Improving the Assimilation of Enhanced Atmospheric Motion Vectors for Hurricane Intensity Predictions with HWRF
Abstract
:1. Introduction
2. System, Model, Observations, and Experiment Design
2.1. System and Model Description
2.2. Case Description
2.3. Observations and Preprocessing
2.4. Experiment Design
3. Results
3.1. Impact of Inner-Core AMVs Assimilation without VR
3.2. Impact of Inner-Core AMVs Assimilation with VR
3.3. Impact of the Modified Error Profile
4. Summary and Conclusions
- The background location error is a key concern for a cycling 6-hourly 3DEnVar DA configuration. Consequently, there is a significant improvement when using VR to resolve the background location error issue before DA. Assimilating inner-core AMVs additionally improves the intensity predictions in the VR scenario.
- The hourly 3DEnVar DA of the enhanced AMVs is less concerned by the background location error. It appears that in this Hurricane Irma case, the hourly assimilation of the enhanced AMVs, especially with the inner-core AMVs, is enough to correct the background storm location for a continuously cycling DA. The hourly 3DEnVar DA can thus easily outperform its 6-hourly counterparts when no VR is performed.
- Since the location error is not the major concern for the hourly 3DEnVar, the current VR technique used in the operational HWRF does more harm than good to the hourly 3DEnVar DA with the artificial warm core issue. Reducing the frequency of VR can only reduce the negative impacts. As a result, there are no apparent prediction advantages of the hourly 3DEnVar over the 6-hourly 3DEnVar in the assimilation of the enhanced AMVs with VR.
- The updated observation error profile can help improve the analysis and predictions for hourly 3DEnVar DA of the enhanced AMVs. The improvements from the corresponding 6-hourly 3DEnVar DA are tiny.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wick, G.A.; Dunion, J.P.; Walker, J. Sensing Hazards with Operational Unmanned Technology: Impact Study of Global Hawk Unmanned Aircraft System Observations for Hurricane Forecasting, Final Report. In NOAA Technical Memorandum OAR UAS-003; NOAA/Pacific Marine Environmental Laboratory: Springfield, VA, USA, 2018. [Google Scholar] [CrossRef]
- Christophersen, H.; Aksoy, A.; Dunion, J.; Aberson, S. Composite impact of Global Hawk unmanned aircraft dropwindsondes on tropical cyclone analyses and forecasts. Mon. Weather Rev. 2018, 146, 2297–2314. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X. Improving Hurricane Analyses and Predictions with TCI, IFEX Field Campaign Observations, and CIMSS AMVs Using the Advanced Hybrid Data Assimilation System for HWRF. Part II: Observation Impacts on the Analysis and Prediction of Patricia (2015). Mon. Weather Rev. 2020, 148, 1407–1430. [Google Scholar] [CrossRef]
- Feng, J.; Wang, X. Impact of Assimilating Upper-Level Dropsonde Observations Collected during the TCI Field Campaign on the Prediction of Intensity and Structure of Hurricane Patricia (2015). Mon. Weather Rev. 2019, 147, 3069–3089. [Google Scholar] [CrossRef]
- Black, P.; Harrison, L.; Beaubien, M.; Bluth, R.; Woods, R.; Penny, A.; Smith, R.W.; Doyle, J.D. High-Definition Sounding System (HDSS) for Atmospheric Profiling. J. Atmos. Ocean. Technol. 2017, 34, 777–796. [Google Scholar] [CrossRef]
- Doyle, J.D.; Moskaitis, J.; Feldmeier, J.; Ferek, R.; Beaubien, M.; Bell, M.; Cecil, D.; Creasey, R.; Duran, P.; Elsberry, R.; et al. A View of Tropical Cyclones from Above: The Tropical Cyclone Intensity (TCI) Experiment. Bull. Am. Meteorol. Soc. 2017, 98, 2113–2134. [Google Scholar] [CrossRef]
