Wood Decay Detection in Norway Spruce Forests Based on Airborne Hyperspectral and ALS Data
Abstract
:1. Introduction
2. Data Sets Description
2.1. Dataset I: Etnedal
2.2. Dataset II: Gran
3. Methods
3.1. Remote Sensing Data Preprocessing
3.2. Pixels Aggregations
3.2.1. Aggregating the Pixels Inside Each ITC to a Representative Value
3.2.2. Representing the Data by Cubes
3.3. Prediction on Aggregated Data
3.3.1. LASSO with Logistic Linear Regression
3.3.2. Feed forward Neural Networks
3.4. Prediction on Unaggregated Data
3.4.1. Convolutional Neural Networks
3.4.2. Data Encoding with CNN and LASSO with Logistic Linear Regression
3.5. Evaluation of the Performance of the Models
4. Results
4.1. Dataset I
4.2. Dataset II
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solheim, H. Råtesopper—I Levende Trær. 2010. Available online: http://hdl.handle.net/11250/2469366 (accessed on 12 April 2022).
- Oliva, J.; Julio Camarero, J.; Stenlid, J. Understanding the Role of Sapwood Loss and Reaction Zone Formation on Radial Growth of Norway Spruce (Picea Abies) Trees Decayed by Heterobasidion Annosum s.l. For. Ecol. Manag. 2012, 274, 201–209. [Google Scholar] [CrossRef]
- Vollbrecht, G.; Agestam, E. Identifying Butt Rotted Norway Spruce Trees from External Signs. For. Landsc. Res. 1995, 1, 241–254. [Google Scholar]
- Meddens, A.J.H.; Hicke, J.A.; Vierling, L.A.; Hudak, A.T. Evaluating Methods to Detect Bark Beetle-Caused Tree Mortality Using Single-Date and Multi-Date Landsat Imagery. Remote Sens. Environ. 2013, 132, 49–58. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, M.; Xu, Z.; Yang, T.; Su, Y.; Zhou, T.; Wang, H.; Wang, Y.; Lin, Y. Estimation of Leaf Nutrition Status in Degraded Vegetation Based on Field Survey and Hyperspectral Data. Sci. Rep. 2020, 10, 4361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fensholt, R.; Huber, S.; Proud, S.R.; Mbow, C. Detecting Canopy Water Status Using Shortwave Infrared Reflectance Data From Polar Orbiting and Geostationary Platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 271–285. [Google Scholar] [CrossRef]
- Pitkänen, T.P.; Piri, T.; Lehtonen, A.; Peltoniemi, M. Detecting Structural Changes Induced by Heterobasidion Root Rot on Scots Pines Using Terrestrial Laser Scanning. For. Ecol. Manag. 2021, 492, 119239. [Google Scholar] [CrossRef]
- Žemaitis, P.; Žemaitė, I. Does Butt Rot Affect the Crown Condition of Norway Spruce Trees? Trees 2018, 32, 489–495. [Google Scholar] [CrossRef]
- Kankaanhuhta, V.; Mäkisara, K.; Tomppo, E.; Piri, T.; Kaitera, J. Monitoring of Diseases Caused by Heterobasidion Annosum and Peridermium Pini in Norway Spruce and Scots Pine Stands by Airborne Imaging Spectrometry (AISA). In Forest Condition Monitoring in Finland—National Report 1999; Ukonmaanaho, L., Raitio, H., Eds.; Finnish Forest Research Institute: Parkano, Finland, 2000. [Google Scholar]
- Ostovar, A.; Talbot, B.; Puliti, S.; Astrup, R.; Ringdahl, O. Detection and Classification of Root and Butt-Rot (RBR) in Stumps of Norway Spruce Using RGB Images and Machine Learning. Sensors 2019, 19, 1579. [Google Scholar] [CrossRef] [Green Version]
- Räty, J.; Breidenbach, J.; Hauglin, M.; Astrup, R. Prediction of Butt Rot Volume in Norway Spruce Forest Stands Using Harvester, Remotely Sensed and Environmental Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102624. [Google Scholar] [CrossRef]
- Allen, B.; Dalponte, M.; Hietala, A.M.; Ørka, H.O.; Næsset, E.; Gobakken, T. Detection of Root, Butt, and Stem Rot Presence in Norway Spruce with Hyperspectral Imagery. Silva Fenn. 2022, 56, 10606. [Google Scholar] [CrossRef]
