Optimal On-Orbit Inspection of Satellite Formation
Abstract
:1. Introduction
2. Mission Description and Mathematical Model
2.1. IS Relative Dynamics
2.2. Total Velocity Variation Evaluation
3. Trajectory Optimization and Numerical Simulations
3.1. Two-Step Optimization Procedure
3.2. Test Case and Model Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alfriend, K.T.; Vadali, S.R.; Gurfil, P.; How, J.P.; Breger, L.S. Spacecraft Formation Flying: Dynamics, Control and Navigation; Butterworth-Heinemann: Oxford, UK, 2010. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Foust, R.; Subramanian, G.P.; Chung, S.J.; Hadaegh, F.Y. Review of formation flying and constellation missions using nanosatellites. J. Spacecr. Rocket. 2016, 53, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Capó-Lugo, P.A.; Bainum, P.M. Orbital Mechanics and Formation Flying: A Digital Control Perspective; Woodhead Publishing: Sawston, UK, 2011. [Google Scholar]
- Williams, T. Orbital inspection vehicle trajectories based on line-of-sight maneuvers. Acta Astronaut. 2002, 50, 49–53. [Google Scholar] [CrossRef]
- Horri, N.M.; Kristiansen, K.U.; Palmer, P.; Roberts, M. Relative attitude dynamics and control for a satellite inspection mission. Acta Astronaut. 2012, 71, 109–118. [Google Scholar] [CrossRef]
- Prince, E.R.; Cobb, R.G. Optimal inspector satellite guidance to quasi-hover via relative teardrop trajectories. Acta Astronaut. 2018, 153, 201–212. [Google Scholar] [CrossRef]
- Capolupo, F.; Labourdette, P. Receding-horizon trajectory planning algorithm for passively safe on-orbit inspection missions. J. Guid. Control Dyn. 2019, 42, 1023–1032. [Google Scholar] [CrossRef]
- Maestrini, M.; Di Lizia, P. Guidance strategy for autonomous inspection of unknown non-cooperative resident space objects. J. Guid. Control Dyn. 2022, 45, 1126–1136. [Google Scholar] [CrossRef]
- Caruso, A.; Mengali, G.; Quarta, A.A. Optimal formation inspection using small spacecraft. In Proceedings of the 4th IAA Conference on University Satellite Missions and CubeSat Workshop, Roma, Italy, 4–7 December 2017. [Google Scholar]
- Hill, G.W. Researches in the Lunar Theory. Am. J. Math. 1878, 1, 5. [Google Scholar] [CrossRef]
- Alfriend, K.T.; Lee, D.J.; Creamer, N.G. Optimal Servicing of Geosynchronous Satellites. J. Guid. Control Dyn. 2006, 29, 203–206. [Google Scholar] [CrossRef]
- Zhang, G.; Ye, D. Optimal short-range rendezvous using on-off constant thrust. Aerosp. Sci. Technol. 2017, 69, 209–217. [Google Scholar] [CrossRef]
- Chobotov, V.A. (Ed.) Orbital Mechanics; AIAA Education Series; AIAA: Reston, VA, USA, 2002; Chapter 7; pp. 155–159. [Google Scholar] [CrossRef]
- Yamanaka, K.; Ankersen, F. New state transition matrix for relative motion on an arbitrary elliptical orbit. J. Guid. Control Dyn. 2002, 25, 60–66. [Google Scholar] [CrossRef]
- Kim, D.Y.; Woo, B.; Park, S.Y.; Choi, K.H. Hybrid optimization for multiple-impulse reconfiguration trajectories of satellite formation flying. Adv. Space Res. 2009, 44, 1257–1269. [Google Scholar] [CrossRef]
- Simon, D. Evolutionary Optimization Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 305–308. ISBN 978-0-470-93741-9. [Google Scholar]
- Vasile, M.; Minisci, E.; Locatelli, M. Analysis of Some Global Optimization Algorithms for Space Trajectory Design. J. Spacecr. Rocket. 2010, 47, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Storn, R.; Price, K. A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- Mengali, G.; Quarta, A.A. Trajectory analysis and optimization of Hesperides mission. Universe 2022, 8, 364. [Google Scholar] [CrossRef]
- Bassetto, M.; Caruso, A.; Quarta, A.A.; Mengali, G. Optimal heliocentric transfers of a Sun-facing heliogyro. Aerosp. Sci. Technol. 2021, 119, 1–14. [Google Scholar] [CrossRef]
- Mengali, G.; Quarta, A.A. Fuel-optimal, power-limited rendezvous with variable thruster efficiency. J. Guid. Control Dyn. 2005, 28, 1194–1199. [Google Scholar] [CrossRef]
- Quarta, A.A.; Mengali, G. Minimum-Time Space Missions with Solar Electric Propulsion. Aerosp. Sci. Technol. 2011, 15, 381–392. [Google Scholar] [CrossRef]
- Bassetto, M.; Niccolai, L.; Boni, L.; Mengali, G.; Quarta, A.A.; Circi, C.; Pizzurro, S.; Pizzarelli, M.; Pellegrini, R.C.; Cavallini, E. Sliding Mode Control for Attitude Maneuvers of Helianthus Solar Sail. Acta Astronaut. 2022, 198, 100–110. [Google Scholar] [CrossRef]
- Englander, J.; Conway, B.A.; Williams, T. Automated Interplanetary Trajectory Planning. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, MN, USA, 13–16 August 2012. [Google Scholar] [CrossRef]
- Englander, J.A.; Conway, B.A.; Williams, T. Automated Mission Planning via Evolutionary Algorithms. J. Guid. Control Dyn. 2012, 35, 1878–1887. [Google Scholar] [CrossRef]
- Cappelletti, C.; Battistini, S.; Malphrus, B.K. CubeSat Handbook. from Mission Design to Operations; Elsevier Science: Amsterdam, The Netherlands, 2020; Chapter 15; pp. 287–294. ISBN 978-0-128-17884-3. [Google Scholar]
SC Label | [km] | [km] | [km] |
---|---|---|---|
10 | 0 | 0 | |
−10 | 0 | 0 | |
0 | 10 | 0 | |
0 | −10 | 0 | |
0 | 0 | 10 | |
0 | 0 | −10 |
Sequence | SC Label |
---|---|
first | |
second | |
third | |
fourth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, A.; Quarta, A.A.; Mengali, G.; Bassetto, M. Optimal On-Orbit Inspection of Satellite Formation. Remote Sens. 2022, 14, 5192. https://doi.org/10.3390/rs14205192
Caruso A, Quarta AA, Mengali G, Bassetto M. Optimal On-Orbit Inspection of Satellite Formation. Remote Sensing. 2022; 14(20):5192. https://doi.org/10.3390/rs14205192
Chicago/Turabian StyleCaruso, Andrea, Alessandro A. Quarta, Giovanni Mengali, and Marco Bassetto. 2022. "Optimal On-Orbit Inspection of Satellite Formation" Remote Sensing 14, no. 20: 5192. https://doi.org/10.3390/rs14205192
APA StyleCaruso, A., Quarta, A. A., Mengali, G., & Bassetto, M. (2022). Optimal On-Orbit Inspection of Satellite Formation. Remote Sensing, 14(20), 5192. https://doi.org/10.3390/rs14205192