A New Method for Generating the SMOPS Blended Satellite Soil Moisture Data Product without Relying on a Model Climatology
Abstract
:1. Introduction
2. Data and Method
2.1. Satellite SM Data Products
2.2. In Situ Observations
2.3. Development of SMOPScdr
2.4. Validation Strategy
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 186–215. [Google Scholar] [CrossRef]
- Vergopolan, N.; Chaney, N.W.; Pan, M.; Sheffield, J.; Beck, H.E.; Ferguson, C.R.; Torres-Rojas; Sadri, S.; Wood, E.F. SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US. Sci. Data 2021, 8, 264. [Google Scholar] [CrossRef] [PubMed]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Li, L.; Gaiser, P.W.; Gao, B.-C.; Bevilacqua, R.M.; Jackson, T.J.; Njoku, E.G.; Rüdiger, C.; Calvet, J.-C. WindSat global soil moisture retrieval and validation. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2224–2241. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J. The SMOS mission: New tool for monitoring key elements of the globalwater cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-Saldaña, J.; De Rosnay, P.; Jann, A.; Schneider, S.; et al. The ASCAT soil moisture product: A review of its specifications, validation results, and merging applications. Meteorol. Z. 2013, 22, 5–33. [Google Scholar] [CrossRef] [Green Version]
- Maeda, T.; Taniguchi, Y.; Imaoka, K. GCOM-W1 AMSR2 level 1R product: Dataset of brightness temperature modified using the antenna pattern matching technique. IEEE Trans. Geosci. Remote Sens. 2016, 54, 770–782. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, X.; Hain, C.; Yin, J.; Fang, L.; Li, Z.; Zhao, L. NOAA Soil Moisture Operational Product System (SMOPS) and Its Validations; IEEE Geoscience and Remote Sensing Symposium (IGARSS): Beijing, China, 2016; pp. 3477–3480. [Google Scholar]
- Zhan, X.; Liu, J.; Wen, J.; Zhao, L.; Vargas, M.; Weng, F. Soil Moisture Data Product Generated from NASA SMAP Observations with NOAA Ancillary Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, X.; Zheng, Y.; Liu, J.; Hain, C.R.; Fang, L. Impact of quality control of satellite soil moisture data on their assimilation into land surface model. Geophys. Res. Lett. 2014, 41, 7159–7166. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, X.; Zheng, Y.; Liu, J.; Fang, L.; Hain, C.R. Enhancing Model Skill by Assimilating SMOPS Blended Soil Moisture Product into Noah Land Surface Model. J. Hydrometeorol. 2015, 16, 917–931. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, X.; Liu, J.; Schull, M. An intercomparison of Noah model skills with benefits of assimilating SMOPS blended and individual soil moisture retrievals. Water Resour. Res. 2019, 55, 2572–2592. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, X.; Liu, J. NOAA Satellite Soil Moisture Operational Product System (SMOPS) Version 3.0 Generates Higher Accuracy Blended Satellite Soil Moisture. Remote Sens. 2020, 12, 2861. [Google Scholar] [CrossRef]
- Madelon, R.; Rodriguez-Fernandez, N.J.; Van der Schalie, R.; Scanlon, T.; Al Bitar, A.; Kerr, Y.H.; De Jeu, R.; Dorigo, W.A. Towards the Removal of Model Dependency in Soil Moisture Climate Data Records by Using an L-Band Scaling Reference. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 831–848. [Google Scholar] [CrossRef]
- Kumar, S.V.; Peters-Lidard, C.D.; Santanello, J.A.; Reichle RH, C.S.; Koster, R.D.; Nearing, G.S.; Jasinski, M.F. Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci. 2015, 19, 4463–4478. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Zhan, X. Impact of Bias-Correction Methods on Effectiveness of Assimilating SMAP Soil Moisture Data into NCEP Global Forecast System Using the Ensemble Kalman Filter. IEEE Geosci. Remote Sens. Lett. 2018, 15, 659–663. [Google Scholar] [CrossRef]
