Forest Fire Assessment Using Remote Sensing to Support the Development of an Action Plan Proposal in Ecuador
Abstract
:1. Introduction
2. Geographical Setting
3. Materials and Methods
3.1. Background Information Collection
3.2. Remote Sensing Data
3.3. Spectral Indexes Analysis
3.4. Multivariate Analysis
3.5. Forest Fire Action Plan Proposal
4. Results
4.1. Collection and Presentation of Base Cartographies
4.2. Spectral Index Calculation
4.3. Fire Severity Grade with dNDVI and dNBR
Fire Severity Model Validation
4.4. Multivariate Analysis
4.5. Forest Fire Action Plan Proposal
4.5.1. Mining Activity Map
4.5.2. Drainage Map
4.5.3. Accessibility Map (Health, Educational Establishments and Roads)
4.5.4. Geological Formation Map
4.5.5. Geomorphological Map
4.5.6. Fire Susceptibility Map
4.5.7. Contour Map
4.5.8. Slope Map
4.5.9. Altitude Map
- Most of the territory that includes the La Carolina parish has slopes greater than 25°.
- There is no signage to help prevent fires in the region.
- Cattle ranchers burn brush and bushes to produce grass for cattle, burning the same grass to make better grass, which leads to forest fires.
- During 2014–2015, 41 fires were recorded in the La Carolina parish.
- Eight strategic safe refuge areas were designated in case of fires that meet the conditions of not having very steep slopes, being safe (no mining activity nearby), and favored by the direction of the slopes and proximity to water bodies.
- Install signage such as signs with messages related to the prevention of forest fires.
- Make the surrounding people and the cattle ranchers aware of the damage they cause by not having a burning plan.
- Three evacuation routes have been proposed in preparation for future fires, along with safe zones and fire severity models using satellite data (Landsat-8).
5. Interpretation of Results and Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D.W.; Medina-Elizade, M. Global temperature change. Proc. Natl. Acad. Sci. 2006, 103, 14288–14293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A. Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J. Geophys. Res. Atmos. 2016, 121, 5488–5511. [Google Scholar] [CrossRef]
- Dash, S.; Maity, R. Temporal evolution of precipitation-based climate change indices across India: Contrast between pre- and post-1975 features. Theor. Appl. Climatol. 2019, 138, 1667–1678. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Araujo, M.B.; Rahbek, C. How Does Climate Change Affect Biodiversity? Science 2006, 313, 1396–1397. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Grotch, S.L.; MacCracken, M.C. The Use of General Circulation Models to Predict Regional Climatic Change. J. Clim. 1991, 4, 286–303. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 14415. [Google Scholar] [CrossRef]
- Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A.Y. Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations. Hydrol. Earth Syst. Sci. 2017, 21, 2143–2161. [Google Scholar] [CrossRef] [Green Version]
- Miranda, A.I.; Borrego, C.; Martins, H.; Martins, V.; Amorim, J.H.; Valente, J.; Carvalho, A. Forest Fire Emissions and Air Pollution in Southern Europe. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp. 171–187. [Google Scholar]
- Wiedinmyer, C.; Quayle, B.; Geron, C.; Belote, A.; McKenzie, D.; Zhang, X.; O’Neill, S.; Wynne, K.K. Estimating emissions from fires in North America for air quality modeling. Atmos. Environ. 2006, 40, 3419–3432. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- van Konijnenburg-van Cittert, J.H.A.H. Fire on earth: An introduction by Andrew C. Scott, David M. S. J. Bowman, William J. Bond, Stephen J. Pyne & Martin E. Alexander. Wiley-Blackwell, Chichester, 2014. No. of pages: xix+413. Price: UK£39.95. ISBN 978-1-119-952356 (paperback). Geol. J. 2014, 49, 656–657. [Google Scholar] [CrossRef]
