Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars
Abstract
:1. Introduction
2. Study Area
3. Scientific Background
3.1. Water, Ice and Glacial Forms on Mars
3.2. Terrestrial Rock Glacier Characteristics
4. Equations Controlling Rock Glacier Flow
5. Methodology
6. Analysis
| Red Lobe | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Basal Shear Stress τb = ρgh(tan α) | ||||||||||||
| Point | Slope (deg) | Elevation (m) | Basal Elevation Calculation (m) | Adjusted Lobe Height (m) | 100% Rock Thickness (m) (Current) | 35% Ice, 65% Rock Thickness (m) (Low) | 50% Ice, 50% Rock Thickness (m) (High) | Tb (Basal Shear Stress) Pure Ice (kPa) | 35% Ice, 65% Rock τb (Basal Shear Stress) Rock/Ice mix (kPa) | 50% Ice, 50% Rock τb (Basal Shear Stress) Rock/Ice mix (kPa) | ||
| 1 | 17.41 | −2252 | −2331 | −79 | 79 | 122 | 158.20 | 84.38 | 254.90 | 331.37 | Density of Rock/Ice Mix (ρ) | 1800 kg/m3 |
| 2 | 14.31 | −2434 | −2494 | −60 | 60 | 93 | 120.96 | 52.50 | 158.59 | 206.16 | Density of Ice (ρ) | 917 kg/m3 |
| 3 | 14.50 | −2624 | −2659 | −35 | 35 | 54 | 70.62 | 31.07 | 93.85 | 122.00 | Gravity on Mars | 3.71 m/s2 |
| 4 | 16.65 | −2836 | −2887 | −51 | 51 | 78 | 101.12 | 51.44 | 155.39 | 202.00 | Middle lobe Length | 8.5 km |
| 5 | 14.61 | −3020 | −3069 | −49 | 49 | 75 | 97.58 | 43.27 | 130.71 | 169.92 | Average Height | 83 m |
| 6 | 12.99 | −3169 | −3213 | −44 | 44 | 68 | 87.88 | 34.47 | 104.13 | 135.37 | Average Slope | 13° |
| 7 | 13.99 | −3312 | −3404 | −92 | 92 | 142 | 184.04 | 77.98 | 235.57 | 306.24 | 35% Ice, 65% Rock Average Basal Shear Stress | 193 kPa |
| 8 | 13.89 | −3456 | −3613 | −157 | 157 | 242 | 314.06 | 132.13 | 399.14 | 518.89 | ||
| 9 | 8.86 | −3630 | −3750 | −120 | 120 | 185 | 240.04 | 63.66 | 192.30 | 249.99 | 50% Ice, 50% Rock Average Basal Shear Stress | 8.5251 kPa |
| 10 | 6.36 | −3717 | −3829 | −112 | 112 | 172 | 224.14 | 42.48 | 128.34 | 166.84 | ||
| 11 | 12.77 | −3838 | −3954 | −116 | 116 | 179 | 232.10 | 89.46 | 270.25 | 351.32 | ||
|
Temp (−50 °C) 35% Ice, 65% Rock |
Temp (−50 °C) 50% Ice, 50% Rock |
Temp (−50 °C) 35% Ice, 65% Rock |
Temp (−50 °C) 50% Ice, 50% Rock | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Point | m/s | = | k | τ | ^n | m/s | = | k | τ | ^n | Point | m/yr | m/yr |
| 1 | 1.9 × 10−11 | = | 3.6 × 10−18 | 255 | 2 | 5.9 × 10−4 | = | 3.6 × 10−18 | 331 | 2 | 1 | 0.0005984 | 0.0007780 |
| 2 | 5.6 × 10−12 | = | 3.6 × 10−18 | 159 | 2 | 1.7 × 10−4 | = | 3.6 × 10−18 | 206 | 2 | 2 | 0.0001771 | 0.0002302 |
| 3 | 1.1 × 10−12 | = | 3.6 × 10−18 | 94 | 2 | 3.6 × 10−5 | = | 3.6 × 10−18 | 122 | 2 | 3 | 0.0000362 | 0.0000471 |
| 4 | 4.5 × 10−12 | = | 3.6 × 10−18 | 155 | 2 | 1.4 × 10−4 | = | 3.6 × 10−18 | 202 | 2 | 4 | 0.0001421 | 0.0001848 |
| 5 | 3.0 × 10−12 | = | 3.6 × 10−18 | 131 | 2 | 9.7 × 10−5 | = | 3.6 × 10−18 | 170 | 2 | 5 | 0.0000971 | 0.0001262 |
| 6 | 1.7 × 10−12 | = | 3.6 × 10−18 | 104 | 2 | 5.5 × 10−5 | = | 3.6 × 10−18 | 135 | 2 | 6 | 0.0000555 | 0.0000721 |
| 7 | 1.8 × 10−11 | = | 3.6 × 10−18 | 236 | 2 | 5.9 × 10−4 | = | 3.6 × 10−18 | 306 | 2 | 7 | 0.0005946 | 0.0007730 |
| 8 | 9.2 × 10−11 | = | 3.6 × 10−18 | 399 | 2 | 2.9 × 10−3 | = | 3.6 × 10−18 | 519 | 2 | 8 | 0.0029130 | 0.0037870 |
| 9 | 1.6 × 10−11 | = | 3.6 × 10−18 | 192 | 2 | 5.1 × 10−4 | = | 3.6 × 10−18 | 250 | 2 | 9 | 0.0005168 | 0.0006718 |
| 10 | 6.8 × 10−12 | = | 3.6 × 10−18 | 128 | 2 | 2.1 × 10−4 | = | 3.6 × 10−18 | 167 | 2 | 10 | 0.0002149 | 0.0002794 |
| 11 | 3.1 × 10−11 | = | 3.6 × 10−18 | 270 | 2 | 9.8 × 10−4 | = | 3.6 × 10−18 | 351 | 2 | 11 | 0.0009869 | 0.0012830 |
