# Mothership-Cubesat Radioscience for Phobos Geodesy and Autonomous Navigation

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mission Profile and Orbits

## 3. Budget Analyses and CubeSat Design

#### 3.1. Deployment $\Delta v$ Budget

#### 3.2. Doppler Measurement and Link Budget

#### 3.3. System Sizing

## 4. Models of Geodesy and Orbit Determination

#### 4.1. Baseline Model

`mar097`ephemeris developed at JPL [43] is adopted as the true ephemeris of Mars and Phobos. The Mars spherical harmonics gravity model is considered up to 10 degrees and orders, whose values are available from the JPL model

`jgmro_110b`. The used Phobos gravity model is up to 3 degrees and orders. The baseline gravity harmonics coefficients of Phobos are computed by the CNES Geodesy Group based on Gaskell’s Phobos shape model [44] under the assumption of homogeneous density and $GM$ of $7.1\times {10}^{-4}$ km${}^{3}$/s${}^{2}$.

`mar097`ephemeris, and true range-rates at measurement epochs are generated.

#### 4.2. Error Models

`mar097`and the

`NOE-4-2020`developed at IMCCE [47] are adopted as the known ephemerides to express the situations without and with ephemeris errors, respectively. The difference between

`mar097`and

`NOE-4-2020`during the period from 2025 to 2027 is around 2 km, mainly along the transverse direction (for more details, see Ref. [47]). The ephemeris error can be approximated by and regarded as a phase shift, $\Delta et$, of 0.9 s.

#### 4.3. Theoretical Covariance

## 5. Numerical Estimation Simulations

#### 5.1. Orbit Determination

`mar097`ephemeris is employed in the estimation routine) is displayed in Figure 7. The estimation process converges and starts to follow new orbit states in one day. Upon convergence, the average root-sum-squared (RSS) position uncertainty is around 0.2 m, and the RSS velocity uncertainty is 0.05 mm/s. Figure 8 shows the process of online estimation in the presence of ephemeris errors (i.e., the ephemeris

`NOE-4-2020`is used). The RSS position uncertainty is significantly increased to 81.6 m, and the RSS velocity uncertainty to 1.63 cm/s. Considering the influence of ephemeris error on the estimation, an ephemeris time error $\Delta et$ is taken as a consider parameter [49]. Figure 9 shows the estimation process considering the ephemeris time error. The RSS position uncertainty is substantially improved to 20.7 m, and the RSS velocity uncertainty to 0.4 cm/s.

#### Discussion on Orbiting Operations

#### 5.2. Parameter Identification

#### 5.3. Statistical Covariance

## 6. Effect of Inferring Interior Structure

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

`tycho`and

`cerfeuil`, financed and managed by Observatoire de Paris and IMCCE. The first author appreciates the constant support from the informatics department of IMCCE delivered by Stephane Vaillant and Mickaël Gastineau, and also wants to thank Zhuoxi Huo (QXSLab) for an invited visit, Jinsong Ping (NAOC/CAS) for his advice on the Doppler error analysis, and Long Long (CAST) for making the 3D model of the CubeSat.

