Global GNSS-RO Electron Density in the Lower Ionosphere
Abstract
:1. Introduction
2. Data and Methods
2.1. RO Excess Phase () Measurements
2.2. Low-Rate (1 Hz) POD and High-Rate (50–100 Hz) RO Data
2.3. Ne Retrievals
2.3.1. Inversion from
2.3.2. D/E-Region
2.3.3. Lower F-Region
2.3.4. TEC and Vertical Gradient of
2.4. GNSS-RO Data
3. Results
3.1. Diurnal Variations
3.2. D-Region H′ and 𝛽 Parameters
3.3. Magnetic-Field Dependence
3.4. Seasonal Variations
3.5. E- to F-Region Transition
3.6. Solar-Cycle Variations
4. Discussions
4.1. Comparisons with Ionosonde Data at Hermanus
4.2. TEC Comparisons and Maps
4.3. Further Improvements for the Bottom-Up Inversion
5. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Algorithm Flow Diagram
Appendix B. GNSS-RO Data Availability and Statistics
LEO Satellites | Mission Lifetime | Init, Final Alt (km) | Sun-Syn (Asc ECT (1)) | Lat Coverage | Top RO Ht (km) | Tracked GNSS | Max No. ROs/day |
---|---|---|---|---|---|---|---|
CHAMP | 2001–2008 | 450,330 | varying | 90°S/N | 140 | G | ~250 |
COSMIC-1 (2) constellation | 2006–2020 | 525,810 | varying | 90°S/N | 130 | G | ~4000 |
SAC-C | 2000–2013 | 705 | 10:30 | 90°S/N | 90 | G | ~300 |
MetOp-A | 2006–2021 | 820 | 19:00 (3) | 90°S/N | 90 | G | ~720 |
MetOp-B | 2012– | 820 | 19:00 | 90°S/N | 90 | G | ~700 |
MetOp-C | 2018– | 820 | 19:00 | 90°S/N | 90 | G | ~650 |
C/NOPS | 2008–2015 | 850,350 | varying | 37°S/N | 170 | G | ~320 |
KOMPSAT-5 | 2015– | 560 | 06:00 | 90°S/N | 135 | G | ~600 |
TSX | 2009– | 520 | 18:00 | 90°S/N | 135 | G | ~320 |
TDX | 2016– | 520 | 18:00 | 90°S/N | 135 | G | ~320 |
GRACE | 2007–2017 | 475,300 | varying | 90°S/N | 140 | G | ~230 |
FY-3C (4) | 2013– | 838,850 | 22:00 | 90°S/N | 135 | G | ~530 |
FY-3D | 2017– | 838 | 13:30 | 90°S/N | 135 | G | ~600 |
FY-3E | 2021– | 830 | 05:30 | 90°S/N | - | G | - |
COSMIC-2 (5) constellation | 2019– | 715,545 | varying | 44°S/N | 90–130 | G,R | ~6500 |
PAZ | 2018– | 520 | 18:00 | 90°S/N | 135 | G | ~320 |
Sentinel-6A | 2020– | 1336 | varying | 90°S/N | 80 | G,R | ~830 |
Spire (6) Constellation | 2018– | varying | varying | 90°S/N | 170–400 | G,R,E,J | ~4000 (7) ~12,000 (8) |
Other (9) Constellations | 2020– | varying | varying | varying | varying | varying | varying |
References
- Eccles, J.V.; Hunsucker, R.D.; Rice, D.; Sojka, J.J. Space weather effects on midlatitude HF propagation paths: Observations and a data-driven D region model. Space Weather 2005, 3, S01002. [Google Scholar] [CrossRef] [Green Version]
- Taylor, W.L. VLF attenuation for east-west and west-east daytime propagation using atmospherics. J. Geophys. Res. 1960, 65, 1933–1938. [Google Scholar] [CrossRef]
- Forbes, J.M. The equatorial electrojet. Rev. Geophys. 1981, 19, 469–504. [Google Scholar] [CrossRef]
- Hays, P.B.; Roble, R.G. A quasi-static model of global atmospheric electricity 1: The lower atmosphere. J. Geophys. Res. 1979, 84, 3291–3305. [Google Scholar] [CrossRef]
- Harrison, R.G. The Carnegie curve. Surv. Geophys. 2013, 34, 209–232. [Google Scholar] [CrossRef] [Green Version]
- Rishbeth, H. The ionospheric E-layer and F-layer dynamos—A tutorial review. J. Atmos. Sol.-Terr. Phys. 1997, 59, 1873–1880. [Google Scholar] [CrossRef]
- Heelis, R.A. Electrodynamics in the low and middle latitude ionosphere: A tutorial. J. Atmos. Sol.-Terr. Phys. 2004, 66, 825–838. [Google Scholar] [CrossRef]
- Kelly, M.C. E-region dynamo theory and the daytime equatorial electrojet. In The Earth’s Ionosphere; Academia Press: New York, NY, USA, 2009; pp. 89–99. [Google Scholar]
- Rycroft, M.J.; Israelsson, S.; Price, C. The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Sol.-Terr. Phys. 2000, 62, 1563–1576. [Google Scholar] [CrossRef] [Green Version]