- Ward, D.S.; Kloster, S.; Mahowald, N.M.; Rogers, B.M.; Randerson, J.T.; Hess, P.G. The changing radiative forcing of fires: Global model estimates for past, present and future. Atmos. Chem. Phys. 2012, 12, 10857–10886. [Google Scholar] [CrossRef] [Green Version]
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- GCOS. The Second Report on the Adequacy of the Global Observing Systems for Climate in Support of the UNFCC—Executive Summary. GCOS – 82; GCOS: Geneva, Switzerland, 2003. [Google Scholar]
- Cruz-López, M.I.; de Manzo-Delgado, L.; Aguirre-Gómez, R.; Chuvieco, E.; Equihua-Benítez, J.A. Spatial Distribution of Forest Fire Emissions: A Case Study in Three Mexican Ecoregions. Remote Sens. 2019, 11, 1185. [Google Scholar] [CrossRef] [Green Version]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Shin, J.; Seo, W.; Kim, T.; Park, J.; Woo, C. Using UAV Multispectral Images for Classification of Forest Burn Severity—A Case Study of the 2019 Gangneung Forest Fire. Forests 2019, 10, 1025. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.R.; Tewari, A.; Chand, D.B. Impact of Forest fire and aspect on phytosociology, tree biomass and carbon stock in Oak and Pine mixed Forests of Kumaun central Himalaya, India. Researcher 2013, 5, 1–8. [Google Scholar]
- Numata, I.; Cochrane, M.A.; Galvão, L.S. Analyzing the Impacts of Frequency and Severity of Forest Fire on the Recovery of Disturbed Forest using Landsat Time Series and EO-1 Hyperion in the Southern Brazilian Amazon. Earth Interact. 2011, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- White, J.; Ryan, K.; Key, C.; Running, S. Remote Sensing of Forest Fire Severity and Vegetation Recovery. Int. J. Wildl. Fire 1996, 6, 125. [Google Scholar] [CrossRef] [Green Version]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildl. Fire 2006, 15, 319. [Google Scholar] [CrossRef]
- Miller, J.D.; Yool, S.R. Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sens. Environ. 2002, 82, 481–496. [Google Scholar] [CrossRef]
- Díaz-Delgado, R.; Lloret, F.; Pons, X. Influence of fire severity on plant regeneration by means of remote sensing imagery. Int. J. Remote Sens. 2003, 24, 1751–1763. [Google Scholar] [CrossRef]
- Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GIScience Remote Sens. 2018, 55, 1–18. [Google Scholar] [CrossRef]
- Harris, S.; Veraverbeke, S.; Hook, S. Evaluating Spectral Indices for Assessing Fire Severity in Chaparral Ecosystems (Southern California) Using MODIS/ASTER (MASTER) Airborne Simulator Data. Remote Sens. 2011, 3, 2403–2419. [Google Scholar] [CrossRef] [Green Version]
- Fornacca, D.; Ren, G.; Xiao, W. Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China. Remote Sens. 2018, 10, 1196. [Google Scholar] [CrossRef] [Green Version]
- van Mantgem, P.J.; Nesmith, J.C.B.; Keifer, M.; Knapp, E.E.; Flint, A.; Flint, L. Climatic stress increases forest fire severity across the western United States. Ecol. Lett. 2013, 16, 1151–1156. [Google Scholar] [CrossRef]
- Westerling, A.L. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.K.; Field, C.B.; Mach, K.J. Barriers and enablers for prescribed burns for wildfire management in California. Nat. Sustain. 2020, 3, 101–109. [Google Scholar] [CrossRef]
- Delfino, R.J.; Brummel, S.; Wu, J.; Stern, H.; Ostro, B.; Lipsett, M.; Winer, A.; Street, D.H.; Zhang, L.; Tjoa, T.; et al. The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup. Environ. Med. 2009, 66, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Boer, M.M.; Resco de Dios, V.; Bradstock, R.A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Chang. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Miller, J.D.; Safford, H.D.; Crimmins, M.; Thode, A.E. Quantitative Evidence for Increasing Forest Fire Severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems 2009, 12, 16–32. [Google Scholar] [CrossRef]