## Conflicts of Interest

## Abbreviations

3D | Three-dimensional |

CR3BP | Circular-restricted three-body problem |

MoI | Moment of inertia |

QSO | Quasi-satellite orbit |

RSS | Root-sum-squared |

## References

- Hunten, D.M. Capture of Phobos and Deimos by photoatmospheric drag. Icarus
**1979**, 37, 113–123. [Google Scholar] [CrossRef] - Rosenblatt, P.; Charnoz, S.; Dunseath, K.M.; Terao-Dunseath, M.; Trinh, A.; Hyodo, R.; Genda, H.; Toupin, S. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nat. Geosci.
**2016**, 9, 581–583. [Google Scholar] [CrossRef] [Green Version] - Fujimoto, M. MMX (Phobos/Deimos sample return). In Proceedings of the 16th Meeting of the NASA Small Bodies Assessment Group, Greenbelt, MD, USA, 12–14 June 2017. [Google Scholar]
- Kawakatsu, Y. Mission Design of Martian Moons Exploration (MMX). In Proceedings of the 69th International Astronautical Congress, Bremen, Germany, 1–5 October 2018. [Google Scholar]
- Sagdeev, R.Z.; Zakharov, A.V. Brief history of the Phobos mission. Nature
**1989**, 341, 581–585. [Google Scholar] [CrossRef] - Marov, M.; Avduevsky, V.; Akim, E.; Eneev, T.; Kremnev, R.; Kulikov, S.; Pichkhadze, K.; Popov, G.; Rogovsky, G. Phobos-Grunt: Russian sample return mission. Adv. Space Res.
**2004**, 33, 2276–2280. [Google Scholar] [CrossRef] - Cacciatore, F.; Martín, J. Mission analysis and trajectory GNC for Phobos proximity phase of phootprint mission. Adv. Astronaut. Sci.
**2015**, 153, 1321–1340. [Google Scholar] - Murchie, S.; Eng, D.; Chabot, N.; Guo, Y.; Arvidson, R.; Yen, A.; Trebi-Ollennu, A.; Seelos, F.; Adams, E.; Fountain, G. MERLIN: Mars-Moon Exploration, Reconnaissance and Landed Investigation. Acta Astronaut.
**2014**, 93, 475–482. [Google Scholar] [CrossRef] - Le Maistre, S.; Rivoldini, A.; Rosenblatt, P. Signature of Phobos’ interior structure in its gravity field and libration. Icarus
**2019**, 321, 272–290. [Google Scholar] [CrossRef] - Andert, T.P.; Rosenblatt, P.; Pätzold, M.; Häusler, B.; Dehant, V.; Tyler, G.L.; Marty, J.C. Precise mass determination and the nature of Phobos. Geophys. Res. Lett.
**2010**, 37, L09202. [Google Scholar] [CrossRef] - Jacobson, R.; Lainey, V. Martian satellite orbits and ephemerides. Planet. Space Sci.
**2014**, 102, 35–44. [Google Scholar] [CrossRef] - Willner, K.; Oberst, J.; Hussmann, H.; Giese, B.; Hoffmann, H.; Matz, K.D.; Roatsch, T.; Duxbury, T. Phobos control point network, rotation, and shape. Earth Planet. Sci. Lett.
**2010**, 294, 541–546. [Google Scholar] [CrossRef] - Willner, K.; Shi, X.; Oberst, J. Phobos’ shape and topography models. Planet. Space Sci.
**2014**, 102, 51–59. [Google Scholar] [CrossRef] [Green Version] - Burmeister, S.; Willner, K.; Schmidt, V.; Oberst, J. Determination of Phobos’ rotational parameters by an inertial frame bundle block adjustment. J. Geod.
**2018**, 92, 963–973. [Google Scholar] [CrossRef] - Yang, X.; Yan, J.G.; Andert, T.; Ye, M.; Pätzold, M.; Hahn, M.; Jin, W.T.; Li, F.; Barriot, J.P. The second-degree gravity coefficients of Phobos from two Mars Express flybys. Mon. Not. R. Astron. Soc.
**2019**, 490, 2007–2012. [Google Scholar] [CrossRef] - Matsumoto, K.; Hirata, N.; Ikeda, H.; Kouyama, T.; Senshu, H.; Yamamoto, K.; Noda, H.; Miyamoto, H.; Araya, A.; Araki, H.; et al. MMX geodesy investigations: Science requirements and observation strategy. Earth Planets Space
**2021**, 73, 226. [Google Scholar] [CrossRef] - Pätzold, M.; Andert, T.; Jacobson, R.; Rosenblatt, P.; Dehant, V. Phobos: Observed bulk properties. Planet. Space Sci.
**2014**, 102, 86–94. [Google Scholar] [CrossRef] - Rosenblatt, P.; Marty, J.; Dehant, V.; Gurvits, L.; The JIVE Team. Utilisation de GINS avec les Données de Survol Très Rapproché de Phobos par Mars Express. In Proceedings of the Journée GINS, Toulouse, France, 12 June 2014. [Google Scholar]
- Yan, J.G.; Yang, X.; Ye, M.; Andert, T.; Jin, W.T.; Li, F.; Jin, S.G.; Barriot, J.P. Assessment of Phobos gravity field determination from both near polar and near equatorial orbital flyby data. Mon. Not. R. Astron. Soc.