- Aplin, K.L.; Harrison, R.G.; Rycroft, M.J. Investigating Earth’s atmospheric electricity: A role model for planetary studies. Space Sci. Rev. 2008, 137, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Lucas, G.M.; Baumgaertner, A.J.G.; Thayer, J.P. A global electric circuit model within a community climate model. J. Geophys. Res. Atmos. 2015, 120, 12054–12066. [Google Scholar] [CrossRef]
- Nicolet, M.; Aikin, A.C. The formation of the D region of the ionosphere. J. Geophys. Res. 1960, 65, 1469–1483. [Google Scholar] [CrossRef]
- Reid, G.C. The production of water-cluster positive ions in the quiet daytime D Region. Planet. Space Sci. 1977, 25, 275–290. [Google Scholar] [CrossRef]
- Brasseur, G.; Solomon, S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed.; Springer: Dordrecht, The Netherlands, 2005; p. 646. [Google Scholar]
- Mathews, J.D. Sporadic E: Current views and recent progress. J. Atmos. Sol.-Terr. Phys. 1998, 60, 413–435. [Google Scholar] [CrossRef]
- Whitehead, J.D. Formation of the sporadic E layer in the temperate zones. Nature 1960, 188, 567. [Google Scholar] [CrossRef]
- Haldoupis, C. A tutorial review on sporadic E layers. In Aeronomy of the Earth’s Atmosphere and Ionosphere. IAGA Special Sopron Book Series; Springer: Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Wu, D.L.; Ao, C.O.; Hajj, G.A.; de La Torre Juarez, M.; Mannucci, A.J. Sporadic E morphology from GPS-CHAMP radio occultation. J. Geophys. Res. 2005, 110, A01306. [Google Scholar] [CrossRef] [Green Version]
- Arras, C.; Wickert, J.; Jacobi, C.; Heise, S.; Beyerle, G.; Schmidt, T. A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys. Res. Lett. 2008, 35, L14809. [Google Scholar] [CrossRef]
- Chu, Y.H.; Wang, C.Y.; Wu, K.H.; Chen, K.T.; Tzeng, K.J.; Su, C.L.; Feng, W.; Plane, J.M.C. Morphology of sporadic E layer retrieved from COSMIC GPS radio occultation measurements: Wind shear theory examination. J. Geophys. Res. Space Phys. 2014, 119, 2117–2136. [Google Scholar] [CrossRef]
- Yuan, T.; Wang, J.; Cai, X.; Sojka, J.; Rice, D.; Oberheide, J.; Criddle, N. Investigation of the seasonal and local time variations of the high-altitude sporadic Na layer (Nas) formation and the associated midlatitude descending E layer (Es) in lower E region. J. Geophys. Res. Space Phys. 2014, 119, 5985–5999. [Google Scholar] [CrossRef]
- Hoppe, U.P.; Eriksen, T.; Thrane, E.V.; Blix, T.A.; Fiedler, J.; Lübken, F.J. Observations in the polar middle atmosphere by rocket-borne Rayleigh lidar: First results. Earth Planets Space 1999, 51, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Rusch, D.; Gerard, G.-C.; Solomon, S.; Crutzen, P.; Reid, G. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. 1. Odd nitrogen. Planet. Space Sci. 1981, 29, 767–774. [Google Scholar] [CrossRef]
- Solomon, S.; Rusch, D.W.; Gerard, J.-C.; Reid, G.C.; Crutzen, P.J. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere, II, Odd hydrogen. Planet. Space Sci. 1981, 29, 885–892. [Google Scholar] [CrossRef]
- Verronen, P.T.; Rodger, C.J.; Clilverd, M.A.; Wang, S. First evidence of mesospheric hydroxyl response to electron precipitation from the radiation belts. J. Geophys. Res. 2011, 116, D07307. [Google Scholar] [CrossRef]
- Andersson, M.E.; Verronen, P.T.; Rodger, C.J.; Seppälä, A. Missing driver in the Sun-Earth connection from energetic electron precipitation impacts mesospheric ozone. Nat. Commun. 2014, 5, 5197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siskind, D.E.; Nedoluha, G.E.; Randall, C.E.; Fromm, M.; Russell, J.M., III. An assessment of Southern Hemisphere stratospheric NOx enhancements due to transport from the upper atmosphere. Geophys. Res. Lett. 2000, 27, 329–332. [Google Scholar] [CrossRef]
