match 2017 | Flowering Stage | ||
14 January 2018 | Bolting Stage | ||
12 Match 2018 | Flowering Stage | ||
Zhongxiang City | 18 January 2015 | Bolting Stage | |
25 Match 2015 | Flowering Stage | ||
Jiayu County | 22 January 2015 | Bolting Stage | |
25 Match 2015 | Flowering Stage | ||
14 January 2018 | Bolting Stage | ||
28 Match 2018 | Flowering Stage | ||
Jianli County | 22 January 2017 | Bolting Stage | |
8 Match 2017 | Flowering Stage | ||
14 January 2018 | Bolting Stage | ||
12 Match 2018 | Flowering Stage | ||
Yangxin County | 3 February 2018 | Bolting Stage | |
28 Match 2018 | Flowering Stage | ||
Validation | Wuxue City | January of 2014, 2015, 2017, 2018, 2019 | Bolting Stage |
March of 2014, 2015, 2017, 2018, 2019 | Flowering Stage |
Parameter | Description | Unit | Minimum | Maximum |
---|---|---|---|---|
SPAN | Life span of leaves growing at 35 C | days | 17 | 21 |
TSUM1 | Temperature sum from emergence to anthesis | C·days | 150 | 240 |
TSUM2 | Temperature sum from anthesis to maturity | C·days | 600 | 900 |
TDWI | Initial total crop dry weight | kg·hm | 40 | 90 |
CVO | Efficiency of conversion into storage organ | kg·kg | 0.60 | 0.85 |
CVS | Efficiency of conversion into stems | kg·kg | 0.66 | 0.70 |
Metric | Seedling | Bolting | Flowering | Pod | Bolting + Flowering |
---|---|---|---|---|---|
Determination coefficients (R) | 0.21 | 0.70 | 0.59 | 0.84 | 0.72 |
standard errors (SE, kg/ha) | 764 | 475 | 561 | 352 | 424 |
Year | Yearbook Planting | Extracted Cultivated | Yearbook Yield | Estimated Yield | Error Rate |
---|---|---|---|---|---|
Area (km) | Area (km) | (tons) | (tons) | (%) | |
2014 | 30 | 31.6 | 77,318 | 75,115 | 2.85 |
2015 | 28.96 | 28.22 | 73,574 | 74,674 | 1.5 |
2017 | 27.13 | 27.81 | 67,852 | 71,460 | 5.32 |
2018 | 18.74 | 18.21 | 45,531 | 44,499 | 2.23 |
2019 | 21.23 | 20.08 | 51,390 | 49,770 | 3.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Tang, R.; Guo, T.; Wei, J. Remote Prediction of Oilseed Rape Yield via Gaofen-1 Images and a Crop Model. Remote Sens. 2022, 14, 2041. https://doi.org/10.3390/rs14092041
Tang W, Tang R, Guo T, Wei J. Remote Prediction of Oilseed Rape Yield via Gaofen-1 Images and a Crop Model. Remote Sensing. 2022; 14(9):2041. https://doi.org/10.3390/rs14092041
Chicago/Turabian StyleTang, Wenchao, Rongxin Tang, Tao Guo, and Jingbo Wei. 2022. "Remote Prediction of Oilseed Rape Yield via Gaofen-1 Images and a Crop Model" Remote Sensing 14, no. 9: 2041. https://doi.org/10.3390/rs14092041
APA StyleTang, W., Tang, R., Guo, T., & Wei, J. (2022). Remote Prediction of Oilseed Rape Yield via Gaofen-1 Images and a Crop Model. Remote Sensing, 14(9), 2041. https://doi.org/10.3390/rs14092041