- Aksoy, A.; Aberson, S.D.; Vukicevic, T.; Sellwood, K.J.; Lorsolo, S.; Zhang, X.J. Assimilation of High-Resolution Tropical Cyclone Observations with an Ensemble Kalman Filter Using NOAA/AOML/HRD’s HEDAS: Evaluation of the 2008-11 Vortex-Scale Analyses. Mon. Weather Rev. 2013, 141, 1842–1865. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X.; Li, Y.; Tong, M.; Ma, X. GSI-based ensemble-variational hybrid data assimilation for HWRF for hurricane initialization and prediction: Impact of various error covariances for airborne radar observation assimilation. Q. J. R. Meteorol. Soc. 2017, 143, 223–239. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X.; Tong, M.; Tallapragada, V. GSI-based, continuously cycled, dual-resolution hybrid ensemble-variational data assimilation system for HWRF: System description and experiments with Edouard (2014). Mon. Weather Rev. 2017, 145, 4877–4898. [Google Scholar] [CrossRef]
- Pu, Z.; Zhang, S.; Tong, M.; Tallapragada, V. Influence of the Self-Consistent Regional Ensemble Background Error Covariance on Hurricane Inner-Core Data Assimilation with the GSI-Based Hybrid System for HWRF. J. Atmos. Sci. 2016, 73, 4911–4925. [Google Scholar] [CrossRef]
- Rogers, R.; Aberson, S.; Aksoy, A.; Annane, B.; Black, M.; Cione, J.; Dorst, N.; Dunion, J.; Gamache, J.; Goldenberg, S.; et al. NOAA’S hurricane intensity forecasting experiment: A progress report. Bull. Am. Meteorol. Soc. 2013, 94, 859–882. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.; Zhang, F. Assimilating Airborne Doppler Radar Observations with an Ensemble Kalman Filter for Convection-Permitting Hurricane Initialization and Prediction: Katrina (2005). Mon. Weather Rev. 2012, 140, 841–859. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Weng, Y.; Sippel, J.A.; Meng, Z.; Bishop, C.H. Cloud-Resolving Hurricane Initialization and Prediction through Assimilation of Doppler Radar Observations with an Ensemble Kalman Filter. Mon. Wea. Rev. 2009, 137, 2105–2125. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Weng, Y.; Gamache, J.F.; Marks, F.D. Performance of convection-permitting hurricane initialization and prediction during 2008-2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett. 2011, 38, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-C.; Zupanski, M.; Grasso, L.D.; Kummerow, C.D.; Boukabara, S.-A. All-Sky Radiance Assimilation of ATMS in HWRF: A Demonstration Study. Mon. Weather Rev. 2019, 147, 85–106. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.; Bresch, J.; Rizvi, S.R.H.; Huang, X.-Y.; Min, J. AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus A 2016, 68, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Minamide, M.; Clothiaux, E.E. Potential impacts of assimilating all-sky infrared satellite radiances from GOES-R on convection-permitting analysis and prediction of tropical cyclones. Geophys. Res. Lett. 2016, 43, 2954–2963. [Google Scholar] [CrossRef] [Green Version]
- Stettner, D.; Velden, C.; Rabin, R.; Wanzong, S.; Daniels, J.; Bresky, W. Development of Enhanced Vortex-Scale Atmospheric Motion Vectors for Hurricane Applications. Remote Sens. 2019, 11, 1981. [Google Scholar] [CrossRef] [Green Version]
- Velden, C.; Daniels, J.; Stettner, D.; Santek, D.; Key, J.; Dunion, J.; Holmlund, K.; Dengel, G.; Bresky, W.; Menzel, P. Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Am. Meteorol. Soc. 2005, 86, 205–223. [Google Scholar] [CrossRef] [Green Version]
- Velden, C.; Lewis, W.E.; Bresky, W.; Stettner, D.; Daniels, J.; Wanzong, S. Assimilation of High-Resolution Satellite-Derived Atmospheric Motion Vectors: Impact on HWRF Forecasts of Tropical Cyclone Track and Intensity. Mon. Weather Rev. 2017, 145, 1107–1125. [Google Scholar] [CrossRef]