- Zhen, Z.; Quackenbush, L.; Zhang, L. Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of LiDAR Data. Remote Sens. 2016, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Dalponte, M.; Reyes, F.; Kandare, K.; Gianelle, D. Delineation of Individual Tree Crowns from ALS and Hyperspectral Data: A Comparison among Four Methods. Eur. J. Remote Sens. 2015, 48, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Sterenczak, K.; Moskalik, T. Use of LIDAR-Based Digital Terrain Model and Single Tree Segmentation Data for Optimal Forest Skid Trail Network. iForest 2015, 8, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Doktor, D.; Lausch, A.; Spengler, D.; Thurner, M. Extraction of Plant Physiological Status from Hyperspectral Signatures Using Machine Learning Methods. Remote Sens. 2014, 6, 12247–12274. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhan, Z.; Ren, L.; Ze, S.; Yu, L.; Jiang, Q.; Luo, Y. Hyperspectral Evidence of Early-Stage Pine Shoot Beetle Attack in Yunnan Pine. For. Ecol. Manag. 2021, 497, 119505. [Google Scholar] [CrossRef]
- Xiong, D.; Huang, H.; Wang, Z.; Li, Z.; Tian, C. Assessment of Dwarf Mistletoe (Arceuthobium Sichuanense) Infection in Spruce Trees by Using Hyperspectral Data. For. Path. 2021, 51, e12669. [Google Scholar] [CrossRef]
- Watt, M.S.; Leonardo, E.M.C.; Estarija, H.J.C.; Massam, P.; de Silva, D.; O’Neill, R.; Lane, D.; McDougal, R.; Buddenbaum, H.; Zarco-Tejada, P.J. Long-Term Effects of Water Stress on Hyperspectral Remote Sensing Indicators in Young Radiata Pine. For. Ecol. Manag. 2021, 502, 119707. [Google Scholar] [CrossRef]
- Dalponte, M.; Ørka, H.O.; Ene, L.T.; Gobakken, T.; Næsset, E. Tree Crown Delineation and Tree Species Classification in Boreal Forests Using Hyperspectral and ALS Data. Remote Sens. Environ. 2014, 140, 306–317. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Processing Syst. 2019, 32, 1–12. [Google Scholar]
- Hu, X.; Yuan, Y. Deep-Learning-Based Classification for DTM Extraction from ALS Point Cloud. Remote Sens. 2016, 8, 730. [Google Scholar] [CrossRef] [Green Version]
- Mohan, A.; Singh, A.K.; Kumar, B.; Dwivedi, R. Review on Remote Sensing Methods for Landslide Detection Using Machine and Deep Learning. Trans. Emerg. Telecommun. Technol. 2021, 32, e3998. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies—Part 1: Literature Review. Remote Sens. 2021, 13, 2450. [Google Scholar] [CrossRef]
- Osco, L.P.; Marcato Junior, J.; Marques Ramos, A.P.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A Review on Deep Learning in UAV Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102456. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, J.; Gu, L. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery. Expert Syst. Appl. 2021, 169, 114417. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of Image Classification Algorithms Based on Convolutional Neural Networks. Remote Sens. 2021, 13, 4712. [Google Scholar] [CrossRef]
- Sothe, C.; De Almeida, C.M.; Schimalski, M.B.; La Rosa, L.E.C.; Castro, J.D.B.; Feitosa, R.Q.; Dalponte, M.; Lima, C.L.; Liesenberg, V.; Miyoshi, G.T.; et al. Comparative Performance of Convolutional Neural Network, Weighted and Conventional Support Vector Machine and Random Forest for Classifying Tree Species Using Hyperspectral and Photogrammetric Data. GIScience Remote Sens. 2020, 57, 369–394. [Google Scholar] [CrossRef]
- Noordermeer, L.; Sørngård, E.; Astrup, R.; Næsset, E.; Gobakken, T. Coupling a Differential Global Navigation Satellite System to a Cut-to-Length Harvester Operating System Enables Precise Positioning of Harvested Trees. Int. J. For. Eng. 2021, 32, 119–127. [Google Scholar] [CrossRef]
- HiPer SR—Compact, Lightweight GNSS Receiver. Topcon Positioning Systems, Inc. Available online: https://www.topconpositioning.com/gnss/integrated-gnss-receivers/hiper-sr (accessed on 23 May 2021).