- Schaefer, G.L.; Cosh, M.H.; Jackson, T.J. The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Ocean. Technol. 2007, 24, 2073–2077. [Google Scholar] [CrossRef]
- Bosch, D.D.; Sheridan, J.M.; Lowrance, R.R.; Hubbard, R.K.; Strickland, T.C.; Feyereisen, G.W.; Sullivan, D.G. Little River Experimental Watershed database. Water Resour. Res. 2007, 43, W09470. [Google Scholar] [CrossRef]
- Cosh, M.H.; Starks, P.J.; Guzman, J.; Moriasi, D. Upper Washita River experimental watersheds: Inter-annual persistence of soil water content profiles. J. Environ. Qual. 2014, 43, 1328–1333. [Google Scholar] [CrossRef]
- Keefer, T.O.; Moran, M.S.; Paige, G.B. Long-term meteorological and soil hydrology database, Walnut Gulch Experimental Watershed, Arizona, United States. Water Resour. Res. 2008, 44, W05S07. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.B.; Walker, J.; Western, A.W.; Young, R.I.; Ellett, K.M.; Pipunic, R.C.; Grayson, R.B.; Siriwardena, L.; Chiew, F.H.S.; Richter, H.G. The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 2012, 48, W07701. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Kerr, Y. Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Yueh, S. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Rev. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation. Remote Sens. Environ. 2018, 214, 1–13. [Google Scholar] [CrossRef] [PubMed]
ubRMSE (m3/m3) | RMSE (m3/m3) | r | Period | |
---|---|---|---|---|
SMOS | 0.099 | 0.132 | 0.379 | 01/01/2012–08/30/2021 |
ASMR-2 | 0.065 | 0.139 | 0.158 | 09/11/2012–08/30/2021 |
ASCATA | 0.099 | 0.132 | 0.284 | 01/01/2012–08/30/2021 |
ASCATB | 0.105 | 0.138 | 0.249 | 01/01/2013–08/30/2021 |
SMAP | 0.061 | 0.105 | 0.559 | 04/01/2015–08/30/2021 |
SMOPScdr | 0.057 | 0.101 | 0.440 | 01/01/2012–08/30/2021 |
SMOPScdr | 0.057 | 0.102 | 0.315 | 01/01/2012–03/31/2015 |
SMOPScdr | 0.058 | 0.099 | 0.506 | 04/01/2015–08/30/2021 |
ubRMSE (m3/m3) | RMSE (m3/m3) | r | Period | |
---|---|---|---|---|
SMOS | 0.071 | 0.091 | 0.436 | 01/01/2012–12/31/2016 |
ASMR-2 | 0.045 | 0.081 | 0.260 | 09/11/2012–12/31/2016 |
ASCATA | 0.084 | 0.112 | 0.378 | 01/01/2012–12/31/2016 |
ASCATB | 0.082 | 0.098 | 0.344 | 01/01/2013–12/31/2016 |
SMAP | 0.052 | 0.074 | 0.540 | 04/01/2015–12/31/2016 |
SMOPScdr | 0.038 | 0.071 | 0.440 | 01/01/2012–12/31/2016 |
SMOPScdr | 0.037 | 0.076 | 0.324 | 01/01/2012–03/31/2015 |
SMOPScdr | 0.038 | 0.064 | 0.447 | 04/01/2015–12/31/2016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Zhan, X.; Liu, J.; Ferraro, R.R. A New Method for Generating the SMOPS Blended Satellite Soil Moisture Data Product without Relying on a Model Climatology. Remote Sens. 2022, 14, 1700. https://doi.org/10.3390/rs14071700
Yin J, Zhan X, Liu J, Ferraro RR. A New Method for Generating the SMOPS Blended Satellite Soil Moisture Data Product without Relying on a Model Climatology. Remote Sensing. 2022; 14(7):1700. https://doi.org/10.3390/rs14071700
Chicago/Turabian StyleYin, Jifu, Xiwu Zhan, Jicheng Liu, and Ralph R. Ferraro. 2022. "A New Method for Generating the SMOPS Blended Satellite Soil Moisture Data Product without Relying on a Model Climatology" Remote Sensing 14, no. 7: 1700. https://doi.org/10.3390/rs14071700
APA StyleYin, J., Zhan, X., Liu, J., & Ferraro, R. R. (2022). A New Method for Generating the SMOPS Blended Satellite Soil Moisture Data Product without Relying on a Model Climatology. Remote Sensing, 14(7), 1700. https://doi.org/10.3390/rs14071700