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Abstract: The initial conditions for hurricanes are difficult to improve due to the lack of inner-core
observations over the ocean. An enhanced atmospheric motion vectors (AMVs) dataset from the
Cooperative Institute for Meteorological Satellite Studies (CIMSS) has recently become available and
covers the inner-core region of hurricanes. This study tries to find an optimal data assimilation (DA)
configuration to better utilize the observations for the Hurricane Weather Research and Forecasting
(HWRF) model with hurricane Irma (2017). The results show that (a) without vortex relocation (VR),
the hourly three-dimensional ensemble–variational (3DEnVar) outperforms the 6-hourly 3DEnVar
DA configuration in almost all aspects, except for long-term track predictions. The assimilation of
inner-core AMVs further improves the corresponding intensity forecasts for both hourly and 6-hourly
3DEnVar DA. (b) The 6-hourly 3DEnVar DA predictions with VR can be significantly improved
upon their non-VR counterparts. However, VR can be detrimental to hourly 3DEnVar minimum
sea level pressure (MSLP) predictions due to the spuriously enhanced upper-level warm core. The
improvements from the assimilation of additional inner-core AMVs are thus limited under hourly
VR. Reducing VR frequency can reduce the detrimental effects of hourly 3DEnVar. (c) An updated
observation error profile for the enhanced AMVs benefits the hourly 3DEnVar DA more than the
6-hourly 3DEnVar DA.

Keywords: data assimilation; enhanced atmospheric motion vectors; hurricanes; hourly
3DEnVar; HWRF

1. Introduction

One known difficulty in hurricane predictions is how to obtain accurate initial con-
ditions for the numerical weather prediction (NWP) models over the open ocean. Recent
advances in the assimilation of airborne-based inner-core observations have shown promis-
ing results in improving hurricane predictions. For example, Wick et al. (2018) [1] and
Christophersen et al. (2018) [2] showed that the assimilation of dropwindsondes from
the Global Hawk unmanned aircraft can improve the position and minimum sea level
pressure (MSLP) analyses and predictions of tropical cyclones (TCs), especially for the
non-steady-state storms. Lu and Wang (2020) [3] and Feng and Wang (2019) [4] demon-
strated significant improvements in the storm structure analysis and predictions after
assimilating the high-definition sounding system (HDSS) and expendable digital drop-
sondes (XDD) [5] deployed from the WB-57 [6]. The assimilation of tail Doppler radar
(TDR) observations and high-density observations (HDOB) sampled onboard the National
Oceanic and Atmospheric Administration (NOAA) P3 and G-IV aircrafts was also found
critical in improving the TC initial conditions and the subsequent intensity predictions
through extensive studies [3,7–14].

However, those airborne observations are often limited by the nature of the aircraft,
which has restricted airtime and can only be launched from the coastal regions with strict
constraints in range and frequency. The temporal and spatial discontinuity of the airborne
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observations requires supplementary observations to fill in the gaps. While the direct
assimilation of all-sky radiance observations is still immature [15–17], assimilating the
satellite-derived atmospheric motion vectors (AMVs) is one of the alternatives to better
utilize the satellite observations [18–21].

AMVs are derived from the movements of coherent water vapor targets between
sequential satellite images to retrieve wind and height information of the atmosphere [21].
Such retrieval algorithms for AMVs are constantly evolving [22]. With the efforts of the
Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of
Wisconsin, an enhanced AMV dataset [20,23,24] has recently become available with larger
coverage, better quality, and higher density than the AMVs that were used previously
in operational models, such as the Hurricane Weather Research and Forecasting (HWRF)
model [20]. One of the advantages of this new dataset is the high-density coverage above
the hurricane inner-core regions, which was not available before. In recent studies, this
enhanced AMV dataset was found to help improve hurricane predictions in multiple
aspects [20,23–25]. For instance, both Wu et al. (2014, 2015) [23,24] and Zhang et al.
(2018) [25] showed that the assimilation of enhanced AMVs, especially those above the
inner-core region, reduces the structure, track, and intensity errors of TC predictions. Based
on the operational Hurricane Weather Research and Forecasting (HWRF) model framework,
the preliminary research was performed using a 6-hourly three-dimensional ensemble–
variational (3DEnVar) data assimilation (DA) method, even though the dataset itself is
at an hourly frequency or even higher (e.g., 15 min in rapid scan mode). As suggested
by Velden et al. (2017) [20], the high temporal density of the enhanced AMVs may not
be efficiently utilized in the 6-hourly 3DEnVar DA. Early studies with high-resolution
inner-core TDR observations [9,26] suggested the 6-hourly four-dimensional ensemble–
variational (4DEnVar) or hourly 3DEnVar DA methods, which consider the temporal
evolution of error covariance, can both outperform the 6 h 3DEnVar with the assimilation
of those observations with high temporal density for hurricane predictions. This study is
among the first to explore the optimal configuration of the enhanced AMV assimilation
with hourly frequency DA using a newly developed GSI-based, continuously cycled, dual-
resolution, hybrid ensemble–variational (EnVar) DA system for the HWRF model [8,9].
Further, the importance of inner-core AMVs in such DA configurations is also investigated.