- Velden, C.S.; Hayden, C.M.; Nieman, S.J.; Menzel, W.P.; Wanzong, S.; Goerss, J.S. Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations. Bull. Am. Meteorol. Soc. 1997, 78, 173–195. [Google Scholar] [CrossRef] [Green Version]
- Menzel, W.P. Cloud Tracking with Satellite Imagery: From the Pioneering Work of Ted Fujita to the Present. Bull. Am. Meteorol. Soc. 2001, 82, 33–47. [Google Scholar] [CrossRef]
- Wu, T.-C.; Liu, H.; Majumdar, S.J.; Velden, C.S.; Anderson, J.L. Influence of Assimilating Satellite-Derived Atmospheric Motion Vector Observations on Numerical Analyses and Forecasts of Tropical Cyclone Track and Intensity. Mon. Weather Rev. 2014, 142, 49–71. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-C.; Velden, C.S.; Majumdar, S.J.; Liu, H.; Anderson, J.L. Understanding the Influence of Assimilating Subsets of Enhanced Atmospheric Motion Vectors on Numerical Analyses and Forecasts of Tropical Cyclone Track and Intensity with an Ensemble Kalman Filter. Mon. Wea. Rev. Mon. Weather Rev. 2015, 143, 2506–2530. [Google Scholar] [CrossRef]
- Zhang, S.; Pu, Z.; Velden, C. Impact of Enhanced Atmospheric Motion Vectors on HWRF Hurricane Analyses and Forecasts with Different Data Assimilation Configurations. Mon. Weather Rev. 2018, 146, 1549–1569. [Google Scholar] [CrossRef]
- Davis, B.; Wang, X.; Lu, X. A comparison of HWRF Six-Hourly 4DEnVar and Hourly 3DEnVar assimilation of inner core tail Doppler radar observations for the prediction of hurricane Edouard (2014). Atmosphere 2021, 12, 942. [Google Scholar] [CrossRef]
- Bender, M.A. Improvements in Tropical Cyclone Track and Intensity Forecasts Using the GFDL Initialization System. Mon. Weather Rev. 1993, 121, 2046–2061. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, Y.; Bender, M. Prediction experiments of Hurricane Gloria (1985) using a multiply nested movable mesh model. Mon. Weather Rev. 1990, 118, 2185–2198. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, Y.; Bender, M.A.; Ross, R.J. An initialization scheme of hurricane models by vortex specification. Mon. Weather Rev. 1993, 121, 2030–2045. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, Y.; Tuleya, R.E.; Bender, M.A. The GFDL Hurricane Prediction System and Its Performance in the 1995 Hurricane Season. Mon. Weather Rev. 1998, 126, 1306–1322. [Google Scholar] [CrossRef]
- Thu, T.V.; Krishnamurti, T.N. Vortex Initialization for Typhoon Track Prediction. Meteorol. Atmos. Phys. 1998, 47, 117–126. [Google Scholar] [CrossRef]
- Liu, Q.; Marchok, T.; Pan, H.-L.; Bender, M.; Lord, S.; Improvements in Hurricane Initialization and Forecasting at NCEP with Global and Regional (GFDL) models. NCEP/EMC Tech. Procedures Bull. 2000. Available online: https://www.researchgate.net/profile/Qingfu-Liu-3/publication/237459506_Improvements_in_Hurricane_Initialization_and_Forecasting_at_NCEP_With_Global_and_Regional_GFDL_Models/links/55db41ad08aeb38e8a8b8220/Improvements-in-Hurricane-Initialization-and-Forecasting-at-NCEP-With-Global-and-Regional-GFDL-Models.pdf (accessed on 20 April 2022).
- Liu, Q.; Lord, S.; Surgi, N.; Zhu, Y.; Wobus, R.; Toth, Z.; Marchok, T. Hurricane Relocation in Global Ensemble Forecast System. In Preprints of the 27th Conference on Hurricanes and Tropical Meteorology, Monterey, CA, USA, Amer. Meteor. Soc., P5.13; 2006; Available online: https://ams.confex.com/ams/pdfpapers/108503.pdf (accessed on 20 April 2022).
- Biswas, M.K.; Abarca, S.; Bernardet, L.; Ginis, I.; Grell, E.; Iacono, M.; Kalina, E.; Liu, B.; Liu, Q.; Marchok, T.; et al. Hurricane Weather Research and Forecasting (HWRF) Model: 2018 Scientific Documentation. 2018. Available online: https://dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv4.0a_ScientificDoc.pdf (accessed on 20 April 2022).