**2018**, 481, 4361–4371. [Google Scholar] [CrossRef] - Chen, H.; Rambaux, N.; Lainey, V.; Hestroffer, D. Mothercraft-cubesat radio measurement for phobos survey. Adv. Astronaut. Sci.
**2020**, 173, 387–403. [Google Scholar] - Le Maistre, S.; Rosenblatt, P.; Rambaux, N.; Castillo-Rogez, J.C.; Dehant, V.; Marty, J.-C. Phobos interior from librations determination using Doppler and star tracker measurements. Planet. Space Sci.
**2013**, 85, 106–122. [Google Scholar] [CrossRef] - Marty, J.C.; Laurent-Varin, J. Preliminary gravity studies for a Phobos QSO mission. In Proceedings of the 42nd COSPAR Scientific Assembly, Pasadena, CA, USA, 14–22 July 2018. Abstract PSD.1-39-18. [Google Scholar]
- Chen, H.; Tomat, L.; Hestroffer, D. CubeSat Complemented Radio Science Small Body Exploration: Survey of Phobos and HO3. In Proceedings of the Interplanetary CubeSat Workshop, Milan, Italy, 28–29 May 2019; p. A.3.4. [Google Scholar]
- Klesh, A.T. Inspire and Marco—Technology Development for the First Deep Space Cubesats. In Proceedings of the 41st COSPAR Scientific Assembly, Istanbul, Turkey, 30 July–7 August 2014. Abstract B0.1-18-16. [Google Scholar]
- Karatekin, Ö.; Le Bras, E.; Van wal, S.; Herique, A.; Tortora, P.; Ritter, B.; Scoubeau, M.; Moreno, V.M. Juventas Cubesat for the Hera mision. In Proceedings of the European Planetary Science Congress, Online, 13–24 September 2021; p. EPSC2021-750. [Google Scholar] [CrossRef]
- Ferrari, F.; Franzese, V.; Pugliatti, M.; Giordano, C.; Topputo, F. Preliminary mission profile of Hera’s Milani CubeSat. Adv. Space Res.
**2021**, 67, 2010–2029. [Google Scholar] [CrossRef] - Chen, H.; Liu, J.; Long, L.; Xu, Z.; Meng, Y.; Zhang, H. Lunar far side positioning enabled by a CubeSat system deployed in an Earth-Moon halo orbit. Adv. Space Res.
**2019**, 64, 28–41. [Google Scholar] [CrossRef] - Cipriano, A.M.; Dei Tos, D.A.; Topputo, F. Orbit Design for LUMIO: The Lunar Meteoroid Impacts Observer. Front. Astron. Space Sci.
**2018**, 5, 29. [Google Scholar] [CrossRef] - Asmar, S.W.; Lazio, J.; Atkinson, D.H.; Bell, D.J.; Border, J.S.; Grudinin, I.S.; Mannucci, A.J.; Paik, M.; Preston, R.A. Future of Planetary Atmospheric, Surface, and Interior Science Using Radio and Laser Links. Radio Sci.
**2019**, 54, 365–377. [Google Scholar] [CrossRef] - Andrews, D.; Wahlund, J.E.; Kohout, T.; Penttilä, A. Asteroid Prospection Explorer (APEX) Cubesat For the ESA Hera Mission. In Proceedings of the EPSC-DPS Joint Meeting 2019, Geneva, Switzerland, 15–20 September 2019; Volume 2019, p. EPSC-DPS2019-1287. [Google Scholar]
- Kogan, Y. Quasi-satellite orbits and their applications. In Proceedings of the Dresden International Astronautical Federation Congress, Dresden, Germany, 6–12 October 1990. [Google Scholar]
- Canalias, E.; Lorda, L.; Laurent-Varin, J. Design of realistic trajectories for the exploration of Phobos. In Proceedings of the 2018 Space Flight Mechanics Meeting, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar] [CrossRef]
- Chen, H.; Canalias, E.; Hestroffer, D.; Hou, X. Stability Analysis of Three-dimensional Quasi-satellite Orbits around Phobos. In Proceedings of the 69th International Astronautical Congress, Bremen, Germany, 1–5 October 2018. [Google Scholar]