Since the early years of hurricane NWP, vortex initialization (VI) techniques have
been used to provide location and intensity corrections over open water [27–31]. The VI
technique used in the operational HWRF was developed by Liu et al. (2006, 2000) [32,33].
It primarily contains two steps: vortex relocation (VR), which corrects the storm location;
and vortex modification (VM), which modifies the storm size and intensity [34]. Previous
studies with HWRF showed that the VI, especially the VR component, is necessary for a
continuously cycled DA system in hurricane predictions when no continuous inner-core
observations are available [9]. While the enhanced AMVs are continuously available and
cover the hurricane inner-core regions [24,25], studies by Velden et al. (2017) [20] and
Zhang et al. (2018) [25] suggested that the benefit of assimilating the enhanced AMVs may
be reduced when using VI. Therefore, it is necessary to investigate whether the VR is still
needed in a fully cycling DA system with the assimilation of the enhanced AMVs.

As indicated by Velden et al. (2017) [20], quality control (QC), such as the observation
error profile and gross error check employed for this newly developed AMV dataset, affects
the performance of DA and the subsequent forecasts. The observation error profile is
further updated in response to the enhanced AMVs’ recent updates (Velden, C., personal
communication, 2020). Therefore, this study further investigates the impact of this updated
error profile in the advanced 3DEnVar DA system for HWRF.

This paper is organized as follows. The model, case, observations, and experiment
designs are described in Section 2. Section 3 discusses the results of the experiments.
Conclusions and further discussions are included in Section 4.
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2. System, Model, Observations, and Experiment Design
2.1. System and Model Description

The Gridpoint Statistical Interpolation (GSI)-based hybrid EnVar DA system for HWRF
was developed by Lu et al. (2017) [8,9]. Following the 2017 operational HWRF model
configurations [34], the model was further adapted and upgraded with hourly DA capa-
bilities [26]. Specifically, this system includes a 40-member self-cycled HWRF ensemble
Kalman filter (EnKF) running in parallel with a deterministic EnVar. The EnKF ensemble
is running at a coarser resolution than the deterministic EnVar. Both the lateral boundary
conditions and initial conditions are provided by the operational global forecast system
(GFS) [35]. Before DA, VR will be applied to the ensemble and deterministic forecasts
following Liu et al. (2000, 2006) [32,33] and Lu et al. (2017a,b) [8,9] based on the demand of
experiment designs (Section 2.4). In the DA step, the coarse resolution ensemble provides
the full ensemble error covariance for the high-resolution deterministic EnVar through an
augmented control vector (GSI-ACV) method [35–37]. Meanwhile, an ensemble square
root Kalman filter (EnSRF) method [38] is applied to the ensemble utilizing the observa-
tion preprocessing and forward operators from GSI. As a two-way system, the ensemble
analysis is recentered (replacing the ensemble mean) with the EnVar analysis (Wang et al.
2013, Figure 1) [35]. Then, both the recentered EnKF analysis and the EnVar analysis are
used to initialize a 6- or 1 h forecast to prepare for the next DA cycle, depending on the
need for a 6-hourly or hourly 3DEnVar. No ocean coupling is applied during the forecasts.
More details about this hybrid EnVar DA system and the methodology for 3DEnVar can be
found in Lu et al. (2017) [8,9].Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 24 
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and are marked in blue dots. The vertical distribution of the same preprocessed AMVs 
from the innermost domain (2 km) is shown in Figure 1c. It clearly shows that the en-
hanced observations for this innermost domain peaked at around 200 hPa. The vertical 
profile of the default observation error profile used by the operational HWRF is shown in 
Figure 1d along with the modified error profile. The major difference is the enlarged ob-
servation errors in the upper levels above 200 hPa (Chris Velden, personal communica-
tion, 2020). Such an increase in the upper levels is due to having more observations to 

Figure 1. (a) Vmax (blue) and MSLP (red) evolution of hurricane Irma (2017). The availability of
TDR observations and the enhanced AMVs are shown in green and cyan lines, respectively. The
(b) horizontal and (c) vertical distribution of the enhanced AMVs assimilated at 06:00 UTC on 4
September 2017. Blue dots in (b) are the observations above 125 hPa, and the red dots are below. The
(d) default (blue) and updated (cyan) observation error profiles for the enhanced AMVs.
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The HWRF model used in this study is HWRF version 3.9 [34]. The horizontal grid
spacing is approximately 2 km (0.015◦), 6 km (0.045◦), and 18 km (0.135◦) for the determin-
istic control for the inner, middle, and outer domains, respectively. The ensemble members
are only running with 6 km and 18 km grid spacing to save computational resources.
For both EnVar and EnKF, DA is only performed on the inner domains. Following the
operational HWRF [34], the outermost domain will be updated with GFS analysis (or 3 h
forecast at +3 synoptic times in hourly configuration) for initialization. The model tops at
10-hPa with 75 vertical levels. The model physics used in this study follows Biswas et al.
(2018) [34] and is shown in Table 1.

