Optimal On-Orbit Inspection of Satellite Formation
Abstract
1. Introduction
2. Mission Description and Mathematical Model
2.1. IS Relative Dynamics
2.2. Total Velocity Variation Evaluation
3. Trajectory Optimization and Numerical Simulations
3.1. Two-Step Optimization Procedure
3.2. Test Case and Model Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alfriend, K.T.; Vadali, S.R.; Gurfil, P.; How, J.P.; Breger, L.S. Spacecraft Formation Flying: Dynamics, Control and Navigation; Butterworth-Heinemann: Oxford, UK, 2010. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Foust, R.; Subramanian, G.P.; Chung, S.J.; Hadaegh, F.Y. Review of formation flying and constellation missions using nanosatellites. J. Spacecr. Rocket. 2016, 53, 567–578. [Google Scholar] [CrossRef]
- Capó-Lugo, P.A.; Bainum, P.M. Orbital Mechanics and Formation Flying: A Digital Control Perspective; Woodhead Publishing: Sawston, UK, 2011. [Google Scholar]
- Williams, T. Orbital inspection vehicle trajectories based on line-of-sight maneuvers. Acta Astronaut. 2002, 50, 49–53. [Google Scholar] [CrossRef]
- Horri, N.M.; Kristiansen, K.U.; Palmer, P.; Roberts, M. Relative attitude dynamics and control for a satellite inspection mission. Acta Astronaut. 2012, 71, 109–118. [Google Scholar] [CrossRef]
- Prince, E.R.; Cobb, R.G. Optimal inspector satellite guidance to quasi-hover via relative teardrop trajectories. Acta Astronaut. 2018, 153, 201–212. [Google Scholar] [CrossRef]
- Capolupo, F.; Labourdette, P. Receding-horizon trajectory planning algorithm for passively safe on-orbit inspection missions. J. Guid. Control Dyn. 2019, 42, 1023–1032. [Google Scholar] [CrossRef]
- Maestrini, M.; Di Lizia, P. Guidance strategy for autonomous inspection of unknown non-cooperative resident space objects. J. Guid. Control Dyn. 2022, 45, 1126–1136. [Google Scholar] [CrossRef]
- Caruso, A.; Mengali, G.; Quarta, A.A. Optimal formation inspection using small spacecraft. In Proceedings of the 4th IAA Conference on University Satellite Missions and CubeSat Workshop, Roma, Italy, 4–7 December 2017. [Google Scholar]
- Hill, G.W. Researches in the Lunar Theory. Am. J. Math. 1878, 1, 5. [Google Scholar] [CrossRef]
- Alfriend, K.T.; Lee, D.J.; Creamer, N.G. Optimal Servicing of Geosynchronous Satellites. J. Guid. Control Dyn. 2006, 29, 203–206. [Google Scholar] [CrossRef]
- Zhang, G.; Ye, D. Optimal short-range rendezvous using on-off constant thrust. Aerosp. Sci. Technol. 2017, 69, 209–217. [Google Scholar] [CrossRef]
- Chobotov, V.A. (Ed.) Orbital Mechanics; AIAA Education Series; AIAA: Reston, VA, USA, 2002; Chapter 7; pp. 155–159. [Google Scholar] [CrossRef]
- Yamanaka, K.; Ankersen, F. New state transition matrix for relative motion on an arbitrary elliptical orbit. J. Guid. Control Dyn. 2002, 25, 60–66. [Google Scholar] [CrossRef]
- Kim, D.Y.; Woo, B.; Park, S.Y.; Choi, K.H. Hybrid optimization for multiple-impulse reconfiguration trajectories of satellite formation flying. Adv. Space Res. 2009, 44, 1257–1269. [Google Scholar] [CrossRef]
- Simon, D. Evolutionary Optimization Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 305–308. ISBN 978-0-470-93741-9. [Google Scholar]
- Vasile, M.; Minisci, E.; Locatelli, M. Analysis of Some Global Optimization Algorithms for Space Trajectory Design. J. Spacecr. Rocket. 2010, 47, 334–344. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Mengali, G.; Quarta, A.A. Trajectory analysis and optimization of Hesperides mission. Universe 2022, 8, 364. [Google Scholar] [CrossRef]
- Bassetto, M.; Caruso, A.; Quarta, A.A.; Mengali, G. Optimal heliocentric transfers of a Sun-facing heliogyro. Aerosp. Sci. Technol. 2021, 119, 1–14. [Google Scholar] [CrossRef]
- Mengali, G.; Quarta, A.A. Fuel-optimal, power-limited rendezvous with variable thruster efficiency. J. Guid. Control Dyn. 2005, 28, 1194–1199. [Google Scholar] [CrossRef]
- Quarta, A.A.; Mengali, G. Minimum-Time Space Missions with Solar Electric Propulsion. Aerosp. Sci. Technol. 2011, 15, 381–392. [Google Scholar] [CrossRef]
- Bassetto, M.; Niccolai, L.; Boni, L.; Mengali, G.; Quarta, A.A.; Circi, C.; Pizzurro, S.; Pizzarelli, M.; Pellegrini, R.C.; Cavallini, E. Sliding Mode Control for Attitude Maneuvers of Helianthus Solar Sail. Acta Astronaut. 2022, 198, 100–110. [Google Scholar] [CrossRef]
- Englander, J.; Conway, B.A.; Williams, T. Automated Interplanetary Trajectory Planning. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, MN, USA, 13–16 August 2012. [Google Scholar] [CrossRef]
- Englander, J.A.; Conway, B.A.; Williams, T. Automated Mission Planning via Evolutionary Algorithms. J. Guid. Control Dyn. 2012, 35, 1878–1887. [Google Scholar] [CrossRef]
- Cappelletti, C.; Battistini, S.; Malphrus, B.K. CubeSat Handbook. from Mission Design to Operations; Elsevier Science: Amsterdam, The Netherlands, 2020; Chapter 15; pp. 287–294. ISBN 978-0-128-17884-3. [Google Scholar]
SC Label | [km] | [km] | [km] |
---|---|---|---|
10 | 0 | 0 | |
−10 | 0 | 0 | |
0 | 10 | 0 | |
0 | −10 | 0 | |
0 | 0 | 10 | |
0 | 0 | −10 |
Sequence | SC Label |
---|---|
first | |
second | |
third | |
fourth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, A.; Quarta, A.A.; Mengali, G.; Bassetto, M. Optimal On-Orbit Inspection of Satellite Formation. Remote Sens. 2022, 14, 5192. https://doi.org/10.3390/rs14205192
Caruso A, Quarta AA, Mengali G, Bassetto M. Optimal On-Orbit Inspection of Satellite Formation. Remote Sensing. 2022; 14(20):5192. https://doi.org/10.3390/rs14205192
Chicago/Turabian StyleCaruso, Andrea, Alessandro A. Quarta, Giovanni Mengali, and Marco Bassetto. 2022. "Optimal On-Orbit Inspection of Satellite Formation" Remote Sensing 14, no. 20: 5192. https://doi.org/10.3390/rs14205192
APA StyleCaruso, A., Quarta, A. A., Mengali, G., & Bassetto, M. (2022). Optimal On-Orbit Inspection of Satellite Formation. Remote Sensing, 14(20), 5192. https://doi.org/10.3390/rs14205192