- Yuan, D.; Elvidge, C.D. Comparison of Relative Radiometric Normalization Techniques. ISPRS J. Photogramm. Remote Sens. 1996, 51, 117–126. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; de Boissieu, F.; Achim, A. LidR: An R Package for Analysis of Airborne Laser Scanning (ALS) Data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Dalponte, M.; Coomes, D.A. Tree-Centric Mapping of Forest Carbon Density from Airborne Laser Scanning and Hyperspectral Data. Methods Ecol. Evol. 2016, 7, 1236–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalponte, M. ItcSegment: Individual Tree Crowns Segmentation. 2018. Available online: https://cran.r-project.org/web/packages/itcSegment/index.html (accessed on 12 April 2022).
- Coomes, D.A.; Dalponte, M.; Jucker, T.; Asner, G.P.; Banin, L.F.; Burslem, D.F.R.P.; Lewis, S.L.; Nilus, R.; Phillips, O.L.; Phua, M.-H.; et al. Area-Based vs Tree-Centric Approaches to Mapping Forest Carbon in Southeast Asian Forests from Airborne Laser Scanning Data. Remote Sens. Environ. 2017, 194, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Coomes, D.A.; Šafka, D.; Shepherd, J.; Dalponte, M.; Holdaway, R. Airborne Laser Scanning of Natural Forests in New Zealand Reveals the Influences of Wind on Forest Carbon. For. Ecosyst. 2018, 5, 10. [Google Scholar] [CrossRef]
- Dalponte, M.; Ene, L.T.; Marconcini, M.; Gobakken, T.; Næsset, E. Semi-Supervised SVM for Individual Tree Crown Species Classification. ISPRS J. Photogramm. Remote Sens. 2015, 110, 77–87. [Google Scholar] [CrossRef]
- Versace, S.; Gianelle, D.; Frizzera, L.; Tognetti, R.; Garfì, V.; Dalponte, M. Prediction of Competition Indices in a Norway Spruce and Silver Fir-Dominated Forest Using Lidar Data. Remote Sens. 2019, 11, 2734. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Suarez, J.C.; Garcia, M.; Hu, T.; Wang, C.; Londo, A. Utility of Multitemporal Lidar for Forest and Carbon Monitoring: Tree Growth, Biomass Dynamics, and Carbon Flux. Remote Sens. Environ. 2018, 204, 883–897. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 26 April 2021).
- Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Cerrillo, R.M.; Varo-Martínez, M.Á.; Acosta, C.; Palacios Rodriguez, G.; Sánchez-Cuesta, R.; Ruiz Gómez, F.J. Integration of WorldView-2 and Airborne Laser Scanning Data to Classify Defoliation Levels in Quercus Ilex L. Dehesas Affected by Root Rot Mortality: Management Implications. For. Ecol. Manag. 2019, 451, 117564. [Google Scholar] [CrossRef]
- Pérez-Bueno, M.L.; Pineda, M.; Vida, C.; Fernández-Ortuño, D.; Torés, J.A.; de Vicente, A.; Cazorla, F.M.; Barón, M. Detection of White Root Rot in Avocado Trees by Remote Sensing. Plant Dis. 2019, 103, 1119–1125. [Google Scholar] [CrossRef]