Table 1. List of observations assimilated and model physics configurations.

Data/Scheme Details

Conventional Data Assimilated

Radiosondes; dropwindsondes; aircraft reports (aircraft report (AIREP)/pilot report
(PIREP); reconnaissance code (RECCO), meteorological data collection and reporting
system-aircraft communications addressing and reporting system (MDCRS-ACARS),
tropospheric airborne meteorological data reporting (TAMDAR), aircraft meteorological
data relay (AMDAR)); surface ship and buoy observations; surface observations over
land; pibal winds; wind profilers; radar-derived velocity azimuth display (VAD) wind;
WindSat scatterometer winds; integrated precipitable water derived from the Global
Positioning System (GPS)

Satellite Radiance Data Assimilated

Infrared radiation (IR) instruments: high-resolution infrared radiation sounder (HIRS),
atmospheric infrared sounder (AIRS), Infrared atmospheric sounding interferometer
(IASI), geostationary operational environmental satellites (GOES) sounders, cross-track
infrared sounder (CrIS), special sensor microwave imager/sounder (SSMIS);
microwave (MW) instruments: advanced microwave sounding unit-A (AMSU-A),
microwave humidity sounder (MHS), advanced technology microwave sounder (ATMS)

Other Data Assimilated

National Oceanic and Atmospheric Administration (NOAA) P3 tail Doppler radar
(TDR); hurricane and severe storm sentinel (HS3) Global Hawk (GH) dropsonde;
tropical cyclone (TC) vital mean sea level pressure (MSLP); high-density flight-level
wind, temperature, and moisture observations; Enhanced Cooperative Institute for
Meteorological Satellite Studies (CIMSS) atmospheric motion vectors (AMV)

Physics Scheme Used

Ferrier–Aligo microphysics scheme with minor updates [39]; scale-aware simplified
Arakawa–Schubert (SASAS) cumulus scheme [40–43];
Hurricane Weather Research and Forecasting (HWRF) modified Geophysical Fluid
Dynamics Laboratory (GFDL) surface-layer scheme [44–46]; Noah land-surface model
[47,48]; non-local hybrid eddy-diffusivity mass-flux (hybrid EDMF) planetary boundary
layer (PBL) scheme [49–51]; Rapid Radiative Transfer Model for Global Circulation
Models (RRTMG) longwave and shortwave radiation schemes [52,53]

2.2. Case Description

Hurricane Irma (2017) is a category 5 hurricane that formed as a tropical depression at
00:00 UTC on 30 August 2017 and dissipated at 18:00 UTC on 13 September 2017. Irma first
hit Barbuda around 05:45 UTC on 6 September as a category 5 hurricane and fluctuated
between category 5 and 4 within the next three days with its additional four landfalls along
the Caribbean Islands. Passing through Cudjoe Key in the Florida Keys at category 4, it
made the final landfall near Marco Island, Florida, at 19:30 UTC on 10 September as a
category 3 hurricane. This two-week-long TC caused more than 100 direct and indirect
deaths along its seven landfalls [54]. As indicated in Cangialosi et al. (2017) [54], a major
difficulty for Irma prediction was its rapid intensification (RI) and the landfall uncertainties
(eastern or western Florida) in its early stages. Such challenges make Irma a good case
to explore the impact of the optimal configurations for the enhanced AMVs, which are
expected to provide both environmental information that improves the track forecasts and
inner-core information that improves the intensity predictions.
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2.3. Observations and Preprocessing

The observations used in this study were listed in Table 1. Generally, this study
assimilates all the observations used in the operational HWRF during hurricane Irma
(2017), except for replacing the operational AMVs with the enhanced AMVs from CIMSS.
The enhanced AMVs are available at an hourly frequency from 09:00 UTC, 3 September
2017 to 06:00 UTC, 6 September 2017 (Figure 1a). As stated in the Introduction, Irma
grew to a category 5 hurricane from category 2 and made its first landfall in Barbuda
during the period.