| Average | 0.0005757 | 0.0007484 | |||||||||||
| Temp (0 °C) 35% Ice, 65% Rock | Temp (0 °C) 50% Ice, 50% Rock | Temp (0 °C) 35% Ice, 65% Rock | Temp (0 °C) 50% Ice, 50% Rock | ||||||||||
| Point | m/s | = | k | τ | ^n | m/s | = | k | τ | ^n | Point | m/yr | m/yr |
| 1 | 3.5 × 10−8 | = | 6.8 × 10−15 | 255 | 2 | 1.1 × 100 | = | 6.8 × 10−15 | 331 | 2 | 1 | 1.13039 | 1.46951 |
| 2 | 1.0 × 10−8 | = | 6.8 × 10−15 | 159 | 2 | 3.3 × 10−1 | = | 6.8 × 10−15 | 206 | 2 | 2 | 0.33454 | 0.43490 |
| 3 | 2.1 × 10−9 | = | 6.8 × 10−15 | 94 | 2 | 6.8 × 10−2 | = | 6.8 × 10−15 | 122 | 2 | 3 | 0.06840 | 0.08892 |
| 4 | 8.5 × 10−9 | = | 6.8 × 10−15 | 155 | 2 | 2.6 × 10−1 | = | 6.8 × 10−15 | 202 | 2 | 4 | 0.26850 | 0.34905 |
| 5 | 5.8 × 10−9 | = | 6.8 × 10−15 | 131 | 2 | 1.8 × 10−1 | = | 6.8 × 10−15 | 170 | 2 | 5 | 0.18333 | 0.23834 |
| 6 | 3.3 × 10−9 | = | 6.8 × 10−15 | 104 | 2 | 1.0 × 10−1 | = | 6.8 × 10−15 | 135 | 2 | 6 | 0.10479 | 0.13622 |
| 7 | 3.5 × 10−8 | = | 6.8 × 10−15 | 236 | 2 | 1.1 × 100 | = | 6.8 × 10−15 | 306 | 2 | 7 | 0.10479 | 1.46010 |
| 8 | 1.7 × 10−7 | = | 6.8 × 10−15 | 399 | 2 | 5.5 × 100 | = | 6.8 × 10−15 | 519 | 2 | 8 | 1.12315 | 7.15315 |
| 9 | 3.1 × 10−8 | = | 6.8 × 10−15 | 192 | 2 | 9.7 × 10−1 | = | 6.8 × 10−15 | 250 | 2 | 9 | 5.50242 | 1.26897 |
| 10 | 1.2 × 10−8 | = | 6.8 × 10−15 | 128 | 2 | 4.0 × 10−1 | = | 6.8 × 10−15 | 167 | 2 | 10 | 0.97613 | 0.52778 |
| 11 | 5.9 × 10−8 | = | 6.8 × 10−15 | 270 | 2 | 1.8 × 100 | = | 6.8 × 10−15 | 351 | 2 | 11 | 0.40598 | 2.42343 |
| Average | 1.08744 | 1.41367 | |||||||||||
| Lobe Complex Study | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Density of Rock (ρ) | 1800 kg/m3 | Basal Shear Stress τb = ρgh(tan α) | Surface Flow Rate Us = ((2A)/(n + 1)) τbnh | ||||||||
| Density of Ice (ρ) | 916.7 kg/m3 | ||||||||||
| Gravity on Mars | 3.711 m/s² | ||||||||||
| Lobe Color (#) | Average Slope (deg) | Lobe Length (km) | Average Height (m) | 35% Ice, 65% Rock Reconstructed Height (m) | 50% Ice, 50% Rock Reconstructed Height (m) | 35% Ice, 65% Rock Average Basal Shear Stress (kPa) | 50% Ice, 50% Rock Average Basal Shear Stress (kPa) | Temp (−50 °C) 35% Ice, 65% Rock (m/yr) | Temp (−50 °C) 50% Ice, 50% Rock (m/yr) | Temp (0 °C) 35% Ice, 65% Rock (m/yr) | Temp (0 °C) 50% Ice, 50% Rock m/yr |
| Red (1) | 13.30 | 8.50 | 123.18 | 189.51 | 246.36 | 193.01 | 250.92 | 5.76 × 10−4 | 7.48 × 10−4 | 1.087 | 1.414 |
| Black (2) | 13.45 | 6.56 | 84.92 | 130.64 | 169.84 | 212.12 | 275.75 | 6.91 × 10−4 | 8.99 × 10−4 | 1.306 | 1.697 |
| Blue (3) | 10.63 | 4.98 | 100.94 | 155.30 | 201.89 | 299.82 | 389.76 | 1.49 × 10−3 | 3.27 × 10−3 | 2.810 | 6.173 |
| Orange (4) | 20.73 | 5.93 | 52.27 | 80.42 | 104.54 | 200.41 | 260.53 | 6.61 × 10−4 | 1.45 × 10−3 | 1.248 | 2.743 |
| Light Blue (5) | 23.04 | 5.33 | 47.56 | 73.17 | 95.12 | 206.10 | 267.92 | 4.18 × 10−4 | 9.17 × 10−4 | 0.789 | 1.733 |
| Green (6) | 22.39 | 5.68 | 35.92 | 55.26 | 71.83 | 181.19 | 235.54 | 3.44 × 10−4 | 7.56 × 10−4 | 0.650 | 1.427 |
| Pink (7) | 22.95 | 6.68 | 19.55 | 30.08 | 39.11 | 86.50 | 112.45 | 7.55 × 10−5 | 1.66 × 10−4 | 0.143 | 0.313 |
| Grey (8) | 21.40 | 6.35 | 33.84 | 52.06 | 67.68 | 156.46 | 203.40 | 1.54 × 10−4 | 5.20 × 10−4 | 0.291 | 0.982 |
| Dark Red (9) | 22.91 | 1.74 | 56.54 | 86.98 | 113.08 | 249.92 | 324.89 | 3.63 × 10−4 | 1.23 × 10−3 | 0.685 | 2.316 |
| Yellow (10) | 16.64 | 4.55 | 41.21 | 63.40 | 82.42 | 130.18 | 169.23 | 8.24 × 10−5 | 2.78 × 10−4 | 0.156 | 0.526 |
