Assessing the Potential of Long, Multi-Temporal SAR Interferometry Time Series for Slope Instability Monitoring: Two Case Studies in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Sites Description
2.2. MTInSAR Datasets
2.3. MTInSAR Time Series Analysis
3. Results
3.1. Montescaglioso Test Site
3.1.1. Post-Landslide Monitoring
3.1.2. Cemetery Area
3.1.3. Structurally Damaged Building
3.1.4. Connecting Road
3.2. Pomarico Test Site
3.2.1. Pre-Event Landslide Monitoring
3.2.2. NE Side Area
4. Discussion
4.1. Pre-Failure Monitoring
4.2. Post-Failure Monitoring
4.3. Displacement Evolution Monitoring
4.4. Structure Instabilities
4.5. Final Comments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2015, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Singh Virk, A.; Singh, A.; Mittal, S.K. Advanced MT-InSAR Landslide Monitoring: Methods and Trends. J. Remote Sens. GIS 2018, 7, 1–6. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Z. Remote Sensing of Landslides—A Review. Remote Sens. 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Wasowski, J.; Bovenga, F. Remote Sensing of Landslide Motion with Emphasis on Satellite Multitemporal Interferometry Applications: An Overview. In Landslide Hazards, Risks, and Disasters; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780123964755. [Google Scholar]
- Solari, L.; Del Soldato, M.; Raspini, F.; Barra, A.; Bianchini, S.; Confuorto, P.; Casagli, N.; Crosetto, M. Review of Satellite Interferometry for Landslide Detection in Italy. Remote Sens. 2020, 12, 1351. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. Spec. Rep. Natl. Res. Counc. Transp. Res. Board 1996, 247, 36–75. [Google Scholar]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Bovenga, F.; Belmonte, A.; Refice, A.; Pasquariello, G.; Nutricato, R.; Nitti, D.O.; Chiaradia, M.T. Performance analysis of satellite missions for multi-temporal SAR interferometry. Sensors 2018, 18, 1359. [Google Scholar] [CrossRef] [Green Version]
- Raucoules, D.; Tomaro, F.; Foumelis, M.; Negulescu, C.; de Michele, M.; Aunay, B. Landslide observation from ALOS-2/PALSAR-2 Data (image correlation techniques and sar interferometry). Application to salazie circle landslides (La Reunion Island). In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 506–509. [Google Scholar]
- Roa, Y.; Rosell, P.; Solarte, A.; Euillades, L.; Carballo, F.; García, S.; Euillades, P. First assessment of the interferometric capabilities of SAOCOM-1A: New results over the Domuyo Volcano, Neuquén Argentina. J. S. Am. Earth Sci. 2021, 106, 102882. [Google Scholar] [CrossRef]
- Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentini, G.; Zoffoli, S. COSMO-SkyMed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Lorusso, R.; Fasano, L.; Dini, L.; Facchinetti, C.; Varacalli, G.N. “COSMO-SkyMed di Seconda Generazione”—Civilian product specifications. In Proceedings of the Proceedings of the International Astronautical Congress, IAC, Bremen, Germany, 1–5 October 2018; International Astronautical Federation (IAF): Paris, France, 2018. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Carlà, T.; Raspini, F.; Intrieri, E.; Casagli, N. A simple method to help determine landslide susceptibility from spaceborne InSAR data: The Montescaglioso case study. Environ. Earth Sci. 2016, 75, 1492. [Google Scholar] [CrossRef] [Green Version]
- Bentivenga, M.; Giano, S.I.; Murgante, B.; Nolè, G.; Palladino, G.; Prosser, G.; Saganeiti, L.; Tucci, B. Application of field surveys and multitemporal in-SAR interferometry analysis in the recognition of deep-seated gravitational slope deformation of an urban area of Southern Italy. Geomat. Nat. Hazards Risk 2019, 10, 1327–1345. [Google Scholar] [CrossRef] [Green Version]