Following the criteria from Velden et al. (2017) and Wu et al. (2014, 2015) [20,23,24],
the enhanced AMVs are additionally preprocessed before DA. To be specific, only the
observations with a quality indicator (QI) equal to or greater than 0.8 are used in this study.
The quality-controlled observations are then superobbed (or averaged) within 0.055- by
0.055-degree (~6 km) boxes. Figure 1b shows an example of the horizontal distribution of
the preprocessed AMV observations valid at 06:00 UTC on 4 September 2017. By default,
the AMVs above the 125 hPa will be discarded by GSI. The observations that are above
125 hPa can be considered as from the inner-core regions (with deep convection) and
are marked in blue dots. The vertical distribution of the same preprocessed AMVs from
the innermost domain (2 km) is shown in Figure 1c. It clearly shows that the enhanced
observations for this innermost domain peaked at around 200 hPa. The vertical profile of
the default observation error profile used by the operational HWRF is shown in Figure 1d
along with the modified error profile. The major difference is the enlarged observation
errors in the upper levels above 200 hPa (Chris Velden, personal communication, 2020).
Such an increase in the upper levels is due to having more observations to better estimate
the root mean square error (RMSE) for those levels in the newer dataset than before.

2.4. Experiment Design

To address the scientific goals of this study, twelve sets of experiments have been
designed, as shown in Table 2. They are named as “6H_NVR”, “6H_NVR_N125”, “6H_VR”,
“6H_VR_N125”, “6H_NP”, “1H_NVR”, “1H_NVR_N125”, “1H_VR1”, “1H_VR1_N125”,
“1H_VR6”, “1H_VR6_N125”, “1H_NP”, respectively. Each experiment is detailed as follows.

Table 2. List of experiments.

Experiment
Name\Features VR VR

Frequency
DA
Frequency

Inner-Core AMV
(Above 125 hPa)

Error
Profile

6H_NVR
N None

6-Hourly

Y

Default
6H_NVR_N125 N

6H_VR

Y 6-Hourly

Y

6H_VR_N125 N

6H_NP Y Updated

1H_NVR
N None

Hourly

Y

Default

1H_NVR_N125 N

1H_VR1

Y

Hourly
Y

1H_VR1_N125 N

1H_VR6
6-Hourly

Y

1H_VR6_N125 N

1H_NP Y Updated

Experiment “6H_NVR” is the baseline experiment for the six-hourly 3DEnVar DA
configuration. It is initialized at 00:00 UTC on 3 September 2017 from the GFS and cycled
every 6 h, assimilating the observations in Table 1 until 06:00 UTC on 6 September 2017.



Remote Sens. 2022, 14, 2040 6 of 20

Note, the enhanced AMVs are available since 12:00 UTC, 3 September 2017, and we only
assimilate the closest hour of AMVs due to the data density. There are, in total, 11 DA cycles
that are counted for the AMV assimilation. No VR is performed on either the ensemble or
deterministic background.

Experiment “6H_NVR_N125” differs from experiment “6H_NVR” by excluding the
AMV observations above 125 hPa. The goal of the comparison between “6H_NVR_N125”
and “6H_NVR” is to investigate the impact of inner-core AMVs.

Different from “6H_NVR” (“6H_NVR_N125”), experiment “6H_VR” (“6H_VR_N125”)
is conducted with VR before each DA cycle starting from 12:00 UTC, 3 September 2017, to
understand the impact of VR under this 6-hourly 3DEnVar DA configuration. Additionally,
the comparison between “6H_VR” and “6H_VR_N125” is made to further understand the
impact of inner-core observation when VR is available.

The “6H_NP” experiment differs from “6H_VR” by using the updated error profile in
Figure 1d to investigate the impact of such an error profile.

The “1H_NVR” and “1H_NVR_N125” experiments are comparable to their 6-hourly
counterparts (“6H_NVR” and “6H_NVR_N125”), except using the hourly 3DEnVar DA
configuration. They share the same spin-up background from 2017/09/03 00:00 UTC
to 06:00 UTC, 3 September 2017, with the “6H” experiments. The first hourly 3DEn-
Var DA cycle starts at 09:00 UTC, 3 September 2017, which is the 3 h forecast from
06:00 UTC, 3 September 2017. The comparison between “1H_NVR” (“1H_NVR_N125”)
and “6H_NVR” (“6H_NVR_N125”) is made to explore the impact of the higher frequency
DA of the enhanced AMVs when VR is not performed. Note, due to the design of the
system and data availability, the data volume in the 6-hourly 3DEnVar at each synoptic
time (00, 06, 12, 18 UTC) is not finished until 3 h later in the hourly 3DEnVar experiments.
Therefore, for a fair comparison, we only consider the synoptic +3 h forecast from the
hourly 3DEnVar experiments in this study, corresponding to the 6-hourly 3DEnVar forecast
at the synoptic times.

To understand the impact of VR, experiments “1H_VR1” and “1H_VR6” are conducted
to understand the optimal VR configuration for hourly 3DEnVar. By design, both “1H_VR1”
and “1H_VR6” are based on “1H_NVR”, except that “1H_VR1” performs VR every hour
before DA, and “1H_VR6” only performs VR every 6 h prior to the DA at synoptic times.
Further discussions on why and how the VR frequency matters are presented in Section 3.2.
Comparisons between “1H_NVR”, “1H_VR1” and “1H_VR6” show the impact of VR in
the hourly 3DEnVar configuration when assimilating the enhanced AMVs. The corre-
sponding experiments without assimilating inner-core observations, “1H_NVR_N125”,
“1H_VR1_N125”, and “1H_VR6_N125”, are also consistently performed to investigate the
impact of inner-core observations in each scenario. Additionally, comparisons between
“1H_VR6” (“1H_VR6_N125”) and “6H_VR” (“6H_VR_N125”) can present the impact of
higher frequency DA of the enhanced AMVs when VR is performed.