- Brumby, S.P.; Harvey, N.R.; Bloch, J.J.; Theiler, J.P.; Perkins, S.J.; Young, A.C.; Szymanski, J.J. Evolving forest fire burn severity classification algorithms for multi-spectral imagery. In Proceedings of the Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, Orlando, FL, USA, 16–20 April 2001; Shen, S.S., Descour, M.R., Eds.; pp. 236–245. [Google Scholar]
- Ndalila, M.N.; Williamson, G.J.; Bowman, D.M.J.S. Geographic Patterns of Fire Severity Following an Extreme Eucalyptus Forest Fire in Southern Australia: 2013 Forcett-Dunalley Fire. Fire 2018, 1, 40. [Google Scholar] [CrossRef] [Green Version]
- Delegido, J.; Pezzola, A.; Casella, A.; Winschel, C.; Urrego, E.P.; Jimenez, J.C.; Sobrino, J.A.; Soria, G.; Moreno, J. Estimación del grado de severidad de incendios en el sur de la provincia de Buenos Aires, Argentina, usando Sentinel-2 y su comparación con Landsat-8. Rev. Teledetección 2018, 47. [Google Scholar] [CrossRef]
- Lazarescu, M. Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring. Sensors 2015, 15, 9481–9518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granda Cantuna, J.; Bastidas, D.; Solorzano, S.; Clairand, J.-M. Design and implementation of a Wireless Sensor Network to detect forest fires. In Proceedings of the 2017 Fourth International Conference on eDemocracy & eGovernment (ICEDEG), Quito, Ecuador, 19–21 April 2017; pp. 15–21. [Google Scholar]
- Pan, L. Preventing forest fires using a wireless sensor network. J. For. Sci. 2020, 66, 97–104. [Google Scholar] [CrossRef]
- Brummitt, N.; Lughadha, E.N. Biodiversity: Where’s Hot and Where’s Not. Conserv. Biol. 2003, 17, 1442–1448. [Google Scholar] [CrossRef]
- Fabian, P.; Kohlpaintner, M.; Rollenbeck, R. Biomass Burning in the Amazon-Fertilizer for the Mountaineous Rain Forest in Ecuador (7 pp). Environ. Sci. Pollut. Res. Int. 2005, 12, 290–296. [Google Scholar] [CrossRef]
- Bakker, J.; Moscol Olivera, M.; Hooghiemstra, H. Holocene environmental change at the upper forest line in northern Ecuador. The Holocene 2008, 18, 877–893. [Google Scholar] [CrossRef]
- Moscol Olivera, M.C.; Cleef, A.M. Vegetation composition and altitudinal distribution of Andean rain forests in El Angel and Guandera reserves, northern Ecuador. Phytocoenologia 2009, 39, 175–204. [Google Scholar] [CrossRef]
- Moscol Olivera, M.C.; Cleef, A.M. A phytosociological study of the páramo along two altitudinal transects in El Carchi province, northern Ecuador. Phytocoenologia 2009, 39, 79–107. [Google Scholar] [CrossRef]
- Secretaría de Gestión de Riesgos (SGR). Informe de Situación—Incendios Forestales; Secretaría de Gestión de Riesgos (SGR): Samborondón, Ecuador, 2017. [Google Scholar]
- Gras-Rodríguez, R.; Ramos-Rodríguez, M.P.; Medranda-Mendieta, J.A.; Manrique-Toala, T.O.; Estévez-Valdés, I. Comportamiento histórico de los incendios forestales en el Cantón Rocafuerte, provincia Manabí, Ecuador, en el periodo 2016 – 2019. Rev. For. Mesoam. Kurú 2020, 17, 37–46. [Google Scholar] [CrossRef]
- Gobierno Parroquial de La Carolina. Plan de Desarrollo y Ordenamiento Territorial; Gobierno Parroquial de La Carolina: Ibarra, Ecuador, 2015. [Google Scholar]
- Chuvieco, E.; Riaño, D.; Danson, F.M.; Martin, P. Use of a radiative transfer model to simulate the postfire spectral response to burn severity. J. Geophys. Res. Biogeosciences 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [Green Version]
- Tran, B.; Tanase, M.; Bennett, L.; Aponte, C. Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests. Remote Sens. 2018, 10, 1680. [Google Scholar] [CrossRef] [Green Version]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. Int. J. Wildl. Fire 2010, 19, 558. [Google Scholar] [CrossRef] [Green Version]
- Veraverbeke, S.; Hook, S.J. Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness and carbon emissions. Int. J. Wildl. Fire 2013, 22, 707. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sens. Environ. 2007, 108, 422–435. [Google Scholar] [CrossRef]