- Randall, C.E.; Harvey, V.L.; Singleton, C.S.; Bailey, S.M.; Bernath, P.F.; Codrescu, M.; Nakajima, H.; Russell, J.M. Energetic particle precipitation effects on the Southern Hemi-sphere stratosphere in 1992–2005. J. Geophys. Res.-Atmos. 2007, 112, D08308. [Google Scholar] [CrossRef]
- Friedrich, M.; Pock, C.; Torkar, K. FIRI-2018, an updated empirical model of the lower ionosphere. J. Geophys. Res. Space Phys. 2018, 123, 6737–6751. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Wu, D.L. New global electron density observations from GPS-RO in the D- and E-Region ionosphere. J. Atmos. Sol.-Terr. Phys. 2018, 171, 36–59. [Google Scholar] [CrossRef]
- Swarnalingam, N.; Wu, D.L.; Themens, D.R. Comparison and evaluation of a bottom-up GPS-RO electron density retrieval for D and E regions using radar observations and models. J. Atmos. Sol.-Terr. Phys. 2020, 207, 105333. [Google Scholar] [CrossRef]
- Schreiner, W.S.; Sokolovskiy, S.V.; Rocken, C.; Hunt, D.C. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci. 1999, 34, 949–966. [Google Scholar] [CrossRef]
- Chu, Y.-H.; Wu, K.-H.; Su, C.-L. A new aspect of ionospheric E region electron density morphology. J. Geophys. Res. 2009, 114, A12314. [Google Scholar] [CrossRef]
- Nicolls, M.J.; Rodrigues, F.S.; Bust, G.S.; Chau, J.L. Estimating E region density profiles from radio occultation measurements assisted by IDA4D. J. Geophys. Res. 2009, 114, A10316. [Google Scholar] [CrossRef]
- Yue, X.; Schreiner, W.S.; Lei, J.; Sokolovskiy, S.V.; Rocken, C.; Hunt, D.C.; Kuo, Y.H. Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann. Geophys. 2010, 28, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Pedatella, N.M.; Yue, X.; Schreiner, W.S. An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles. J. Geophys. Res. Space Phys. 2015, 120, 8942–8953. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Schreiner, W.S.; Lin, Y.-C.; Rocken, C.; Kuo, Y.-H.; Zhao, B. Data assimilation retrieval of electron density profiles from radio occultation measurements. J. Geophys. Res. 2011, 116, A03317. [Google Scholar] [CrossRef] [Green Version]
- Nicolls, M.J.; Rodrigues, F.S.; Bust, G.S. Global observations of E region plasma density morphology and variability. J. Geophys. Res. 2012, 117, A01305. [Google Scholar] [CrossRef] [Green Version]
- Syndergaard, S. On the ionospheric calibration in GPS radio occultation measurements. Radio Sci. 2000, 35, 865–883. [Google Scholar] [CrossRef]
- Hoque, M.M.; Jakowski, N. Ionospheric bending correction for GNSS radio occultation signals. Radio Sci. 2011, 46, RS0D06. [Google Scholar] [CrossRef]
- Schreiner, W.; Sokolovskiy, S.; Hunt, D.; Rocken, C.; Kuo, Y.-H. Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC. Atmos. Meas. Tech. 2011, 4, 2255–2272. [Google Scholar] [CrossRef] [Green Version]
- Danzer, J.; Healy, S.B.; Culverwell, I.D. A simulation study with a new residual ionospheric error model for GPS radio occultation climatologies. Atmos. Meas. Tech. 2015, 8, 3395–3404. [Google Scholar] [CrossRef] [Green Version]
- Healy, S.B.; Culverwell, I.D. A modification to the standard ionospheric correction method used in GPS radio occultation. Atmos. Meas. Tech. 2015, 8, 3385–3393. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding-Theory and Practice; World Scientific: Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 2000. [Google Scholar] [CrossRef] [Green Version]
- Pedatella, N.M.; Zakharenkova, I.; Braun, J.J.; Cherniak, I.; Hunt, D.; Schreiner, W.S.; Straus, P.R.; Valant-Weiss, B.L.; Vanhove, T.; Weiss, J.; et al. Processing and validation of FORMOSAT-7/COSMIC-2 GPS total electron content observations. Radio Sci. 2021, 56, e2021RS007267. [Google Scholar] [CrossRef]