7. Discussion/Synthesis
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clifford, S.M. A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. Planets 1993, 98, 10973–11016. [Google Scholar] [CrossRef] [Green Version]
- Mège, D.; Bourgeois, O. Equatorial glaciations on Mars revealed by gravitational collapse of Valles Marineris wallslopes. Earth Planet. Sci. Lett. 2011, 310, 182–191. [Google Scholar] [CrossRef]
- Wordsworth, R.D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 2016, 44, 381–408. [Google Scholar] [CrossRef] [Green Version]
- Mitrofanov, I.; Malakhov, A.; Djachkova, M.; Golovin, D.; Litvak, M.; Mokrousov, M.; Sanin, A.; Svedhem, H.; Zelenyi, L. The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars. Icarus 2022, 374, 114805. [Google Scholar] [CrossRef]
- Forget, F. Mars CO 2 Ice Polar Caps. In Solar System Ices; Springer: New York, NY, USA, 1998; pp. 477–507. [Google Scholar]
- Parry Rubincam, D. Mars secular obliquity change due to water ice caps. J. Geophys. Res. Planets 1999, 104, 30765–30771. [Google Scholar] [CrossRef]
- Baker, D.M.; Head, J.W.; Marchant, D.R. Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian. Icarus 2010, 207, 186–209. [Google Scholar] [CrossRef]
- Brough, S.; Hubbard, B.; Hubbard, A. Area and volume of mid-latitude glacier-like forms on Mars. Earth Planet. Sci. Lett. 2019, 507, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Dickson, J.L.; Head, J.W.; Marchant, D.R. Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases. Geology 2008, 36, 411–414. [Google Scholar] [CrossRef]
- Head, J.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; Hoffmann, H.; Kreslavsky, M. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 2005, 434, 346–351. [Google Scholar] [CrossRef]
- Head, J.W.; Marchant, D.; Agnew, M.; Fassett, C.; Kreslavsky, M. Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change. Earth Planet. Sci. Lett. 2006, 241, 663–671. [Google Scholar] [CrossRef]
- Head, J.W.; Marchant, D.R.; Dickson, J.L.; Kress, A.M.; Baker, D.M. Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth Planet. Sci. Lett. 2010, 294, 306–320. [Google Scholar] [CrossRef]
- Hubbard, B.; Milliken, R.E.; Kargel, J.S.; Limaye, A.; Souness, C. Geomorphological characterisation and interpretation of a mid-latitude glacier-like form: Hellas Planitia, Mars. Icarus 2011, 211, 330–346. [Google Scholar] [CrossRef]
- Hubbard, B.; Souness, C.; Brough, S. Glacier-like forms on Mars. Cryosphere 2014, 8, 2047–2061. [Google Scholar] [CrossRef] [Green Version]
- Levy, J.S.; Head, J.W.; Marchant, D.R. Lineated valley fill and lobate debris apron stratigraphy in Nilosyrtis Mensae, Mars: Evidence for phases of glacial modification of the dichotomy boundary. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, K.; Head, J.; Marchant, D. Remnant Buried Ice in the Arsia Mons Fan-Shaped Deposit, Mars. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2015. [Google Scholar]
- Shean, D.E.; Head, J.W., III; Fastook, J.L.; Marchant, D.R. Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Gourronc, M.; Bourgeois, O.; Mège, D.; Pochat, S.; Bultel, B.; Massé, M.; le Deit, L.; le Mouélic, S.; Mercier, D. One million cubic kilometers of fossil ice in Valles Marineris: Relicts of a 3.5 Gy old glacial landsystem along the Martian equator. Geomorphology 2014, 204, 235–255. [Google Scholar] [CrossRef]