- Wang, X.; Parrish, D.; Kleist, D.; Whitaker, J. GSI 3DVar-Based Ensemble–Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments. Mon. Weather Rev. 2013, 141, 4098–4117. [Google Scholar] [CrossRef]
- Wang, X.; Barker, D.M.; Snyder, C.; Hamill, T.M. A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment. Mon. Weather Rev. 2008, 136, 5116–5131. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. Incorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework. Mon. Weather Rev. 2010, 138, 2990–2995. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, J.S.; Hamill, T.M. Ensemble Data Assimilation without Perturbed Observations. Mon. Weather Rev. 2002, 140, 3078–3089. [Google Scholar] [CrossRef]
- Aligo, E.; Ferrier, B.G.; Thompson, J.R.; Carley, E.; Rogers, J. Dimego, The New- Ferrier-Aligo Microphysics in the NCEP 3-km NAM nest. In Proceedings of the 97th AMS Annual Meeting, Seattle, WA, USA, 21–26 January 2017. [Google Scholar]
- Arakawa, A.; Schubert, W.H. Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part, II. Atmos. Sci. 1974, 31, 674–701. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.-L.; Wu, J. Implementing a Mass Flux Convection Parameterization Package for the NMC Medium-Range Forecast Model. NMC Office Note, No. 409, 40 pp; NCEP: Washington, DC, USA, September; 1995. Available online: https://repository.library.noaa.gov/view/noaa/11429 (accessed on 20 April 2022).
- Han, J.; Pan, H.L. Revision of Convection and Vertical Diffusion Schemes in the NCEP Global Forecast System. Weather Forecast. 2011, 26, 520–533. [Google Scholar] [CrossRef]
- Kwon, Y.C.; Lord, S.; Lapenta, B.; Tallapragada, V.; Liu, Q.; Zhang, Z. Sensitivity of Air-Sea Exchange Coefficients (Cd and Ch) on Hurricane Intensity. In Proceedings of the 29th Conference on Hurricanes and Tropical Meteorology, 13C.1, Tucson, AZ, USA, 13 May 2010; Available online: https://ams.confex.com/ams/29Hurricanes/techprogram/paper_167760.htm (accessed on 20 April 2022).
- Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 2003, 422, 279–283. [Google Scholar] [CrossRef]
- Black, P.G.; D’Asaro, E.A.; Drennan, W.M.; French, J.R.; Sanford, T.B.; Terrill, E.J.; Niiler, P.P.; Walsh, E.J.; Zhang, J. Air-Sea Exchange in Hurricanes: Synthesis of Observations from the Coupled Boundary Layer Air-Sea Transfer Experiment. Bull. Am. Meteorol. Soc. 2007, 88, 357–374. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, K. The Community Noah Land Surface Model (LSM). 2005. Available online: https://ral.ucar.edu/sites/default/files/public/product-tool/unified-noah-lsm/Noah_LSM_USERGUIDE_2.7.1.pdf (accessed on 20 April 2022).
- Gopalakrishnan, S.G.; Marks, F., Jr.; Zhang, J.A.; Zhang, X.; Bao, J.-W.; Tallapragada, V. Study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci. 2013, 70, 524–541. [Google Scholar] [CrossRef]
- Bu, Y. Influence of Cloud–Radiative Forcing on Tropical Cyclone Structure. J. Atmos. Sci. 2015, 71, 1644–1662. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Witek, M.; Teixeira, J.; Sun, R.; Pan, H.-L.; Fletcher, J.K.; Bretherton, C.S. Implementation in the NCEP GFS of a Hybrid Eddy-Diffusivity Mass-Flux (EDMF) Boundary Layer Parameterization with Dissipative Heating and Modified Stable Boundary Layer Mixing. Weather Forecast. 2016, 31, 341–352. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Cangialosi, J.P.; Latto, A.S.; Berg, R.; National Hurricane Center Tropical Cyclone Report. Hurricane Irma. 1–111. 2017. Available online: https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf (accessed on 22 February 2022).
- Lu, X.; Wang, X. Improving Hurricane Analyses and Predictions with TCI, IFEX Field Campaign Observations, and CIMSS AMVs Using the Advanced Hybrid Data Assimilation System for HWRF. Part I: What is Missing to Capture the Rapid Intensification of Hurricane Patricia (2015). Mon. Weather Rev. 2019, 147, 1351–1373. [Google Scholar] [CrossRef]
- Hurricane Research Division, 2015: Hurricane Research Division dataset during Hurricane Irma. NOAA. Available online: https://www.aoml.noaa.gov/hrd/Storm_pages/irma2017/radar.html (accessed on 8 April 2022).