- Wu, D.L. Ionospheric S4 Scintillations from GNSS Radio Occultation (RO) at Slant Path. Remote Sens. 2020, 2, 2373. [Google Scholar] [CrossRef]
- Fang, T.W.; Richmond, A.D.; Liu, J.Y.; Maute, A. Wind dynamo effects on ground magnetic perturbations and vertical drifts. J. Geophys. Res. 2008, 113, A11313. [Google Scholar] [CrossRef] [Green Version]
- Mathews, J.D.; Breakall, J.K.; Ganguly, S. The measurement of diurnal variations of electron concentration in the 60–100 km ionosphere at Arecibo. J. Atmos. Terr. Phys. 1982, 44, 441. [Google Scholar] [CrossRef]
- Aikin, A.C.; Kane, J.A.; Troim, J. Some results of rocket experiments in the quiet D region. J. Geophys. Res. 1964, 69, 4621–4628. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.G. Langmuir probes in the ionosphere. In Small Rocket Instrumentation Techniques; Maeda, K., Ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1969; pp. 1–15. [Google Scholar]
- Gordon, W.E. Arecibo ionospheric observatory: Studies of the upper atmosphere and planets are made with the aid of a huge reflector in Puerto Rico. Science 1964, 146, 26–30. [Google Scholar] [CrossRef]
- Wait, J.R.; Spies, K.P. Characteristics of Earth-Ionosphere Waveguide for VLF Radio Waves; U.S. Department of Commerce, National Bureau of Standards: Colo, IA, USA, 1964. [Google Scholar]
- Sechrist, C.F., Jr. Comparisons of techniques for measurement of D region electron densities. Radio Sci. 1974, 9, 137. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; Helliwell, R.A. The Stanford University ELF/VLF radiometer project: Measurement of the global distribution of ELF/VLF electromagnetic noise. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Wakefield, MA, USA, 20–22 August 1985. [Google Scholar]
- Cummer, S.A.; Inan, U.S.; Bell, T.F. Ionospheric D region remote sensing using VLF radio atmospherics. Radio Sci. 1998, 33, 1781–1792. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.B.; Said, R.K.; Paschal, E.W.; McCormick, J.C.; Gross, N.C.; Thompson, L.; Higginson-Rollins, M.; Inan, U.S.; Chang, J. Broadband longwave radio remote sensing instrumentation. Rev. Sci. Instrum. 2018, 89, 94501. [Google Scholar] [CrossRef]
- Thomson, N.R. Experimental daytime VLF ionospheric parameters. J. Atmos. Terr. Phys. 1993, 55, 173–184. [Google Scholar] [CrossRef]
- McRae, W.M.; Thomson, N.R. VLF phase and amplitude: Daytime ionospheric parameters. J. Atmos. Sol.-Terr. Phys. 2000, 62, 609–618. [Google Scholar] [CrossRef]
- Han, F.; Cummer, S.A.; Li, J.; Lu, G. Daytime ionospheric D region sharpness derived from VLF radio atmospherics. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Cummer, S.A. Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales. J. Geophys. Res. 2010, 115, A09323. [Google Scholar] [CrossRef]
- Maurya, A.K.; Veenadhari, B.; Singh, R.; Kumar, S.; Cohen, M.B.; Selvakumaran, R.; Inan, U.S. Nighttime D region electron density measurements from ELF-VLF tweek radio atmospherics recorded at low latitudes. J. Geophys. Res. 2012, 117, A11308. [Google Scholar] [CrossRef] [Green Version]
- Gross, N.C.; Cohen, M.B. VLF remote sensing of the D region ionosphere using neural networks. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027135. [Google Scholar] [CrossRef]
- Xu, W.; Marshall, R.A.; Bortnik, J.; Bonnell, J.W. An electron density model of the D- and E-region ionosphere for transionospheric VLF propagation. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029288. [Google Scholar] [CrossRef]