- Chen, H.; Canalias, E.; Hestroffer, D.; Hou, X. Effective Stability of Quasi-Satellite Orbits in the Spatial Problem for Phobos Exploration. J. Guid. Control Dyn.
**2020**, 43, 2309–2320. [Google Scholar] [CrossRef] - Canalias, E.; Lorda, L.; Chen, H.; Ikeda, H. Trajectory Design and Operational Challenges for the Exploration of Phobos. Adv. Astronaut. Sci.
**2020**, 175, 1493–1507. [Google Scholar] - Chen, H.; Canalias, E.; Hestroffer, D.; Hou, X. Sensitivity Analysis and Stationkeeping of Three-Dimensional Quasi-Satellite Orbits around Phobos. In Proceedings of the 32nd International Syposium on Space Technology and Science, Fukui, Japan, 15–21 June 2019. [Google Scholar]
- Ikeda, H.; Mitani, S.; Mimasu, Y.; Ono, G.; Nigo, K.; Kwakatsu, Y. Orbital Operations Strategy in the Vicinity of Phobos. In Proceedings of the International Symposium on Space Flight Dynamics, Matsuyama, Japan, 3–9 June 2017. [Google Scholar]
- Oki, Y.; Ikeda, H.; Nishimura, K.; Nakano, M. Operational Safety Analysis on Quasi-Satellite Orbits for Martian Moon eXploration Mission. In Proceedings of the 33rd International Syposium on Space Technology and Science, Oita, Japan, 26 February–4 March 2022. [Google Scholar]
- Larson, W.J.; Wertz, J.R. Communications Architecture. In Space Mission Analysis and Design, 3rd ed.; Microcosm Press: El Segundo, CA, USA, 2005; Chapter 13.3; pp. 550–570. [Google Scholar]
- Kaplan, E.; Hegarty, C.J. Understanding GPS/GNSS: Principles and Applications, 3rd ed.; Artech House, Inc.: Norwood, MA, USA, 2017. [Google Scholar]
- Long, L.; Jiangkai, L.; Song, H.; Li, L.; Zhu, L.; Chen, H. Preliminary Design and Testing of a Lunar CubeSat System. In Proceedings of the 5th National Symposium on Space Flight Dynamics, Wenchang, China, 27 June–1 July 2017. [Google Scholar]
- Yang, C.; Liu, J.; Long, L.; Song, H.; Li, L.; Zhu, L.; Ye, B.; Chen, H.; Zhang, H. Preliminary design and test of attitude control system for lunar CubeSats. Zhongguo Kongjian Kexue Jishu/Chin. Space Sci. Technol.
**2019**, 39, 28–35. [Google Scholar] [CrossRef] - Jacobson, R.A. The orbits and masses of the martian satellites and the libration of phobos. Astron. J.
**2010**, 139, 668–679. [Google Scholar] [CrossRef] - Gaskell, R. Gaskell Phobos Shape Model V1.0. 2020. Available online: https://arcnav.psi.edu/urn:nasa:pds:gaskell.phobos.shape-model:data (accessed on 2 March 2022). [CrossRef]
- Rambaux, N.; Castillo-Rogez, J.C.; Le Maistre, S.; Rosenblatt, P. Rotational motion of Phobos. Astron. Astrophys.
**2012**, 548, A14. [Google Scholar] [CrossRef] [Green Version] - Nakamura, T.; Ikeda, H.; Kouyama, T.; Nakagawa, H.; Kusano, H.; Senshu, H.; Kameda, S.; Matsumoto, K.; Gonzalez-Franquesa, F.; Ozaki, N.; et al. Science operation plan of Phobos and Deimos from the MMX spacecraft. Earth Planets Space
**2021**, 73, 227. [Google Scholar] [CrossRef] - Lainey, V.; Pasewaldt, A.; Robert, V.; Rosenblatt, P.; Jaumann, R.; Oberst, J.; Roatsch, T.; Willner, K.; Ziese, R.; Thuillot, W. Mars moon ephemerides after 14 years of Mars Express data. Astron. Astrophys.
**2021**, 650, A64. [Google Scholar] [CrossRef] - Crassidis, J.L.; Junkins, J.L. Sequential State Estimation. In Optimal Estimation of Dynamic Systems, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011; Chapter 3.7; pp. 192–196. [Google Scholar]
- Chen, H.; Yoshimura, Y.; Ikeda, H. For orbit determination and geodesy in the non-heliocentric small-body mission. In Proceedings of the International Astronautical Congress, Paris, France, 18–22 September 2022. [Google Scholar]
- Duxbury, T.C.; Callahan, J.D. Phobos and Deimos control networks. Icarus
**1989**, 77, 275–286. [Google Scholar] [CrossRef]