- Fischer, M.S.; Rogers, R.F.; Reasor, P.D. The rapid intensification and eyewall replacement cycles of Hurricane Irma (2017). Mon. Weather Rev. 2020, 148, 981–1004. [Google Scholar] [CrossRef]
Data/Scheme Details | |
---|---|
Conventional Data Assimilated | Radiosondes; dropwindsondes; aircraft reports (aircraft report (AIREP)/pilot report (PIREP); reconnaissance code (RECCO), meteorological data collection and reporting system-aircraft communications addressing and reporting system (MDCRS-ACARS), tropospheric airborne meteorological data reporting (TAMDAR), aircraft meteorological data relay (AMDAR)); surface ship and buoy observations; surface observations over land; pibal winds; wind profilers; radar-derived velocity azimuth display (VAD) wind; WindSat scatterometer winds; integrated precipitable water derived from the Global Positioning System (GPS) |
Satellite Radiance Data Assimilated | Infrared radiation (IR) instruments: high-resolution infrared radiation sounder (HIRS), atmospheric infrared sounder (AIRS), Infrared atmospheric sounding interferometer (IASI), geostationary operational environmental satellites (GOES) sounders, cross-track infrared sounder (CrIS), special sensor microwave imager/sounder (SSMIS); microwave (MW) instruments: advanced microwave sounding unit-A (AMSU-A), microwave humidity sounder (MHS), advanced technology microwave sounder (ATMS) |
Other Data Assimilated | National Oceanic and Atmospheric Administration (NOAA) P3 tail Doppler radar (TDR); hurricane and severe storm sentinel (HS3) Global Hawk (GH) dropsonde; tropical cyclone (TC) vital mean sea level pressure (MSLP); high-density flight-level wind, temperature, and moisture observations; Enhanced Cooperative Institute for Meteorological Satellite Studies (CIMSS) atmospheric motion vectors (AMV) |
Physics Scheme Used | Ferrier–Aligo microphysics scheme with minor updates [39]; scale-aware simplified Arakawa–Schubert (SASAS) cumulus scheme [40,41,42,43]; Hurricane Weather Research and Forecasting (HWRF) modified Geophysical Fluid Dynamics Laboratory (GFDL) surface-layer scheme [44,45,46]; Noah land-surface model [47,48]; non-local hybrid eddy-diffusivity mass-flux (hybrid EDMF) planetary boundary layer (PBL) scheme [49,50,51]; Rapid Radiative Transfer Model for Global Circulation Models (RRTMG) longwave and shortwave radiation schemes [52,53] |
Experiment Name\Features | VR | VR Frequency | DA Frequency | Inner-Core AMV (Above 125 hPa) | Error Profile |
---|---|---|---|---|---|
6H_NVR | N | None | 6-Hourly | Y | Default |
6H_NVR_N125 | N | ||||
6H_VR | Y | 6-Hourly | Y | ||
6H_VR_N125 | N | ||||
6H_NP | Y | Updated | |||
1H_NVR | N | None | Hourly | Y | Default |
1H_NVR_N125 | N | ||||
1H_VR1 | Y | Hourly | Y | ||
1H_VR1_N125 | N | ||||
1H_VR6 | 6-Hourly | Y | |||
1H_VR6_N125 | N | ||||
1H_NP | Y | Updated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Davis, B.; Wang, X. Improving the Assimilation of Enhanced Atmospheric Motion Vectors for Hurricane Intensity Predictions with HWRF. Remote Sens. 2022, 14, 2040. https://doi.org/10.3390/rs14092040
Lu X, Davis B, Wang X. Improving the Assimilation of Enhanced Atmospheric Motion Vectors for Hurricane Intensity Predictions with HWRF. Remote Sensing. 2022; 14(9):2040. https://doi.org/10.3390/rs14092040
Chicago/Turabian StyleLu, Xu, Benjamin Davis, and Xuguang Wang. 2022. "Improving the Assimilation of Enhanced Atmospheric Motion Vectors for Hurricane Intensity Predictions with HWRF" Remote Sensing 14, no. 9: 2040. https://doi.org/10.3390/rs14092040
APA StyleLu, X., Davis, B., & Wang, X. (2022). Improving the Assimilation of Enhanced Atmospheric Motion Vectors for Hurricane Intensity Predictions with HWRF. Remote Sensing, 14(9), 2040. https://doi.org/10.3390/rs14092040