Similar to “6H_NP” and “6H_VR”, experiment “1H_NP” is performed based on
“1H_VR6” by replacing the standard observation error profile with the updated one. This
experiment is designed to explore the new error profile’s impact on the enhanced AMVs’
assimilation in the hourly 3DEnVar configuration.

3. Results
3.1. Impact of Inner-Core AMVs Assimilation without VR

As outlined in Section 2.4, this subsection first discusses the impact of the assimilation
of the inner-core AMVs when no VR is performed in the continuously cycling 3DEnVar DA
system with HWRF.

Figure 2a–c shows the RMSE of the eleven forecasts starting from 12:00 UTC, 3 Septem-
ber 2017 to 00:00 UTC, 6 September 2017, for the 6-hourly 3DEnVar and the correspond-
ing hourly 3DEnVar forecasts. The best track data are found in the Atlantic hurricane
database (HURDAT2) from the National Hurricane Center (https://www.nhc.noaa.gov/
data/hurdat/hurdat2-1851-2020-020922.txt, accessed on 8 April 2022). In the 6-hourly

https://www.nhc.noaa.gov/data/hurdat/hurdat2-1851-2020-020922.txt
https://www.nhc.noaa.gov/data/hurdat/hurdat2-1851-2020-020922.txt
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3DEnVar DA configuration, while the track predictions are almost comparable (Figure 2c),
the additional assimilation of inner-core AMVs (“6H_NVR”) only slightly outperforms
“6H_NVR_N125” in the early lead-time 10 m wind maximum (Vmax) and minimum
sea level pressure (MSLP) predictions (Figure 2a,b). The mission-by-mission forecast in
Figure 2d–i indicates multiple strong spin-downs (Vmax drop greater than 5 ms−1

(6 h)−1, [55]) in both experiments. “6H_NVR” appears to have slightly better resistance to
the spin-down issue than “6H_NVR_N125” (Figure 2d vs. Figure 2g). To understand the
issue, one of the spin-down cycles is further investigated below.
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Figure 3 shows the 1 km height horizontal wind and south-to-north cross-section
wind structures from the Hurricane Research Division (HRD) radar composite [56], and
the analysis of each experiment is valid at 12:00 UTC, 4 September 2017. Fischer et al.
(2020) [57] showed that Irma was going through an eyewall replacement cycle during this
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RI period, and the observations in Figure 3f show features of the secondary eyewall around
60 km radii and an abnormal wind maximum aloft around 8 km height. As compared
to the observations, the “6H_NVR” experiment failed to capture the double eyewall and
produced a disorganized storm with a west–east elongated pattern. “6H_NVR_N125”
looks to be even more disorganized than “6H_NVR” with more noisy pressure contours
and an even larger eye size. Those large disagreements with the observations are found
to be attributed to the large background location errors (they can be as large as 50 km for
some cycles, not shown). As compared to “6H_NVR_N125”, the slightly better “6H_NVR”
suggests that the assimilation of the inner-core AMVs can still compensate for the location
error to some extent during the cycling forecasts.
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Figure 3. Horizontal wind (vector) and wind speed (shading) at (a–e) 1000 m height and
(f–j) south-to-north cross-section for (a,f) the HRD radar composite, (b,g) “6H_NVR” analysis,
(c,h) “6H_NVR_N125” analysis, (d,i) “1H_NVR” analysis, and (e,j) “1H_NVR_N125” analysis,
valid at 12:00 UTC, 4 September 2017. The black dot in each horizontal figure indicates the
best track location.