- De Santis, A.; Asner, G.P.; Vaughan, P.J.; Knapp, D.E. Mapping burn severity and burning efficiency in California using simulation models and Landsat imagery. Remote Sens. Environ. 2010, 114, 1535–1545. [Google Scholar] [CrossRef]
- Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. Int. J. Remote Sens. 2011, 32, 7905–7927. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.-C.; Vázquez, Á.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Fernández García, V. Effects of fire recurrence and burn severity in fire-prone pin ecosystems. Basis for forest management. Ph.D. Thesis, Universidad de León, León, Spain, 2019. [Google Scholar]
- Gitelson, A.A. Remote estimation of crop fractional vegetation cover: The use of noise equivalent as an indicator of performance of vegetation indices. Int. J. Remote Sens. 2013, 34, 6054–6066. [Google Scholar] [CrossRef]
- Ayele, G.T.; Tebeje, A.K.; Demissie, S.S.; Belete, M.A.; Jemberrie, M.A.; Teshome, W.M.; Mengistu, D.T.; Teshale, E.Z. Time Series Land Cover Mapping and Change Detection Analysis Using Geographic Information System and Remote Sensing, Northern Ethiopia. Air, Soil Water Res. 2018, 11, 117862211775160. [Google Scholar] [CrossRef] [Green Version]
- Ariza, A.; Salas Rey, J.; Merino de Miguel, S. Comparison of maximum likelihood estimators and regression models for burn severity mapping in Mediterranean forests using Landsat TM and ETM+ data. Rev. Cart. 2019, 145–177. [Google Scholar] [CrossRef]
- Schepers, L.; Haest, B.; Veraverbeke, S.; Spanhove, T.; Vanden Borre, J.; Goossens, R. Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX). Remote Sens. 2014, 6, 1803–1826. [Google Scholar] [CrossRef] [Green Version]
- El Universo Incendio forestal afectó 700 hectáreas de la comuna Guadual, en Ibarra. Available online: https://www.eluniverso.com/noticias/2014/09/02/nota/3674241/incendio-forestal-afecto-700-hectareas-comuna-guadual-ibarra/ (accessed on 7 May 2021).
- INEC VII Censo de Población y VI de Vivienda. Sistema Integrado de Consultas. Available online: http://redatam.inec.gob.ec/ (accessed on 8 October 2021).
- Benavides, M. Daysi Pozo Diagnóstico del Estado Actual de Conservación y Propuesta de intervención en las vertientes que abastecen de agua para consumo humano a la Parroquia La Carolina; Universidad Técnica del Norte: Cantón Ibarra, Ecuador, 2015. [Google Scholar]
- Santiana, J.; Baez, S.; Guevara, J. Sistema de Clasificación de los Ecosistemas del Ecuador Continental, Quito, Ecuador, 2013.
- Chamorro, C.; Mishell, K. Identificación y caracterización de las zonas de recarga hídrica mediante herramientas Sig de los acuíferos la carbonería, Guaraczapas, Yuyucocha y Santa Clara para la protección de las fuentes de aprovisionamiento de agua en la zona urbana de Ibarra; Universiad Técnica del Norte: Ibarra, Ecuador, 2017. [Google Scholar]
- Tobar, F.; López, M.F.; Muñoz-Upegui, D.; Richter, F. Two new species of Lepanthes (Pleurothallidinae; Orchidaceae) from Andean forest remnants in Ibarra, Ecuador. Phytotaxa 2018, 375, 221. [Google Scholar] [CrossRef]
- Martínez-Vásquez, J. Plan de Desarrollo y Ordenamiento Territorial (PDOT) del Cantón Ibarra, Ibarra, Ecuador, 2015.
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Zapata-Ríos, X.; Lopez-Fabara, C.; Navarrete, A.; Torres-Paguay, S.; Flores, M. Spatiotemporal patterns of burned areas, fire drivers, and fire probability across the equatorial Andes. J. Mt. Sci. 2021, 18, 952–972. [Google Scholar] [CrossRef]
- SNI Sistema Nacional de Información. Available online: https://sni.gob.ec (accessed on 15 May 2021).
- IGM Capas de Información Geográfica Básica del IGM de Libre Acceso. Available online: http://www.geoportaligm.gob.ec/portal/index.php/cartografia-de-libre-acceso-escala-50k/ (accessed on 5 June 2021).