- Song, X.; Yang, C.; Wu, M.; Zhao, C.; Yang, G.; Hoffmann, W.C.; Huang, W. Evaluation of Sentinel-2A Satellite Imagery for Mapping Cotton Root Rot. Remote Sens. 2017, 9, 906. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Yang, C.; Song, X.; Hoffmann, W.C.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Yu, B. Monitoring Cotton Root Rot by Synthetic Sentinel-2 NDVI Time Series Using Improved Spatial and Temporal Data Fusion. Sci. Rep. 2018, 8, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelong, C.C.; Roger, J.-M.; Brégand, S.; Dubertret, F.; Lanore, M.; Sitorus, N.; Raharjo, D.; Caliman, J.-P. Evaluation of Oil-Palm Fungal Disease Infestation with Canopy Hyperspectral Reflectance Data. Sensors 2010, 10, 734–747. [Google Scholar] [CrossRef] [PubMed]
- Leckie, D.G.; Jay, C.; Gougeon, F.A.; Sturrock, R.N.; Paradine, D. Detection and Assessment of Trees with Phellinus Weirii (Laminated Root Rot) Using High Resolution Multi-Spectral Imagery. Int. J. Remote Sens. 2004, 25, 793–818. [Google Scholar] [CrossRef]
Prediction Method | Aggregation | F1-Score | OA (%) | KA | MCA (%) | PAs (%) | UAs (%) | ||
---|---|---|---|---|---|---|---|---|---|
Healthy | Wood Decay | Healthy | Wood Decay | ||||||
LASSO with logistic linear regression | Mean | 0.398 | 63.5 | 0.159 | 59.9 | 66.4 | 53.3 | 82.9 | 31.8 |
Weighted mean | 0.397 | 63.7 | 0.158 | 59.8 | 66.8 | 52.8 | 82.9 | 31.8 | |
Median | 0.396 | 63.7 | 0.141 | 59.7 | 67.0 | 52.5 | 82.8 | 31.8 | |
Centermost pixel | 0.385 | 62.7 | 0.160 | 58.8 | 65.9 | 51.6 | 82.3 | 30.7 | |
Feedforward neural network | Mean | 0.382 | 61.9 | 0.133 | 58.3 | 64.9 | 51.8 | 82.1 | 30.2 |
Weighted mean | 0.377 | 60.9 | 0.123 | 57.8 | 63.5 | 52.1 | 81.9 | 29.5 | |
Median | 0.382 | 60.3 | 0.125 | 58.1 | 62.1 | 54.1 | 82.2 | 29.5 | |
Centermost pixel | 0.354 | 58.6 | 0.087 | 55.6 | 61.1 | 50.1 | 80.7 | 27.4 |
LASSO with Logistic Linear Regression | ||||||||
---|---|---|---|---|---|---|---|---|
Mean | Weighted Mean | Median | Centermost Pixel | |||||
Healthy | Wood Decay | Healthy | Wood Decay | Healthy | Wood Decay | Healthy | Wood Decay | |
Healthy | 3749 | 781 | 3904 | 819 | 3774 | 785 | 3714 | 799 |
Wood decay | 1887 | 871 | 1732 | 833 | 1862 | 867 | 1922 | 853 |
Feedforward Neural Network | ||||||||
Mean | Weighted mean | Median | Centermost pixel | |||||
Healthy | Wood decay | Healthy | Wood decay | Healthy | Wood decay | Healthy | Wood decay | |
Healthy | 3658 | 797 | 3580 | 791 | 3501 | 758 | 3445 | 825 |
Wood decay | 1978 | 855 | 2056 | 861 | 2135 | 894 | 2191 | 827 |
Prediction Method | Features Used | F1-Score | OA (%) | KA | MCA (%) | PAs (%) | UAs (%) | ||
---|---|---|---|---|---|---|---|---|---|
Healthy | Wood Decay | Healthy | Wood Decay | ||||||
CNN | Hyperspectral bands | 0.390 | 64.4 | 0.156 | 59.4 | 68.6 | 50.2 | 82.4 | 31.9 |
PCA | 0.416 | 65.5 | 0.189 | 61.5 | 68.9 | 54.1 | 83.7 | 33.8 | |
Encoding with CNN + LASSO | PCA | 0.392 | 58.4 | 0.127 | 58.6 | 58.2 | 59.0 | 82.9 | 29.3 |
CNN | Encoding with CNN + LASSO with Logistic Linear Regression | |||||
---|---|---|---|---|---|---|
Hyperspectral Bands | PCA | PCA | ||||
Healthy | Wood Decay | Healthy | Wood Decay | Healthy | Wood Decay | |
Healthy | 3866 | 823 | 3884 | 759 | 3411 | 716 |
Wood decay | 1770 | 829 | 1752 | 893 | 2225 | 936 |
Prediction Method | Aggregation | F1-Score | OA (%) | KA | MCA (%) | PAs (%) | UAs (%) | ||
---|---|---|---|---|---|---|---|---|---|
Healthy | Wood Decay | Healthy | Wood Decay | ||||||