In comparison with the 6-hourly 3DEnVar experiments, the hourly 3DEnVar experi-
ments perform generally better than their corresponding counterparts in almost all aspects,
except for the long-term track predictions. For example, “1H_NVR_N125” produces sig-
nificantly better Vmax and MSLP predictions than the “6H_NVR_N125” experiments at
almost all cycles with much fewer spin-down issues (Figure 2a,b,m,n). Additionally, the
“1H_NVR_N125” analysis structure in Figure 3,j fits the observations better with more circu-
lar wind patterns, a reduced eye size, and some weak features of the secondary eyewall as
compared to “6H_NVR_N125”. The northward long-term track prediction biases in hourly
3DEnVar experiments are found due to the initial condition differences in the outermost
domain (not shown). To be specific, because of the design of the DA system in Section 2.1,
the large-scale information from the outermost domain in hourly 3DEnVar forecasts is from
the 3 h GFS forecasts. It is different from the 0 h GFS analysis, as used in the 6-hourly
3DEnVar experiment. In comparison with “1H_NVR_N125”, the assimilation of additional
inner-core AMVs in “1H_NVR” further improves the Vmax and MSLP predictions and the
wind analysis patterns, especially the structures of the secondary eyewall and the secondary
wind maximum aloft (Figures 2a–b and 3d,i). The track predictions in “1H_NVR” are also
slightly better than “1H_NVR_N125”.
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Overall, the NVR experiments show that in both 6-hourly and hourly 3DEnVar con-
figurations, the assimilation of additional inner-core AMVs can help slightly improve the
Vmax and MSLP predictions by improving the structural analyses. Comparisons between
the 6-hourly 3DEnVar experiments and their corresponding hourly 3DEnVar counterparts
indicate the benefits of higher DA frequencies in assimilating the enhanced AMVs.

3.2. Impact of Inner-Core AMVs Assimilation with VR

Given that the background location error significantly degraded the analysis in
“6H_NVR” and “6H_NVR_N125”, this section explores the impact of assimilating inner-
core AMVs with VR.

Like the current operational HWRF, experiments “6H_VR” and “6H_VR_N125” per-
form VR before each DA cycle every 6 h. This step reduces the background location error
and was found necessary in early studies [9]. Consistently, the VR experiments significantly
improve the Vmax and MSLP predictions, especially for the first 48–72 h compared to their
corresponding NVR counterparts (Figure 4a,b). The analyzed structures in both “6H_VR”
and “6H_VR_N125” are also more consistent with the observations, with more circular
patterns, smoother pressure contour, tightened eye size, as well as the features of secondary
eyewall, than “6H_NVR” and “6H_NVR_N125” (Figure 5 vs. Figure 3). Better consistency
with the observations and best track again demonstrates the positive impact of VR for the
6-hourly 3DEnVar configurations.
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When “6H_VR” and “6H_VR_N125” are compared, the additional assimilation of
inner-core AMVs in “6H_VR” outperforms “6H_VR_N125” in the analysis by better cap-
turing the height of the aloft wind maximum and a clearer pattern of the double eyewall
(Figure 5). Figure 6 shows the azimuthal mean radial wind analysis valid at 12:00 UTC,
5 September 2017, for “6H_VR” and “6H_VR_N125”. At this stage of the storm, Irma was
reaching its peak intensity and maintained category 5 intensity until it hit Barbuda about
18 h later (Figure 1a). Therefore, Irma should be a mature storm that fits the typical storm
structure with a strong low-level inflow, as well as a strong and high upper-level outflow.
“6H_VR” produces a slightly weaker but thicker upper-level outflow than “6H_VR_N125”
(Figure 6a,b). Such a feature is due to the inner-core AMVs trying to pull the outflow max-
ima to a higher level, which shows a better match with the outflow observations around
100 hPa in both pattern and strength (Figure 7a,b). Consequently, “6H_VR” produces better
Vmax and MSLP predictions than “6H_VR_N125” (Figure 4). The improvement includes
alleviated spin-down issues, as shown in Figure 4d vs. Figure 4g. “6H_VR” also produces
better long-term intensity predictions during the weakening stage than “6H_VR_N125”
(Figure 4d,e,g,h). Nevertheless, the track predictions are overall comparable between the
two experiments (Figure 4c,f,i).
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While VR improves the 6-hourly 3DEnVar experiments, Figure 8 suggests that VR
can bring negative impacts to the hourly 3DEnVar experiments. When performing VR
before each DA cycle at an hourly frequency in “1H_VR1” and “1H_VR1_N125”, the ini-
tial MSLP analysis becomes much worse than the corresponding 1H_NVR experiments
(Figure 8b). Moreover, although Figure 8a indicates that the Vmax predictions in “1H_VR1”
are improved upon “1H_VR1_N125” due to fewer spin-down issues (Figure 8d vs.
Figure 8g), “1H_VR1” is producing even worse initial MSLP analyses than “1H_VR1_N125”
(Figure 8e vs. Figure 8h). Figure 9 indicates that there is no significant issue in the wind
pattern analyses as compared to either the observations (Figure 9a) or their 1H_NVR coun-
terparts (Figure 3d,e,i,j). The clear patterns of the double eyewall and the middle-level
secondary wind maximum in the north in “1H_VR1” are consistent with the observations.
Further investigations into the 1H_VR1 experiments show that the degradation in the
short-term MSLP predictions is likely attributed to the frequent VR. In the VI package from
the operational HWRF [32,33], VR is performed by taking the background vortex out of
the environment and then putting the vortex in the correct location. Figure 10a, b shows
that during this VR step, even without moving the storm location, the temperature field
will still be enhanced by about 3K at 9 km altitude during the out-and-back procedure.
The increase in the temperature field in the upper-eye region then produces an artificially
stronger upper-level warmer core as compared to the original background (Figure 10c vs.
Figure 10d). Given there are no thermodynamic observations in the upper-level inner-core
region available, the assimilation of dynamic observations, such as the TDR and upper-
level AMVs, can only slightly reduce the warm core (Figure 10e,f vs. Figure 10c,d). There-
fore, the temperature reduction from DA cannot cancel out the increase from relocation
(Figure 10e vs. Figure 10f). While it takes time for the model to gradually rebalance the
dynamic and thermodynamic fields, hourly VR in “1H_VR1” and “1H_VR1_N125” contin-
uously enhances the spurious upper-level warm core and rapidly decreases the MSLP to
an unreasonable value through the hydrostatic equilibrium.