- SIGTIERRAS-MAG Ministerio de Agrilcultura y Ganadería SIGTIERRAS. Available online: http://geoportal.agricultura.gob.ec/index.php/visor-geo (accessed on 3 November 2021).
- MAE Ministerio del Ambiente, Agua y Transición Ecológica. Mapa Interactivo. Available online: http://ide.ambiente.gob.ec/mapainteractivo/ (accessed on 10 September 2021).
- USGS United States Geological Survey. Available online: https://earthexplorer.usgs.gov/ (accessed on 10 April 2021).
- Gutman, G.; Huang, C.; Chander, G.; Noojipady, P.; Masek, J.G. Assessment of the NASA–USGS Global Land Survey (GLS) datasets. Remote Sens. Environ. 2013, 134, 249–265. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; de Lima, A.; Adami, M. Multitemporal Analysis of Deforestation in Response to the Construction of the Tucuruí Dam. ISPRS Int. J. Geo-Information 2020, 9, 583. [Google Scholar] [CrossRef]
- Rongali, G.; Keshari, A.K.; Gosain, A.K.; Khosa, R. Split-Window Algorithm for Retrieval of Land Surface Temperature Using Landsat 8 Thermal Infrared Data. J. Geovisualization Spat. Anal. 2018, 2, 14. [Google Scholar] [CrossRef]
- Gerace, A.; Kleynhans, T.; Eon, R.; Montanaro, M. Towards an Operational, Split Window-Derived Surface Temperature Product for the Thermal Infrared Sensors Onboard Landsat 8 and 9. Remote Sens. 2020, 12, 224. [Google Scholar] [CrossRef] [Green Version]
- ESRI ArcGIS Desktop; ESRI: Redlands, CA, USA, 2021.
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Xu, D. Compare NDVI Extracted from Landsat 8 Imagery with that from Landsat 7 Imagery. Am. J. Remote Sens. 2014, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Thapa, S.; Garcia Millan, V.E.; Eklundh, L. Assessing Forest Phenology: A Multi-Scale Comparison of Near-Surface (UAV, Spectral Reflectance Sensor, PhenoCam) and Satellite (MODIS, Sentinel-2) Remote Sensing. Remote Sens. 2021, 13, 1597. [Google Scholar] [CrossRef]
- Hyndavi, A.; James, L.; Anjaneyulu, R.V.G.; Suresh, S.; Venkateswara Rao, C.; Bothale, V.M. Evolution of value addition process for generation of Normalised Difference Vegetation Index (NDVI) product – A case study. In Proceedings of the 2019 IEEE Recent Advances in Geoscience and Remote Sensing: Technologies, Standards and Applications (TENGARSS), Kochi, India, 17–20 October 2019; pp. 86–91. [Google Scholar]
- Stankova, N.; Nedkov, R. Monitoring forest regrowth with different burn severity using aerial and Landsat data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; 2015; pp. 2166–2169. [Google Scholar]
- García-Llamas, P.; Suárez-Seoane, S.; Fernández-Guisuraga, J.M.; Fernández-García, V.; Fernández-Manso, A.; Quintano, C.; Taboada, A.; Marcos, E.; Calvo, L. Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 137–144. [Google Scholar] [CrossRef]
- Li, P.; Jiang, L.; Feng, Z. Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors. Remote Sens. 2013, 6, 310–329. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildl. Fire 2009, 18, 116. [Google Scholar] [CrossRef]
- Barboza Castillo, E.; Turpo Cayo, E.Y.; de Almeida, C.M.; Salas López, R.; Rojas Briceño, N.B.; Silva López, J.O.; Barrena Gurbillón, M.Á.; Oliva, M.; Espinoza-Villar, R. Monitoring Wildfires in the Northeastern Peruvian Amazon Using Landsat-8 and Sentinel-2 Imagery in the GEE Platform. ISPRS Int. J. Geo-Information 2020, 9, 564. [Google Scholar] [CrossRef]
- Chasmer, L.E.; Hopkinson, C.D.; Petrone, R.M.; Sitar, M. Using Multitemporal and Multispectral Airborne Lidar to Assess Depth of Peat Loss and Correspondence with a New Active Normalized Burn Ratio for Wildfires. Geophys. Res. Lett. 2017, 44, 11851–11859. [Google Scholar] [CrossRef] [Green Version]
- Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Smith, A.; Lewis, S.A.; Lentile, L.B.; McKinley, R.A. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecol. 2007, 3, 64–90. [Google Scholar] [CrossRef]
- Soverel, N.O.; Perrakis, D.D.B.; Coops, N.C. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens. Environ. 2010, 114, 1896–1909. [Google Scholar] [CrossRef]
- Botella-Martínez, M.A.; Fernández-Manso, A. Estudio de la severidad post-incendio en la Comunidad Valenciana comparando los índices dNBR, RdNBR y RBR a partir de imágenes Landsat 8. Rev. Teledetección 2017, 33. [Google Scholar] [CrossRef] [Green Version]
- Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 221–225. [Google Scholar] [CrossRef]
- Campo, J.; Merino, A. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems. Glob. Chang. Biol. 2016, 22, 1942–1956. [Google Scholar] [CrossRef]
- Tipping, M.E.; Bishop, C.M. Probabilistic Principal Component Analysis. J. R. Stat. Soc. Ser. B 1999, 61, 611–622. [Google Scholar] [CrossRef]
- Mahmoudi, M.R.; Heydari, M.H.; Qasem, S.N.; Mosavi, A.; Band, S.S. Principal component analysis to study the relations between the spread rates of COVID-19 in high risks countries. Alexandria Eng. J. 2021, 60, 457–464. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; de Lima, A.; Herrera-Matamoros, V. What Is the Socioeconomic Impact of the Tucuruí Dam on Its Surrounding Municipalities? Sustainability 2022, 14, 1630. [Google Scholar] [CrossRef]
- INAHMI Instituto Nacional de Meteorología e Hidrología. Available online: http://www.inamhi.gob.ec/ (accessed on 7 August 2021).
- Komperda, R. Likert-Type Survey Data Analysis with R and RStudio. In Computer-Aided Data Analysis in Chemical Education Research (CADACER): Advances and Avenues; Gupta, T., Ed.; ACS Symposium Series: Washington, DC, USA, 2017; pp. 91–116. [Google Scholar]
- Basu, T.; Das, A. Identification of backward district in India by applying the principal component analysis and fuzzy approach: A census based study. Socioecon. Plann. Sci. 2020, 72, 100915. [Google Scholar] [CrossRef]
- Quistial-Valencia, G.M. Propuesta de un Plan de Prevención de Incendios Forestales en las Parroquias La Carolina y Salinas; UNIVERSIDAD TÉCNICA DEL NORTE,: Cantón Ibarra, Ecuador, 2016. [Google Scholar]
- Morales-Salguero, J.R. Determinación del Riesgo de Ignición y Propagación de Incendios Forestales en los Cerros Orientales de Bogotá a Través del Algebra de Mapas y Simulación. Ph.D. Thesis, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, 2017. [Google Scholar]
- Duncan, J.; Stow, D.; Franklin, J.; Hope, A. Assessing the relationship between spectral vegetation indices and shrub cover in the Jornada Basin, New Mexico. Int. J. Remote Sens. 1993, 14, 3395–3416. [Google Scholar] [CrossRef]
- Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- FAO Earth Map 1.2. Available online: https://earthmap.org/ (accessed on 9 December 2021).
- Key, C.; Benson, N. Measuring and remote sensing of burn severity: The CBI and NBR. In Proceedings of the Proceedings Joint Fire Science Conference and Workshop, Moscow, Russia, 15–17 June 1999; Volume II, p. 2. [Google Scholar]
- United Nations Normalized Burn Ratio (NBR). Available online: https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-burn-severity/in-detail/normalized-burn-ratio (accessed on 1 February 2022).