**Figure 2.**Solutions of resonant 3D QSO (resonance ratio indicated by $i:j$) around Phobos and their effective stability, extracted from Ref. [34].

**Figure 5.**The 100 × 200 km and the 29 × 50 × 21 km spacecraft orbits propagated in the full-dynamic model for 7 days. Orbits are plotted in the Phobos-centered Mars-Phobos rotating frame with Mars on the −x axis.

**Figure 7.**Online determination of orbits of mothership and CubeSat when the ephemeris error is not present.

**Figure 8.**Online determination of orbits of mothership and CubeSat when the ephemeris error (i.e., around 2 km) exists and is not considered.

**Figure 9.**Online determination of orbits of mothership and CubeSat when the ephemeris error (i.e., around 2 km) exists and the ephemeris time error is considered in the estimation.

**Figure 10.**Errors of gravity coefficients estimated in the three situations; namely, the situation that the ephemeris error is not present, the situation that the ephemeris error exists and is not considered in the estimation, and the situation that the ephemeris error exists and the ephemeris time error is considered in the estimation.

**Figure 11.**Errors and approximated 1-$\sigma $ and 3-$\sigma $ certainty ellipses of estimated ${C}_{20}$ and ${C}_{22}$ under no ephemeris error (blue) and under the ephemeris error (red).

**Figure 12.**1-$\sigma $ uncertainty ellipsoids of inferred moments of inertia projected on the two-dimensional space.

**Figure 13.**Map from Ref. [9] on the distribution of structure families over ${C}_{20}$ and ${C}_{22}$ and the obtained 3-$\sigma $ uncertainty ellipse (arbitrarily centered on [0.028, −0.046]) under the ephemeris error.

Item | Symbol | Unit | Value |
---|---|---|---|

Frequency | f | MHz | 435 |

Carrier wave length | ${\mathsf{\lambda}}_{L}$ | m | 0.6892 |

Transmitter output power | ${P}_{t}$ | dBW | −3 ^{a} |

Transmit antenna gain | ${G}_{t}$ | dB | 0 ^{b} |

Equiv. isotropic radiated power | $EIRP$ | dBW | −3 |

Propagation path length | D | km | 250 ^{c} |

Space loss | ${L}_{s}$ | dB | −133.18 |

Receive antenna gain | ${G}_{r}$ | dBi | 0 |

Received power | C | dB | −136.18 |

System noise temperature | ${T}_{s}$ | K | 635 |

Carrier to noise density ratio | $C/{N}_{0}$ | MHz | 2.84 |

^{a}ISIS V/U tranceiver.

^{b}Endurosat UHF antenna.

^{c}Maximum mothership-CubeSat distance.

Item | Symbol | Unit | Value |
---|---|---|---|

Clock stability | ${\sigma}_{{f}_{\mathrm{time}}}/f$ | - | $5\times {10}^{-13}$^{a} |

Code loop noise bandwidth | ${B}_{n}$ | Hz | 20 |

Predetection integration time | ${t}_{p}$ | sec | 5 |

PLL thermal noise | ${\sigma}_{{f}_{\mathit{PLL}}}/f$ | - | $2.74\times {10}^{-13}$ |

Overall measurement noise ^{b} | ${\sigma}_{{v}_{r}}$ | mm/s | $8.55\times {10}^{-2}$ |

^{a}General Allen stability of a USO.

^{b}Root-sum-squared of clock and PLL noises.

Subsystem | Components | Weight, g | Power, W |
---|---|---|---|

Structure | 1 2U frame | 390 ^{a} | - |

Shielding and deployable panels | 523 ^{a} | - | |

Power | >10 1U solar arrays | 440 | +12.24 ^{b} |

1 battery | 258 ^{c} | +38.5 h ^{c} | |

ADCS | 4 reaction wheels | 220 ^{a} | −0.8 ^{a} |

1 star tracker | 170 ^{d} | −1.5 ^{d} | |

1 MEMS IMU | 20 | −0.6 | |

Sun sensors | - ^{e} | −0.33 | |

Communication | 1 UHF antenna set | 85 ^{f} | −1 ^{f} |

1 UHF transceiver | 75 ^{g} | −4 ^{g} | |

C&DH | 1 on-board computer | 100 | −0.4 |

Propulsion | 1 cold-gas thruster | 676 ^{h} | −0.25 ^{h} |

Margin | - | 444 ^{i} | −1.3 ^{i} |

Total | - | 3401 | 2.0 |

^{a}Based on a lunar CubeSat development experience [41,42].

^{b}During the sun-pointing phase with 51% of the efficiency obtained at 1 AU.

^{c}GOMSpace NanoPower BP4, https://gomspace.com/shop/subsystems/power/nanopower-bp4.aspx, accessed on 19 February 2019.

^{d}MAI-SS Space Sextant, https://www.cubesatshop.com/wp-content/uploads/2016/06/MAI-SS-Specification-10-11-17.pdf, accessed on 1 February 2021.

^{e}Attached to solar arrays.

^{f}EnduroSat UHF antenna, https://www.endurosat.com/cubesat-store/all-cubesat-modules/uhf-antenna/, accessed on 1 February 2021.