- Brough, S.; Hubbard, B.; Hubbard, A. Former extent of glacier-like forms on Mars. Icarus 2016, 274, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Forget, F.; Haberle, R.; Montmessin, F.; Levrard, B.; Head, J. Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 2006, 311, 368–371. [Google Scholar] [CrossRef]
- Mellon, M.T.; Feldman, W.C.; Prettyman, T.H. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus 2004, 169, 324–340. [Google Scholar] [CrossRef]
- Mellon, M.T.; Jakosky, B.M. The distribution and behavior of Martian ground ice during past and present epochs. J. Geophys. Res. Planets 1995, 100, 11781–11799. [Google Scholar] [CrossRef] [Green Version]
- Ward, W.R. Large-scale variations in the obliquity of Mars. Science 1973, 181, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, M.T.; Guzzetti, F.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Mancinelli, P.; Komatsu, G.; Borselli, L. Analysis of a new geomorphological inventory of landslides in Valles Marineris, Mars. Earth Planet. Sci. Lett. 2014, 405, 156–168. [Google Scholar] [CrossRef]
- Abe, Y.; Numaguti, A.; Komatsu, G.; Kobayashi, Y. Four climate regimes on a land planet with wet surface: Effects of obliquity change and implications for ancient Mars. Icarus 2005, 178, 27–39. [Google Scholar] [CrossRef]
- Bills, B.; Keane, J. Mars Obliquity Variations are Both Non-Chaotic and Probably Fully Damped. In Proceedings of the 50th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019. [Google Scholar]
- Fastook, J.L.; Head, J.W.; Marchant, D.R.; Forget, F. Tropical mountain glaciers on Mars: Altitude-dependence of ice accumulation, accumulation conditions, formation times, glacier dynamics, and implications for planetary spin-axis/orbital history. Icarus 2008, 198, 305–317. [Google Scholar] [CrossRef]
- Head, J.W.; Marchant, D.R. Cold-based mountain glaciers on Mars: Western Arsia Mons. Geology 2003, 31, 641–644. [Google Scholar] [CrossRef]
- Head, J.W.; Nahm, A.L.; Marchant, D.R.; Neukum, G. Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Laskar, J.; Correia, A.; Gastineau, M.; Joutel, F.; Levrard, B.; Robutel, P. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 2004, 170, 343–364. [Google Scholar] [CrossRef] [Green Version]
- Toigo, A.D.; Waugh, D.W.; Guzewich, S.D. Atmospheric transport into polar regions on Mars in different orbital epochs. Icarus 2020, 347, 113816. [Google Scholar] [CrossRef]
- Vos, E.; Aharonson, O.; Schorghofer, N. Dynamic and isotopic evolution of ice reservoirs on Mars. Icarus 2019, 324, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Vos, E.; Aharonson, O.; Schorghofer, N.; Forget, F.; Millour, E. Milankovitch-driven redistribution and fractionation of ice deposits on Mars. In Proceedings of the 50th EPSC-DPS Joint Meeting 2019, Geneva, Switzerland, 15–20 September 2019. [Google Scholar]
- Weiss, D.K. Mars in ice ages for∼25% of post-Noachian geologic history. Earth Planet. Sci. Lett. 2019, 528, 115847. [Google Scholar] [CrossRef]
- Williams, J.P.; van der Bogert, C.H.; Pathare, A.V.; Michael, G.G.; Kirchoff, M.R.; Hiesinger, H. Dating very young planetary surfaces from crater statistics: A review of issues and challenges. Meteorit. Planet. Sci. 2018, 53, 554–582. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.; Scuderi, L.A.; Newsom, H.E. Constraining Possible Glacial Reworking of Ancient Fluvial Channels on the Dichotomy Boundary at Equatorial Regions, Mars. In Proceedings of the AGU Fall Meeting Abstracts, 2020; Available online: https://ui.adsabs.harvard.edu/abs/2020AGUFMP038...02W/abstract (accessed on 28 February 2022).