- Cortenbach, J.; Williams, R.; Madurapperuma, B. Determining Fire Severity of the Santa Rosa, CA 2017 Fire. IdeaFest Interdiscip. J. Creat. Work. Res. from Humboldt State Univ. 2019, 3, 1–10. [Google Scholar]
- Hammill, K.A.; Bradstock, R.A. Remote sensing of fire severity in the Blue Mountains: Influence of vegetation type and inferring fire intensity. Int. J. Wildl. Fire 2006, 15, 213. [Google Scholar] [CrossRef]
- Xulu, S.; Mbatha, N.; Peerbhay, K. Burned Area Mapping over the Southern Cape Forestry Region, South Africa Using Sentinel Data within GEE Cloud Platform. ISPRS Int. J. Geo-Information 2021, 10, 511. [Google Scholar] [CrossRef]
- Vrieling, A.; de Jong, S.M.; Sterk, G.; Rodrigues, S.C. Timing of erosion and satellite data: A multi-resolution approach to soil erosion risk mapping. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 267–281. [Google Scholar] [CrossRef]
- Peres-Neto, P.R.; Jackson, D.A.; Somers, K.M. Giving Meaningful Interpretation to Ordination Axes: Assessing Loading Significance in Principal Component Analysis. Ecology 2003, 84, 2347–2363. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Palomino, C.A.; Hattermann, F.F.; Krysanova, V.; Lobanova, A.; Vega-Jácome, F.; Lavado, W.; Bronstert, A. A novel high-resolution gridded precipitation dataset for Peruvian and Ecuadorian watersheds – development and hydrological evaluation. J. Hydrometeorol. 2021, 23, 309–336. [Google Scholar] [CrossRef]
- Chimborazo, O.; Vuille, M. Present-day climate and projected future temperature and precipitation changes in Ecuador. Theor. Appl. Climatol. 2021, 143, 1581–1597. [Google Scholar] [CrossRef]
- da Paca, V.H.M.; Espinoza-Dávalos, G.; Moreira, D.; Comair, G. Variability of Trends in Precipitation across the Amazon River Basin Determined from the CHIRPS Precipitation Product and from Station Records. Water 2020, 12, 1244. [Google Scholar] [CrossRef]
- ECMWF ERA5. Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (accessed on 5 September 2021).
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- MAE. MAE Ley Forestal y de Conservación de Áreas Naturales y Vida Silvestre, 2004.
- GAD Parroquial Rural San Pedro de La Carolina. Plan de Desarrollo y Ordenamiento Territorial de la Parroquia Rural La Carolina; GAD Parroquial Rural San Pedro de La Carolina: Ibarra, Ecuador, 2015. [Google Scholar]
- Foster, P. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Rev. 2001, 55, 73–106. [Google Scholar] [CrossRef]
- SNGRE Servicio Nacional de Gestión de Riesgos y Emergencias. Available online: https://gestionriesgosec.maps.arcgis.com/home/index.html (accessed on 25 January 2022).
- SNDGR Servicio Nacional de Gestión de Riesgos y Emergencias. Available online: https://www.gestionderiesgos.gob.ec/en-imbabura-147271-hectareas-consumidas-en-incendios-forestales/#:~:text=Ibarra (accessed on 14 January 2022).
- ECU 911 Servicio Integrado de Seguridad ECU 911. Available online: https://www.ecu911.gob.ec/ecu-911-ibarra-coordino-atencion-de-incendios-forestales-en-imbabura/ (accessed on 14 January 2022).
- Zhang, L.; Yan, H.; Qiu, L.; Cao, S.; He, Y.; Pang, G. Spatial and Temporal Analyses of Vegetation Changes at Multiple Time Scales in the Qilian Mountains. Remote Sens. 2021, 13, 5046. [Google Scholar] [CrossRef]
- Adu, B.; Qin, G.; Li, C.; Wu, J. Grassland Phenology’s Sensitivity to Extreme Climate Indices in the Sichuan Province, Western China. Atmosphere 2021, 12, 1650. [Google Scholar] [CrossRef]
- Wasko, C.; Parinussa, R.M.; Sharma, A. A quasi-global assessment of changes in remotely sensed rainfall extremes with temperature. Geophys. Res. Lett. 2016, 43, 10. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Shea, D.J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Choi, M.; Chi, S. Optimal route selection model for fire evacuations based on hazard prediction data. Simul. Model. Pract. Theory 2019, 94, 321–333. [Google Scholar] [CrossRef]