^{g}ISIS V/U tranceiver, https://www.isispace.nl/product/isis-uhf-downlink-vhf-uplink-full-duplex-transceiver/, accessed on 1 February 2021.

^{h}VACCO End-Mounted Standard MiPS (0.25U) https://www.cubesat-propulsion.com/wp-content/uploads/2015/10/End-mounted-standard-mips.pdf accessed on 1 February 2021.

^{i}Additional 15% to account for thermal control parts, resistors and coating, and margins of subsystem components.

Item | A Priori Uncertainty |
---|---|

Range-rate measurement | 0.1 mm/s |

Spacecraft position | (100, 100, 100) m |

Spacecraft velocity | (10, 10, 10) cm/s |

Phobos’ ${C}_{00}$ | 3% |

Non-spherical CS coefficients | 10% |

Libration amplitude $\theta $ | 0.11${}^{\circ}$ |

Ephemeris error (if present) | $\left|\mathtt{NOE}-\mathtt{4}-\mathtt{2020}-\mathtt{mar}\mathtt{097}\right|$ |

Item | Truth | Initial Knowledge |
---|---|---|

${x}_{c}$ [km] | −16.361 | −16.387 |

${y}_{c}$ [km] | −10.789 | −10.745 |

${z}_{c}$ [km] | 30.088 | 30.128 |

${v}_{cx}$ [m/s] | 1.213 | 1.088 |

${v}_{cy}$ [m/s] | 7.249 | 7.154 |

${v}_{cz}$ [m/s] | 3.119 | 3.045 |

${x}_{m}$ [km] | −88.829 | −88.880 |

${y}_{m}$ [km] | −6.438 | −6.470 |

${z}_{m}$ [km] | 46.460 | 46.462 |

${v}_{mx}$ [m/s] | 3.592 | 3.289 |

${v}_{my}$ [m/s] | 20.561 | 20.515 |

${v}_{mz}$ [m/s] | 9.009 | 9.133 |

${\overline{C}}_{00}$ | 1.00000 | 0.995321 |

${\overline{C}}_{20}$ * | −0.04757 | −0.05173 |

${\overline{C}}_{21}$ | 0.00127 | 0.00123 |

${\overline{C}}_{22}$ | 0.02467 | 0.02863 |

${\overline{S}}_{21}$ | 0.00014 | 0.00014 |

${\overline{S}}_{22}$ | 0.00032 | 0.00029 |

${\overline{C}}_{30}$ | 0.00303 | 0.00288 |

${\overline{C}}_{31}$ | −0.00452 | −0.00464 |

${\overline{C}}_{32}$ | −0.00902 | −0.00923 |

${\overline{C}}_{33}$ | 0.00162 | 0.00154 |

${\overline{S}}_{31}$ | 0.00216 | 0.00249 |

${\overline{S}}_{32}$ | 0.00075 | 0.00084 |

${\overline{S}}_{33}$ | −0.01360 | −0.01565 |

$\theta $ [${}^{\circ}$] | −1.1000 | −1.1276 |

**Table 6.**Standard deviation of estimated gravity coefficients elucidated by the Monte-Carlo simulation.

Item | Absence of Ephemeris Errors | Presence of Ephemeris Errors |
---|---|---|

${C}_{00}$ | $2.5\times {10}^{-7}$ | 0.08‰ |

${C}_{20}$ | 0.04‰ | 0.65‰ |

${C}_{22}$ | 0.15‰ | 1.88‰ |

$\theta $ | 0.59‰ | 8.32% |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chen, H.; Rambaux, N.; Lainey, V.; Hestroffer, D.
Mothership-Cubesat Radioscience for Phobos Geodesy and Autonomous Navigation. *Remote Sens.* **2022**, *14*, 1619.
https://doi.org/10.3390/rs14071619

**AMA Style**

Chen H, Rambaux N, Lainey V, Hestroffer D.
Mothership-Cubesat Radioscience for Phobos Geodesy and Autonomous Navigation. *Remote Sensing*. 2022; 14(7):1619.
https://doi.org/10.3390/rs14071619

**Chicago/Turabian Style**

Chen, Hongru, Nicolas Rambaux, Valéry Lainey, and Daniel Hestroffer.
2022. "Mothership-Cubesat Radioscience for Phobos Geodesy and Autonomous Navigation" *Remote Sensing* 14, no. 7: 1619.
https://doi.org/10.3390/rs14071619