- Deit, L.L.; Hauber, E.; Fueten, F.; Pondrelli, M.; Rossi, A.P.; Jaumann, R. Sequence of infilling events in Gale Crater, Mars: Results from morphology, stratigraphy, and mineralogy. J. Geophys. Res. Planets 2013, 118, 2439–2473. [Google Scholar] [CrossRef] [Green Version]
- Fairén, A.G.; Stokes, C.R.; Davies, N.S.; Schulze-Makuch, D.; Rodríguez, J.A.P.; Davila, A.F.; Uceda, E.R.; Dohm, J.M.; Baker, V.R.; Clifford, S.M. A cold hydrological system in Gale crater, Mars. Planet. Space Sci. 2014, 93, 101–118. [Google Scholar] [CrossRef]
- Schorghofer, N. Temperature response of Mars to Milankovitch cycles. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Ward, W.R. Climatic variations on Mars: 1. Astronomical theory of insolation. J. Geophys. Res. 1974, 79, 3375–3386. [Google Scholar] [CrossRef]
- Madeleine, J.B.; Head, J.W.; Forget, F.; Navarro, T.; Millour, E.; Spiga, A.; Colaïtis, A.; Määttänen, A.; Montmessin, F.; Dickson, J.L. Recent ice ages on Mars: The role of radiatively active clouds and cloud microphysics. Geophys. Res. Lett. 2014, 41, 4873–4879. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.B.; Bell, J.F., III. Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars J. 2010, 5, 76–128. [Google Scholar] [CrossRef] [Green Version]
- Le Deit, L.; Hauber, E.; Fueten, F.; Pondrelli, M.; Rossi, A.; Mangold, N.; Jaumann, R. Geological study of Gale Crater on Mars. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 5–9 December 2011. [Google Scholar]
- Gallegos, Z.; Newsom, H.; Scuderi, L.; Gasnault, O.; le Mouélic, S.; Wiens, R.; Maurice, S. New Insights into the Extensive Inverted Features Within Gale Crater, Mars. In Proceedings of the Lunar and Planetary Science Conference, Woodlands, TX, USA, 16–20 March 2020. [Google Scholar]
- Newsom, H.; Scuderi, L.; Gallegos, Z.; Williams, J.; Dimitracopoulos, G.; Tornabene, L.; Wiens, R.; Gasnault, O. Evidence for Glacial and Fluvial Processes on Gale Crater Rim–Dulce Vallis. In Proceedings of the Lunar and Planetary Science Conference, Woodlands, TX, USA, 15–19 March 2021. [Google Scholar]
- Oehler, D.Z.; Mangold, N.; Hallet, B.; Fairén, A.G.; le Deit, L.; Williams, A.J.; Sletten, R.S.; Martínez-Frías, J. Origin and significance of decameter-scale polygons in the lower Peace Vallis fan of Gale crater, Mars. Icarus 2016, 277, 56–72. [Google Scholar] [CrossRef]
- Stack, K.M.; Grotzinger, J.P.; Lamb, M.P.; Gupta, S.; Rubin, D.M.; Kah, L.C.; Edgar, L.A.; Fey, D.M.; Hurowitz, J.A.; McBride, M. Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray formation, Gale crater, Mars. Sedimentology 2019, 66, 1768–1802. [Google Scholar] [CrossRef] [Green Version]
- Thomson, B.; Bridges, N.; Milliken, R.; Baldridge, A.; Hook, S.; Crowley, J.; Marion, G.; Filho, C.d.; Brown, A.; Weitz, C. Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 2011, 214, 413–432. [Google Scholar] [CrossRef]
- Day, M.; Anderson, W.; Kocurek, G.; Mohrig, D. Carving intracrater layered deposits with wind on Mars. Geophys. Res. Lett. 2016, 43, 2473–2479. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Gupta, S.; Malin, M.C.; Rubin, D.M.; Schieber, J.; Siebach, K.; Sumner, D.Y.; Stack, K.M.; Vasavada, A.R.; Arvidson, R.E. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 2015, 350, aac7575. [Google Scholar] [CrossRef] [PubMed]
- Malin, M.C.; Edgett, K.S. Sedimentary rocks of early Mars. Science 2000, 290, 1927–1937. [Google Scholar] [CrossRef]
- Anderson, R.B.; Edgar, L.A.; Rubin, D.M.; Lewis, K.W.; Newman, C. Complex bedding geometry in the upper portion of Aeolis Mons, Gale crater, Mars. Icarus 2018, 314, 246–264. [Google Scholar] [CrossRef]
- Banham, S.G.; Gupta, S.; Rubin, D.M.; Watkins, J.A.; Sumner, D.Y.; Edgett, K.S.; Grotzinger, J.P.; Lewis, K.W.; Edgar, L.A.; Stack-Morgan, K.M. Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars. Sedimentology 2018, 65, 993–1042. [Google Scholar] [CrossRef] [Green Version]
- Rapin, W.; Dromart, G.; Rubin, D.; Deit, L.L.; Mangold, N.; Edgar, L.A.; Gasnault, O.; Herkenhoff, K.; le Mouélic, S.; Anderson, R. Alternating wet and dry depositional environments recorded in the stratigraphy of Mount Sharp at Gale crater, Mars. Geology 2021, 49, 842–846. [Google Scholar] [CrossRef]