- Song, Y.; Niu, L.; Liu, P.; Li, Y. Fire hazard assessment with indoor spaces for evacuation route selection in building fire scenarios. Indoor Built Environ. 2022, 31, 452–465. [Google Scholar] [CrossRef]
N° | Scenario | Acquisition Date | Remote Sensing Type | Sensor |
---|---|---|---|---|
1 | Pre-fire | 26 June 2014 | Landsat 8 | OLI-TIRS |
2 | Post-fire | 11 June 2015 | Landsat 8 | OLI-TIRS |
3 | Post-fire | 25 June 2020 | Landsat 8 | OLI-TIRS |
Land Use | Area (ha) 2014 (Pre-Fire) | Area (%) 2014 (Pre-Fire) | Area (ha) 2016 (Post-Fire) | Area (%) 2016 (Post-Fire) |
---|---|---|---|---|
Shrub and Herbaceous Vegetation | 13,117.70 | 42.54 | 14,129.01 | 45.82 |
Agricultural Land | 12,690.40 | 41.15 | 12,110.84 | 39.27 |
Native Forest | 4395.64 | 14.25 | 4353.43 | 14.12 |
Moor | 447.27 | 1.45 | 2.79 | 0.01 |
Water Bodies | 74.30 | 0.24 | 164.60 | 0.53 |
Urban Zone | 8.11 | 0.03 | 74.69 | 0.24 |
Other Lands | 103.77 | 0.34 | 1.82 | 0.01 |
La Carolina Parish | 30,837.19 | 100 | 30,837.19 | 100 |
Class | NDVI Range | Photosynthetic Activity |
---|---|---|
1 | <0.0 | Null |
2 | 0.0–0.1 | Very low |
3 | 0.1–0.2 | Low |
4 | 0.2–0.3 | Moderate |
5 | 0.3–0.4 | Moderate/High |
6 | 0.4–0.6 | High |
7 | >0.60 | Very high |
Class | NBR Value | Fire Severity Level |
---|---|---|
1 | <−0.25 | High vegetation growth after fire |
2 | −0.25–−0.10 | Low growth of post-fire vegetation |
3 | −0.10–0.10 | Unburned |
4 | 0.10–0.27 | Burned areas with low severity |
5 | 0.27–0.44 | Burned areas with moderate/low severity |
6 | 0.44–0.66 | Burned areas with moderate/high severity |
Category | dNDVI | (%) | dNBR | (%) |
---|---|---|---|---|
1 | Unburned | 12.9 | High enhanced regrowth | 16.13 |
2 | Very low severity | 12.9 | Low enhanced regrowth | 12.9 |
3 | Low severity | 16.13 | Unburned | 9.68 |
4 | Moderate severity | 12.9 | Low severity | 12.9 |
5 | High Severity | 16.13 | Moderate/low severity | 9.68 |
6 | Very high severity | 26.04 | Moderate/high severity | 12.9 |
7 | - | - | High Severity | 25.81 |
dNDVI | dNBR | (%) Accuracy between Models |
---|---|---|
Unburned | Unburned | 75.04 |
Low severity | Low severity | 75.02 |
Moderate severity | Moderate/low severity | 75.02 |
High Severity | Moderate/high severity | 79.88 |
Very high severity | High Severity | 99.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morante-Carballo, F.; Bravo-Montero, L.; Carrión-Mero, P.; Velastegui-Montoya, A.; Berrezueta, E. Forest Fire Assessment Using Remote Sensing to Support the Development of an Action Plan Proposal in Ecuador. Remote Sens. 2022, 14, 1783. https://doi.org/10.3390/rs14081783
Morante-Carballo F, Bravo-Montero L, Carrión-Mero P, Velastegui-Montoya A, Berrezueta E. Forest Fire Assessment Using Remote Sensing to Support the Development of an Action Plan Proposal in Ecuador. Remote Sensing. 2022; 14(8):1783. https://doi.org/10.3390/rs14081783
Chicago/Turabian StyleMorante-Carballo, Fernando, Lady Bravo-Montero, Paúl Carrión-Mero, Andrés Velastegui-Montoya, and Edgar Berrezueta. 2022. "Forest Fire Assessment Using Remote Sensing to Support the Development of an Action Plan Proposal in Ecuador" Remote Sensing 14, no. 8: 1783. https://doi.org/10.3390/rs14081783
APA StyleMorante-Carballo, F., Bravo-Montero, L., Carrión-Mero, P., Velastegui-Montoya, A., & Berrezueta, E. (2022). Forest Fire Assessment Using Remote Sensing to Support the Development of an Action Plan Proposal in Ecuador. Remote Sensing, 14(8), 1783. https://doi.org/10.3390/rs14081783