To support the hypothesis, experiments “1H_VR6” and “1H_VR6_N125” are con-
ducted to reduce the frequency of VR to once every 6 h, which is proved to be working
for 6H_VR. Figure 11 shows that the reduction in VR frequency significantly improves
the MSLP analysis and short-term predictions, as expected. However, in comparison with
the NVR experiments “1H_NVR” and “1H_NVR_N125”, experiments “1H_VR6” and
“1H_VR6_N125” only slightly improve the MSLP predictions at the early lead times; the
Vmax and Track predictions are generally comparable or slightly worse at longer lead times.
Such a result is different from the VR impact for 6-hourly 3DEnVar, where the VR improves
intensity predictions significantly, especially for the hourly DA of inner-core AMVs.

The intra-comparison between “1H_VR6” and “1H_VR6_N125” indicates that when
VR exists, the inner-core AMVs from “1H_VR6” are slightly degrading the intensity pre-
dictions as compared to “1H_VR6_N125”, especially for the long-term predictions after
72~80 h (Figure 11). This degradation from the assimilation of inner-core AMVs is conflict-
ing with the hourly 3DEnVar experiments without VR (“1H_NVR” vs. “1H_NVR_N125”;
Figure 2). Figure 12 shows that “1H_VR6_N125” is capturing the double eyewall and sec-
ondary wind maximum at 8 km height better than the corresponding “1H_VR6” analysis.
The negative impacts from the imbalanced thermal and dynamical fields from VR likely
dominate the inner-core region when the location error is not a major issue in such an
hourly configuration.

However, further investigations into the secondary circulations indicate that the
inner-core AMVs may still be necessary for a rapidly evolving hurricane. For example,
Figure 6d indicates that the “1H_VR6” can produce a stronger inner-core structure with
higher and stronger upper-level outflow as compared to “1H_VR6_N125” (Figure 6b).
This stronger storm analysis is also found multiple times in Figure 11d. Figure 7d shows
that the general outflow in “1H_VR6” around this level is stronger than “1H_VR6_N125”
(Figure 7e), especially in the southern portion of the storm, where “1H_VR6” produces an
outflow that is more consistent with the observations in both strength and directions than
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“1H_VR6_N125”. Quantitively, the RMSE against those observations from each analysis
shows that “1H_VR6” (8.83 ms−1) matches better than “1H_VR6_N125” (13.54 ms−1).Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 24 
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When comparing the “1H_VR6” experiment with the corresponding “6H_VR” ex-
periment (e.g., dashed lines in Figure 13a–c), the hourly 3DEnVar experiments are not
improving the intensity or track predictions upon the 6-hourly 3DEnVar experiments as
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the NVR experiments, even though the spin-down issues are less frequent (Figure 11 vs.
Figure 4). Nevertheless, the hourly 3DEnVar analysis produces a reasonably intensifying
storm with better inner-core structures (Figure 12b,e vs. Figure 5b,e), and stronger and
higher upper-level outflow (Figures 6 and 7) than the 6-hourly 3DEnVar analysis. While Lu
and Wang (2019) [55] suggest that the lack of realistic model physics can be detrimental
to better analysis, it requires further investigations in future work to better understand
why the more reasonable analysis produced in “1H_VR6” is not improving the predictions
upon “6H_VR”.
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3.3. Impact of the Modified Error Profile

As stated in the Introduction, the default observation error profile used in the opera-
tional HWRF may not fit the enhanced AMVs dataset and needs to be updated. Therefore,
this subsection investigates the impact of the updated error profile, as shown in Figure 1d,
following Section 2.4.