- Bridges, N.; Calef, F.; Hallet, B.; Herkenhoff, K.E.; Lanza, N.; le Mouélic, S.; Newman, C.; Blaney, D.; de Pablo, M.; Kocurek, G. The rock abrasion record at Gale crater: Mars Science Laboratory results from Bradbury landing to Rocknest. J. Geophys. Res. Planets 2014, 119, 1374–1389. [Google Scholar] [CrossRef] [Green Version]
- Bridges, N.; Greeley, R.; Haldemann, A.; Herkenhoff, K.E.; Kraft, M.; Parker, T.; Ward, A. Ventifacts at the Pathfinder landing site. J. Geophys. Res. Planets 1999, 104, 8595–8615. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, S.W.; Paull, D.J.; Bourke, M.C. Aeolian processes and dune morphology in Gale Crater. Icarus 2010, 210, 102–115. [Google Scholar] [CrossRef]
- Knight, J. The environmental significance of ventifacts: A critical review. Earth-Sci. Rev. 2008, 86, 89–105. [Google Scholar] [CrossRef]
- Laity, J.E.; Bridges, N.T. Ventifacts on Earth and Mars: Analytical, field, and laboratory studies supporting sand abrasion and windward feature development. Geomorphology 2009, 105, 202–217. [Google Scholar] [CrossRef]
- Sharp, R.P. Mars: Fretted and chaotic terrains. J. Geophys. Res. 1973, 78, 4073–4083. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.W. Yardangs on Mars: Evidence of recent wind erosion. J. Geophys. Res. Solid Earth 1979, 84, 8147–8166. [Google Scholar] [CrossRef]
- Williams, J.; Day, M.; Chojnacki, M.; Rice, M. Scarp orientation in regions of active aeolian erosion on Mars. Icarus 2020, 335, 113384. [Google Scholar] [CrossRef]
- Piqueux, S.; Buz, J.; Edwards, C.S.; Bandfield, J.L.; Kleinböhl, A.; Kass, D.M.; Hayne, P.O.; S, M.C.; Teams, T. Widespread shallow water ice on Mars at high latitudesand midlatitudes. Geophys. Res. Lett. 2019, 46, 14290–14298. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Whalley, W.B. Rock glaciers and mountain hydrology: A review. Earth-Sci. Rev. 2019, 193, 66–90. [Google Scholar] [CrossRef]
- Holt, J.W.; Safaeinili, A.; Plaut, J.J.; Head, J.W.; Phillips, R.J.; Seu, R.; Kempf, S.D.; Choudhary, P.; Young, D.A.; Putzig, N.E. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 2008, 322, 1235–1238. [Google Scholar] [CrossRef] [Green Version]
- Sinha, R.K.; Murty, S. Amazonian modification of Moreux crater: Record of recent and episodic glaciation in the Protonilus Mensae region of Mars. Icarus 2015, 245, 122–144. [Google Scholar] [CrossRef]
- Fastook, J.L.; Head, J.W.; Marchant, D.R. Form. Lobate Debris Aprons Mars: Assess. Reg. Ice Sheet Collapse Debris-Cover. Armoring. Icarus 2014, 228, 54–63. [Google Scholar]
- Lucchitta, B.K. Ice Debris Frett. Terrain Mars. J. Geophys. Res. Solid Earth 1984, 89, B409–B418. [Google Scholar] [CrossRef]
- Squyres, S.W. Martian Frett. Terrain: Flow Eros. Debris. Icarus 1978, 34, 600–613. [Google Scholar]
- Van Gasselt, S.; Hauber, E.; Neukum, G. Lineated valley fill at the Martian dichotomy boundary: Nature and history of degradation. J. Geophys. Res. Planets 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Irwin, R.P., III; Watters, T.R.; Howard, A.D.; Zimbelman, J.R. Sedimentary resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. J. Geophys. Res. Planets 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Mangold, N. Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale: Evidence for ice sublimation initiated by fractures. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Pierce, T.L.; Crown, D.A. Morphologic and topographic analyses of debris aprons in the eastern Hellas region, Mars. Icarus 2003, 163, 46–65. [Google Scholar] [CrossRef]
- Wahrhaftig, C.; Cox, A. Rock glaciers in the Alaska Range. Geol. Soc. Am. Bull. 1959, 70, 383–436. [Google Scholar] [CrossRef]
- Elizabeth Martin, H.; Whalley, W.B. Rock glaciers: Part 1: Rock glacier morphology: Classification and distribution. Prog. Phys. Geogr. 1987, 11, 260–282. [Google Scholar] [CrossRef]
- Giardino, J.R.; Shroder, J.F.; Vitek, J.D. Rock Glaciers; Allen & Unwin: Crow’s Nest, Australia, 1987. [Google Scholar]
- Mahaney, W.C.; Miyamoto, H.; Dohm, J.M.; Baker, V.R.; Cabrol, N.A.; Grin, E.A.; Berman, D.C. Rock glaciers on Mars: Earth-based clues to Mars’ recent paleoclimatic history. Planet. Space Sci. 2007, 55, 181–192. [Google Scholar]