LASSO with logistic linear regression | Mean | 0.513 | 59.6 | 0.171 | 58.8 | 62.4 | 55.3 | 69.1 | 47.8 |
Weighted mean | 0.544 | 61.4 | 0.215 | 61.2 | 62.4 | 59.9 | 71.4 | 49.8 | |
Median | 0.510 | 60.1 | 0.175 | 59.0 | 63.8 | 54.1 | 69.0 | 48.3 | |
Centermost pixel | 0.506 | 62.0 | 0.198 | 59.9 | 69.2 | 50.6 | 69.2 | 50.6 | |
Feedforward neural network | Mean | 0.473 | 52.3 | 0.055 | 52.9 | 50.2 | 55.6 | 64.5 | 41.1 |
Weighted mean | 0.517 | 60.5 | 0.185 | 59.5 | 64.1 | 54.9 | 69.5 | 48.8 | |
Median | 0.515 | 58.0 | 0.153 | 58.0 | 58.0 | 58.0 | 68.9 | 46.3 | |
Centermost pixel | 0.542 | 57.0 | 0.161 | 58.8 | 51.0 | 66.5 | 70.9 | 45.8 |
LASSO with Logistic Linear Regression | ||||||||
---|---|---|---|---|---|---|---|---|
Mean | Weighted Mean | Median | Centermost Pixel | |||||
Healthy | Wood Decay | Healthy | Wood Decay | Healthy | Wood Decay | Healthy | Wood Decay | |
Healthy | 282 | 126 | 272 | 118 | 265 | 119 | 283 | 128 |
Wood decay | 130 | 131 | 140 | 139 | 147 | 138 | 129 | 129 |
Feedforward Neural Network | ||||||||
Mean | Weighted mean | Median | Centermost pixel | |||||
Healthy | Wood decay | Healthy | Wood decay | Healthy | Wood decay | Healthy | Wood decay | |
Healthy | 207 | 114 | 264 | 116 | 239 | 108 | 210 | 86 |
Wood decay | 205 | 143 | 148 | 141 | 173 | 149 | 202 | 171 |
Prediction Method | Features Used | F1-Score | OA (%) | KA | MCA (%) | PAs (%) | UAs (%) | ||
---|---|---|---|---|---|---|---|---|---|
Healthy | Wood Decay | Healthy | Wood Decay | ||||||
CNN | Hyperspectral bands | 0.544 | 57.7 | 0.171 | 59.2 | 52.7 | 65.8 | 71.1 | 46.4 |
PCA | 0.462 | 54.0 | 0.067 | 53.4 | 55.6 | 51.4 | 64.7 | 41.9 | |
Encoding with CNN + LASSO with logistic linear regression | PCA | 0.507 | 56.4 | 0.127 | 56.7 | 55.1 | 58.4 | 68.0 | 44.8 |
CNN | Encoding with CNN + LASSO with Logistic Linear Regression | |||||
---|---|---|---|---|---|---|
Hyperspectral Bands | PCA | PCA | ||||
Healthy | Wood Decay | Healthy | Wood Decay | Healthy | Wood Decay | |
Healthy | 217 | 88 | 242 | 133 | 227 | 107 |
Wood decay | 195 | 169 | 170 | 124 | 185 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalponte, M.; Kallio, A.J.I.; Ørka, H.O.; Næsset, E.; Gobakken, T. Wood Decay Detection in Norway Spruce Forests Based on Airborne Hyperspectral and ALS Data. Remote Sens. 2022, 14, 1892. https://doi.org/10.3390/rs14081892
Dalponte M, Kallio AJI, Ørka HO, Næsset E, Gobakken T. Wood Decay Detection in Norway Spruce Forests Based on Airborne Hyperspectral and ALS Data. Remote Sensing. 2022; 14(8):1892. https://doi.org/10.3390/rs14081892
Chicago/Turabian StyleDalponte, Michele, Alvar J. I. Kallio, Hans Ole Ørka, Erik Næsset, and Terje Gobakken. 2022. "Wood Decay Detection in Norway Spruce Forests Based on Airborne Hyperspectral and ALS Data" Remote Sensing 14, no. 8: 1892. https://doi.org/10.3390/rs14081892
APA StyleDalponte, M., Kallio, A. J. I., Ørka, H. O., Næsset, E., & Gobakken, T. (2022). Wood Decay Detection in Norway Spruce Forests Based on Airborne Hyperspectral and ALS Data. Remote Sensing, 14(8), 1892. https://doi.org/10.3390/rs14081892