- Bentivenga, M.; Bellanova, J.; Calamita, G.; Capece, A.; Cavalcante, F.; Gueguen, E.; Guglielmi, P.; Murgante, B.; Palladino, G.; Perrone, A.; et al. Geomorphological and geophysical surveys with InSAR analysis applied to the Picerno earth flow (southern Apennines, Italy). Landslides 2020, 18, 471–483. [Google Scholar] [CrossRef]
- Pellicani, R.; Argentiero, I.; Manzari, P.; Spilotro, G.; Marzo, C.; Ermini, R.; Apollonio, C. UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences 2019, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Doglioni, A.; Casagli, N.; Nocentini, M.; Sdao, F.; Simeone, V. The landslide of Pomarico, South Italy, occurred on January 29th 2019. Landslides 2020, 17, 2137–2143. [Google Scholar] [CrossRef]
- Bovenga, F.; Nutricato, R.; Refice, A.; Guerriero, L.; Chiaradia, M.T. SPINUA: A flexible processing chain for ERS/ENVISAT long term interferometry. In Proceedings of the 2004 Envisat & ERS Symposium, Salzburg, Austria, 6–10 September 2004; ESA Special Publication: Salzburg, Austria, 2005; pp. 473–478. [Google Scholar]
- Spilotro, G.; Coviello, L.; Trizzino, R. Post failure behaviour of landslide bodies. In Landslides in Research, Theory and Practice, Proceedings of the 8th International Symposium on Landslides, Cardiff, UK, 26–30 June 2000; Bromhed, E., Dixon, E.N., Ibsen, M.L., Eds.; Thomas Telford: London, UK, 2000; Volume 3, pp. 1379–1386. [Google Scholar]
- Caputo, R.; Bianca, M.; D’Onofrio, R. Ionian marine terraces of southern Italy: Insights into the Quaternary tectonic evolution of the area. Tectonics 2010, 29, TC4005. [Google Scholar] [CrossRef]
- Cherubini, C.; Cotecchia, V.; Guerricchio, A.; Mastromattei, R. The stability conditions of the town of Aliano (Southern Italy). In Proceedings of the 7th International IAEG Congress, Lisbon, Portugal, 5–9 September 1994; Oliveira, R., Rodrigues, L.F., Coelho, G., Cunha, A.P., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1994; pp. 2145–2153. [Google Scholar]
- Bozzano, F.; Floris, M.; Polemio, M. An Interpretation of Slope Dynamics in Pisticci (Southern Italy). In Landslides in Research, Theory and Practice, Proceedings of the 8th International Symposium on Landslides, Cardiff, UK, 26–30 June 2000; Bromhed, E., Dixon, E.N., Ibsen, M.L., Eds.; Thomas Telford: London, UK, 2000; Volume 1, pp. 171–176. [Google Scholar]
- Troncone, A.; Conte, E.; Donato, A. Two and three-dimensional numerical analysis of the progressive failure that occurred in an excavation-induced landslide. Eng. Geol. 2014, 183, 265–275. [Google Scholar] [CrossRef]
- Troncone, A.; Conte, E.; Donato, A. Three-dimensional Finite Element Analysis of the Senise Landslide. Procedia Eng. 2016, 158, 212–217. [Google Scholar] [CrossRef] [Green Version]
- ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale IFFI Project—English. Available online: https://www.isprambiente.gov.it/en/projects/soil-and-territory/iffi-project (accessed on 28 September 2021).
- Autorità di Bacino Distrettuale dell’Appennino Meridionale PAI—Piano Stralcio per la Difesa dal Rischio Idrogeologico. Available online: http://rsdi.regione.basilicata.it/viewGis/?project=45774E9D-93DF-6578-E022-46605663079B (accessed on 28 September 2021).
- Autorità di Bacino Distrettuale dell’Appennino Meridionale PAI—Aggiornamento 2019. Available online: http://www.adb.basilicata.it/adb/pStralcio/piano2019_adoz.asp (accessed on 28 September 2021).