- Easterbrook, D.J. Surface Processes and Landforms; Macmillan: New York, NY, USA, 1993. [Google Scholar]
- Emmert, A.; Kneisel, C. Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging. Cryosphere 2017, 11, 841–855. [Google Scholar] [CrossRef] [Green Version]
- Degenhardt, J.J., Jr.; Giardino, J.R. Subsurface investigation of a rock glacier using ground-penetrating radar: Implications for locating stored water on Mars. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Whalley, W.B.; Azizi, F. Rock glaciers and protalus landforms: Analogous forms and ice sources on Earth and Mars. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Humlum, O. Rock glaciers in northern Spitsbergen: A discussion. J. Geol. 1982, 90, 214–217. [Google Scholar] [CrossRef]
- Azizi, F.; Whalley, W. Finite element analysis of the creep of debris containing thin ice bodies. In Proceedings of the Fifth International Offshore and Polar Engineering Conference, Hague, The Netherlands, 11–16 June 1995; OnePetro: Richardson, TX, USA, 1995. [Google Scholar]
- Azizi, F.; Whalley, W. Numerical modelling of the creep behaviour of ice-debris mixtures under variable thermal regimes. In Proceedings of the Sixth International Offshore and Polar Engineering Conference, Los Angeles, CA, USA, 26–31 May 1996; OnePetro: Richardson, TX, USA, 1996. [Google Scholar]
- Xue, K.; Wen, Z.; Zhu, Z.; Wang, D.; Luo, F.; Zhang, M. An experimental study of the relationship between the matric potential, unfrozen water, and segregated ice of saturated freezing soil. Bull. Eng. Geol. Environ. 2021, 80, 2535–2544. [Google Scholar] [CrossRef]
- Whalley, W.B.; Krinsley, D.H. A scanning electron microscope study of surface textures of quartz grains from glacial environments. Sedimentology 1974, 21, 87–105. [Google Scholar] [CrossRef]
- Whalley, W.B.; Martin, H.E. Rock glaciers: II models and mechanisms. Prog. Phys. Geogr. 1992, 16, 127–186. [Google Scholar] [CrossRef]
- Kaab, A. Rock glaciers and protalus forms. En-Cyclopedia Quat. Sci. 2007, 2236–2242. Available online: https://ci.nii.ac.jp/naid/20001586454/ (accessed on 28 February 2022).
- Hamilton, S.J.; Whalley, W.B. Rock glacier nomenclature: A re-assessment. Geomorphology 1995, 14, 73–80. [Google Scholar] [CrossRef]
- Halla, C.; Blöthe, J.H.; Baldis, C.T.; Liaudat, D.T.; Hilbich, C.; Hauck, C.; Schrott, L. Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina. Cryosphere 2021, 15, 1187–1213. [Google Scholar] [CrossRef]
- Berthling, I. Beyond confusion: Rock glaciers as cryo-conditioned landforms. Geomorphology 2011, 131, 98–106. [Google Scholar] [CrossRef]
- Francou, B.; Fabre, D.; Pouyaud, B.; Jomelli, V.; Arnaud, Y. Symptoms of degradation in a tropical rock glacier, Bolivian Andes. Permafr. Periglac. Process. 1999, 10, 91–100. [Google Scholar] [CrossRef]
- Johnson, G.; Chang, H.; Fountain, A. Active rock glaciers of the contiguous United States: Geographic information system inventory and spatial distribution patterns. Earth Syst. Sci. Data 2021, 13, 3979–3994. [Google Scholar] [CrossRef]
- Koutnik, M.R.; Pathare, A.V. Contextualizing lobate debris aprons and glacier-like forms on Mars with debris-covered glaciers on Earth. Prog. Phys. Geogr. Earth Environ. 2021, 45, 130–186. [Google Scholar] [CrossRef]
- Konrad, S.; Humphrey, N.; Steig, E.; Clark, D.; Potter, N., Jr.; Pfeffer, W. Rock glacier dynamics and paleoclimatic implications. Geology 1999, 27, 1131–1134. [Google Scholar] [CrossRef]
- Whalley, W.B.; Azizi, F. Rheological models of active rock glaciers: Evaluation, critique and a possible test. Permafr. Periglac. Process. 1994, 5, 37–51. [Google Scholar] [CrossRef]
- Sergienko, O.; Creyts, T.T.; Hindmarsh, R. Similarity of organized patterns in driving and basal stresses of Antarctic and Greenland ice sheets beneath extensive areas of basal sliding. Geophys. Res. Lett. 2014, 41, 3925–3932. [Google Scholar] [CrossRef] [Green Version]
- Azuma, N. A flow law for anisotropic ice and its application to ice sheets. Earth Planet. Sci. Lett. 1994, 128, 601–614. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: Cambridge, MS, USA, 2010. [Google Scholar]