Figure 1d shows that the updated error profile primarily increases the observation
error above 200hPa. This increase in the upper level is primarily due to having more
observations in this newer dataset to directly calculate the RMSE, given that there are
more observations in regions where previously there were none due to data processing
limitations (personal communication with Chris Velden and William Lewis, 2020). The
profile change would primarily affect the storm’s inner-core and near-core-vicinity regions,
as well as deep convection regions, such as ones above the rainbands (not shown). Figure 13
shows that the updated error profile merely improves the predictions from the 6-hourly
3DEnVar experiments statistically, although “6H_NP” shows fewer spin-down issues and
better MSLP trends during the weakening period. Figure 6c indicates that the secondary
circulation in “6H_NP” is enhanced to be more consistent with the intensifying storm
pattern. However, Figure 7c suggests that the strengthened outflow may not be high
enough and is even producing fewer southernly components as compared to “6H_VR” in
the observed southern wind regions near 57◦W and 16.5–17.5◦N around 100 hPa.
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In comparison to the 6-hourly 3DEnVar experiments, the updated error profile benefits
the hourly 3DEnVar more in the Vmax and MSLP predictions according to Figure 13.
Figures 6 and 7 show that the differences between “1H_NP” and “1H_VR6” in the inner-
core dynamical fields are small, but the upper-level warm core is slightly higher and warmer
in “1H_NP”. For an intensifying hurricane, it is more reasonable to see a strong and high
upper-level outflow in agreement with its strong and warm upper-level warm core, which
both indicate a stronger secondary circulation. Note that additional NP experiment based
on “1H_NVR” shows comparable results with “1H_NP” and is therefore not shown.

4. Summary and Conclusions

To investigate the optimal DA configuration for the newly available inner-core-covered
enhanced AMVs from CIMSS, multiple experiments are conducted in this study using the
self-cycled GSI-based hybrid 3DEnVar DA system for HWRF during Hurricane Irma.

The investigations are first performed without VR. It is found that the hourly 3DEnVar
can significantly outperform the 6-hourly 3DEnVar in such a scenario in almost all aspects,
including the structure analysis and Vmax and MSLP predictions, except for the long-term
track forecasts. Additionally, it is found that the assimilation of high-level inner-core
AMVs can help improve the Vmax and MSLP predictions for both hourly and 6-hourly
experiments. Especially for the hourly 3DEnVar, the additional assimilation of inner-core
AMVs improves both Vmax, MSLP, and track predictions for almost all lead times.

Then, the experiments with VR show that VR benefits the 6-hourly 3DEnVar exper-
iments the most. The assimilation of additional inner-core AMVs further improves the
analysis and predictions in such a configuration. However, the VR can be detrimental to
the hourly 3DEnVar DA configuration, especially for the MSLP predictions. Reducing VR
frequency improves the intensity predictions while improving the structure analysis. How-
ever, the benefit of assimilating inner-core AMVs is still suppressed by the VR issue in such
configurations. An intercomparison between the hourly and 6-hourly 3DEnVar experiments
suggests that, although hourly 3DEnVar DA produces reasonable structure analyses, which
are more consistent with an intensifying storm, it does not outperform the corresponding
6-hourly 3DEnVar DA when VR is performed every 6 h in both configurations.

Additional experiments with updated observation error profiles for the enhanced
AMVs showed more improvements in the hourly 3DEnVar DA configuration than the
6-hourly 3DEnVar DA configuration.

The above results from the experiments indicate that:

1. The background location error is a key concern for a cycling 6-hourly 3DEnVar DA
configuration. Consequently, there is a significant improvement when using VR to
resolve the background location error issue before DA. Assimilating inner-core AMVs
additionally improves the intensity predictions in the VR scenario.

2. The hourly 3DEnVar DA of the enhanced AMVs is less concerned by the background
location error. It appears that in this Hurricane Irma case, the hourly assimilation of
the enhanced AMVs, especially with the inner-core AMVs, is enough to correct the
background storm location for a continuously cycling DA. The hourly 3DEnVar DA
can thus easily outperform its 6-hourly counterparts when no VR is performed.

3. Since the location error is not the major concern for the hourly 3DEnVar, the current
VR technique used in the operational HWRF does more harm than good to the hourly
3DEnVar DA with the artificial warm core issue. Reducing the frequency of VR
can only reduce the negative impacts. As a result, there are no apparent prediction
advantages of the hourly 3DEnVar over the 6-hourly 3DEnVar in the assimilation of
the enhanced AMVs with VR.

4. The updated observation error profile can help improve the analysis and predic-
tions for hourly 3DEnVar DA of the enhanced AMVs. The improvements from the
corresponding 6-hourly 3DEnVar DA are tiny.

Overall, this study suggests that the current best DA configuration for the enhanced
AMVs is to perform 6-hourly 3DEnVar with VR or to perform hourly 3DEnVar without VR
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or only 6-hourly VR. The assimilation of inner-core AMVs with updated observation error
profiles is found to be primarily helpful in hourly 3DEnVar DA.

As a preliminary study with only one case, this study is not intended for drawing a
statistically solid conclusion but rather for giving us ideas on how to improve our utilization
of the newly available enhanced AMV datasets. Further investigations with more cases
and larger sample sizes are needed in future work. Additionally, better VR methods for
hurricanes are worth exploring. More discussion and research on how to better utilize the
improved DA to produce better intensity prediction are needed as well.
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