- Floris, M.; Bozzano, F. Evaluation of landslide reactivation: A modified rainfall threshold model based on historical records of rainfall and landslides. Geomorphology 2008, 94, 40–57. [Google Scholar] [CrossRef]
- Pellicani, R.; Spilotro, G.; Ermini, R.; Sdao, F. The large montescaglioso landslide of December 2013 after prolonged and severe seasonal climate conditions. In Landslides and Engineered Slopes. Experience, Theory and Practice, Proceedings of the 12th International Symposium on Landslides, Napoli, Italy, 12–19 June 2016; Aversa, S., Cascini, L., Picarelli, L., Scavia, C., Eds.; CRC Press: Croydon, UK, 2016; Volume 3, pp. 1591–1597. [Google Scholar]
- Troncone, A. Numerical analysis of a landslide in soils with strain-softening behaviour. Géotechnique 2005, 55, 585–596. [Google Scholar] [CrossRef]
- Spilotro, G.; Fidelibus, M.D.; Pellicani, R.; Argentiero, I.; Parisi, A. La stabilità degli abitati su placche rigide su argille plio-pleistoceniche. Esperienze dai centri storici della Basilicata e della Puglia. Geol. Dell’Ambiente 2017, 1, 47–53. [Google Scholar]
- Berti, M.; Corsini, A.; Franceschini, S.; Iannacone, J.P. Automated classification of Persistent Scatterers Interferometry time series. Nat. Hazards Earth Syst. Sci. 2013, 13, 1945–1958. [Google Scholar] [CrossRef] [Green Version]
- Bovenga, F.; Pasquariello, G.; Refice, A. Statistically-based trend analysis of MTInSAR displacement time series. Remote Sens. 2021, 13, 2302. [Google Scholar] [CrossRef]
- Refice, A.; Pasquariello, G.; Bovenga, F. Model-Free Characterization of SAR MTI Time Series. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4004405. [Google Scholar] [CrossRef]
- Bozzano, F.; Caporossi, P.; Esposito, C.; Martino, S.; Mazzanti, P.; Moretto, S.; Mugnozza, G.S.; Rizzo, A.M. Mechanism of the Montescaglioso Landslide (Southern Italy) Inferred by Geological Survey and Remote Sensing. In Proceedings of the Advancing Culture of Living with Landslides. WLF 2017; Mikos, M., Tiwari, B., Yin, Y., Sassa, K., Eds.; Springer: Cham, Switzerland, 2017; pp. 97–106. [Google Scholar]
- Raspini, F.; Ciampalini, A.; Del Conte, S.; Lombardi, L.; Nocentini, M.; Gigli, G.; Ferretti, A.; Casagli, N. Exploitation of Amplitude and Phase of Satellite SAR Images for Landslide Mapping: The Case of Montescaglioso (South Italy). Remote Sens. 2015, 7, 14576–14596. [Google Scholar] [CrossRef] [Green Version]
- Manconi, A.; Casu, F.; Ardizzone, F.; Bonano, M.; Cardinali, M.; De Luca, C.; Gueguen, E.; Marchesini, I.; Parise, M.; Vennari, C.; et al. Brief communication: Rapid mapping of landslide events: The 3 December 2013 Montescaglioso landslide, Italy. Nat. Hazards Earth Syst. Sci. 2014, 14, 1835–1841. [Google Scholar] [CrossRef] [Green Version]
- Caporossi, P.; Mazzanti, P.; Bozzano, F. Digital Image Correlation (DIC) analysis of the 3 December 2013 Montescaglioso landslide (Basilicata, Southern Italy): Results from a multi-dataset investigation. ISPRS Int. J. Geo-Inf. 2018, 7, 372. [Google Scholar] [CrossRef] [Green Version]
- Elefante, S.; Manconi, A.; Bonano, M.; De Luca, C.; Casu, F. Three-dimensional ground displacements retrieved from SAR data in a landslide emergency scenario. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2400–2403. [Google Scholar] [CrossRef]