- Goldsby, D.; Kohlstedt, D.L. Superplastic deformation of ice: Experimental observations. J. Geophys. Res. Solid Earth 2001, 106, 11017–11030. [Google Scholar] [CrossRef]
- Colaprete, A.; Jakosky, B.M. Ice flow and rock glaciers on Mars. J. Geophys. Res. Planets 1998, 103, 5897–5909. [Google Scholar] [CrossRef]
- Durham, W.; Stern, L. Rheological properties of water ice—Applications to satellites of the outer planets. Annu. Rev. Earth Planet. Sci. 2001, 29, 295–330. [Google Scholar] [CrossRef] [Green Version]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L. Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Malin, M.C.; Bell, J.F., III; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B. Context camera investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Dromart, G.; Le Deit, L.; Rapin, W.; Gasnault, O.; le Mouélic, S.; Quantin-Nataf, C.; Mangold, N.; Rubin, D.; Lasue, J.; Maurice, S. Deposition and erosion of a Light-Toned Yardang-forming unit of Mt Sharp, Gale crater, Mars. Earth Planet. Sci. Lett. 2021, 554, 116681. [Google Scholar] [CrossRef]
- Kenner, R.; Phillips, M.; Beutel, J.; Hiller, M.; Limpach, P.; Pointner, E.; Volken, M. Factors controlling velocity variations at short-term, seasonal and multiyear time scales, Ritigraben rock glacier, Western Swiss Alps. Permafr. Periglac. Process. 2017, 28, 675–684. [Google Scholar] [CrossRef]
- Whalley, W.B.; Hamilton, S.J.; Palmer, C.F.; Gordon, J.E.; Martin, H.E. The dynamics of rock glaciers: Data from Tröllaskagi, north Iceland. In Steepland Geomorphology; ResearchGate: Berlin, Germany, 1995; pp. 129–145. [Google Scholar]
- Levy, J.S.; Head, J.W.; Marchant, D.R. Concentric crater fill in Utopia Planitia: History and interaction between glacial “brain terrain” and periglacial mantle processes. Icarus 2009, 202, 462–476. [Google Scholar] [CrossRef]
- Fraeman, A.; Ehlmann, B.; Arvidson, R.; Edwards, C.; Grotzinger, J.; Milliken, R.; Quinn, D.; Rice, M. The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets. J. Geophys. Res. Planets 2016, 121, 1713–1736. [Google Scholar] [CrossRef]
- Frauenfelder, R.; Laustela, M.; Kääb, A. Relative age dating of Alpine rockglacier surfaces. Z. Geomorphol. 2005, 49, 145–166. [Google Scholar]
- Haeberli, W.; Brandova, D.; Burga, C.; Egli, M.; Frauenfelder, R.; Kääb, A.; Maisch, M.; Mauz, B.; Dikau, R. Methods for absolute and relative age dating of rock-glacier surfaces in alpine permafrost. In Proceedings of the 8th International Conference on Permafrostm, Zurich, Switzerland, 21–25 July 2003. [Google Scholar]
- Krainer, K.; Bressan, D.; Dietre, B.; Haas, J.N.; Hajdas, I.; Lang, K.; Mair, V.; Nickus, U.; Reidl, D.; Thies, H. A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quat. Res. 2015, 83, 324–335. [Google Scholar] [CrossRef]
- Fassett, C.I.; Levy, J.S.; Dickson, J.L.; Head, J.W. An extended period of episodic northern mid-latitude glaciation on Mars during the Middle to Late Amazonian: Implications for long-term obliquity history. Geology 2014, 42, 763–766. [Google Scholar] [CrossRef]
- Hauber, E.; Ulrich, M.; Preusker, F.; Trauthan, F.; Reiss, D.; Hiesinger, H.; Zanetti, M.; Team, S. Svalbard (Norway) as a terrestrial analogue for Martian landforms: Results on alluvial fans. EPSC Abstr. 2009, 4, EPSC2009-772. [Google Scholar]
- Carr, M.H. Retention of an atmosphere on early Mars. J. Geophys. Res. Planets 1999, 104, 21897–21909. [Google Scholar] [CrossRef]












Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, J.M.; Scuderi, L.A.; Newsom, H.E. Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars. Remote Sens. 2022, 14, 1887. https://doi.org/10.3390/rs14081887
Williams JM, Scuderi LA, Newsom HE. Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars. Remote Sensing. 2022; 14(8):1887. https://doi.org/10.3390/rs14081887
Chicago/Turabian StyleWilliams, Joshua M., Louis A. Scuderi, and Horton E. Newsom. 2022. "Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars" Remote Sensing 14, no. 8: 1887. https://doi.org/10.3390/rs14081887
APA StyleWilliams, J. M., Scuderi, L. A., & Newsom, H. E. (2022). Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars. Remote Sensing, 14(8), 1887. https://doi.org/10.3390/rs14081887