- Bozzano, F.; Cherubini, C.; Floris, M.; Lupo, M.; Paccapelo, F. Landslide phenomena in the area of Pomarico (Basilicata-Italy): Methods for modelling and monitoring. Phys. Chem. Earth 2002, 27, 1601–1607. [Google Scholar] [CrossRef]
- Fidelibus, M.; Argentiero, I.; Canora, F.; Pellicani, R.; Spilotro, G.; Vacca, G. Squeezed Interstitial Water and Soil Properties in Pleistocene Blue Clays under Different Natural Environments. Geosciences 2018, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Refice, A.; Pasquariello, G.; Bovenga, F.; Festa, V.; Acquafredda, P.; Spilotro, G. Investigating uplift in Lesina Marina (Southern Italy) with the aid of persistent scatterer SAR interferometry and in situ measurements. Environ. Earth Sci. 2016, 75, 243. [Google Scholar] [CrossRef] [Green Version]
- Pellicani, R.; Argentiero, I.; Spilotro, G. GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping along road corridors. Geomat. Nat. Hazards Risk 2017, 8, 1012–1033. [Google Scholar] [CrossRef] [Green Version]
- Hill, P.; Biggs, J.; Ponce-López, V.; Bull, D. Time-Series Prediction Approaches to Forecasting Deformation in Sentinel-1 InSAR Data. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020176. [Google Scholar] [CrossRef]
- Carlà, T.; Intrieri, E.; Raspini, F.; Bardi, F.; Farina, P.; Ferretti, A.; Colombo, D.; Novali, F.; Casagli, N. Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci. Rep. 2019, 9, 14137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Test Site | Sensor | Geometry | N. Images | Time Interval |
---|---|---|---|---|
Pomarico | S1 | Ascending | 158 | 15/10/2014–15/05/2018 |
S1 | Descending | 141 | 21/10/2014–21/05/2018 | |
CSK | Ascending | 96 | 28/10/2012–23/06/2018 | |
Montescaglioso | S1 | Ascending | 182 | 15/10/2014–29/12/2018 |
S1 | Descending | 159 | 21/10/2014–29/12/2018 | |
CSK | Ascending | 96 | 28/10/2012–23/06/2018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bovenga, F.; Argentiero, I.; Refice, A.; Nutricato, R.; Nitti, D.O.; Pasquariello, G.; Spilotro, G. Assessing the Potential of Long, Multi-Temporal SAR Interferometry Time Series for Slope Instability Monitoring: Two Case Studies in Southern Italy. Remote Sens. 2022, 14, 1677. https://doi.org/10.3390/rs14071677
Bovenga F, Argentiero I, Refice A, Nutricato R, Nitti DO, Pasquariello G, Spilotro G. Assessing the Potential of Long, Multi-Temporal SAR Interferometry Time Series for Slope Instability Monitoring: Two Case Studies in Southern Italy. Remote Sensing. 2022; 14(7):1677. https://doi.org/10.3390/rs14071677
Chicago/Turabian StyleBovenga, Fabio, Ilenia Argentiero, Alberto Refice, Raffaele Nutricato, Davide O. Nitti, Guido Pasquariello, and Giuseppe Spilotro. 2022. "Assessing the Potential of Long, Multi-Temporal SAR Interferometry Time Series for Slope Instability Monitoring: Two Case Studies in Southern Italy" Remote Sensing 14, no. 7: 1677. https://doi.org/10.3390/rs14071677
APA StyleBovenga, F., Argentiero, I., Refice, A., Nutricato, R., Nitti, D. O., Pasquariello, G., & Spilotro, G. (2022). Assessing the Potential of Long, Multi-Temporal SAR Interferometry Time Series for Slope Instability Monitoring: Two Case Studies in Southern Italy. Remote Sensing, 14(7), 1677. https://doi.org/10.3390/rs14071677