- McCormick, J.C.; Cohen, M.B. A new four-parameter D-region ionospheric model: Inferences from lightning-emitted VLF signals. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029849. [Google Scholar] [CrossRef]
- Garcia, R.R.; Solomon, S.; Avery, S.K.; Reid, G.C. Transport of nitric oxide and the D region winter anomaly. J. Geophys. Res. 1987, 92, 977–994. [Google Scholar] [CrossRef]
- Verronen, P.T.; Andersson, M.E.; Marsh, D.R.; Kovacs, T.; Plane, J.M.C. WACCM-D—Whole Atmosphere Community Climate Model with D-region ion chemistry. J. Adv. Model. Earth Syst. 2016, 8, 954–975. [Google Scholar] [CrossRef]
- Shao, X.-M.; Lay, E.H.; Jacobson, A.R. Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm. Nat. Geosci. 2013, 6, 29–33. [Google Scholar] [CrossRef]
- Pasko, V.P.; Inan, U.S.; Bell, T.F.; Taranenko, Y.N. Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res. 1997, 102, 4529. [Google Scholar] [CrossRef]
- Cheng, Z.; Cummer, S.A. Broadband VLF measurements of lightning-induced ionospheric perturbations. Geophys. Res. Lett. 2005, 32, L08804. [Google Scholar] [CrossRef] [Green Version]
- Liou, K.; Newell, P.T.; Meng, I.C. Seasonal effects on auroral particle acceleration and precipitation. J. Geophys. Res. 2001, 106, 2643. [Google Scholar] [CrossRef]
- Wiltberger, M.; Weigel, R.S.; Lotko, W.; Fedder, J.A. Modeling seasonal variations of auroral particle precipitation in a global-scale magnetosphere-ionosphere simulation. J. Geophys. Res. 2009, 114, A01204. [Google Scholar] [CrossRef] [Green Version]
- Silber, I.; Price, C.; Rodger, C.J. Semi-annual oscillation (SAO) of the nighttime ionospheric D-region as detected through ground-based VLF receivers. Atmos. Chem. Phys. 2016, 16, 3279–3288. [Google Scholar] [CrossRef] [Green Version]
- Siskind, D.E.; Zawdie, K.; Sassi, F.; Drob, D.; Friedrich, M. Global modeling of the low and mid latitude ionospheric D and lower E regions and implications for HF radio wave absorption. Space Weather 2017, 15, 115–130. [Google Scholar] [CrossRef]
- Appleton, E.V.; Pigott, W.R. Ionospheric absorption measurements during a sunspot cycle. J. Atmos. Terr. Phys. 1954, 5, 141–172. [Google Scholar] [CrossRef]
- Kurschner, D.; Jacobi, C. Quasi-biennial and decadal variability obtained from long-term measurements of nighttime radio wave reflection heights over central Europe. Adv. Space Res. 2003, 32, 1701–1706. [Google Scholar] [CrossRef]
- Jacobi, C.; Kürschner, D. Long-term Measurements of Nighttime LF Radio Wave Reflection Heights over Central Europe. Adv. Radio Sci. 2005, 3, 427–430. [Google Scholar] [CrossRef] [Green Version]
- Galkin, I.A.; Reinisch, B.W. The new ARTIST 5 for all Digisondes. Ionosonde Netw. Advis. Group Bull. 2008, 69, 1–8. [Google Scholar]
- McNamara, L.F. Model starting heights for N (h) analyses of ionograms. J. Atmos. Terr. Phys. 1979, 41, 543–547. [Google Scholar] [CrossRef]
- Titheridge, J.E. Starting models for the real height analysis of ionograms. J. Atmos. Terr. Phys. 1986, 48, 435–446. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Xueqin, H. Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottomside ionograms. Radio Sci. 1983, 18, 477–492. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Weygand, J.M.; Wing, S. Temporal and spatial development ofTEC enhancements during substorms. J. Geophys. Res. Space Phys. 2020, 125, e2019JA026985. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.M.; Lindqwister, U.J.; Runge, T.F. A global mapping technique for GPS derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Brack, A.; Männel, B.; Wickert, J.; Schuh, H. Operational multi-GNSS global ionosphere maps at GFZ derived from uncombined code and phase observations. Radio Sci. 2021, 56, e2021RS007337. [Google Scholar] [CrossRef]
- Alizadeh, M.M.; Schuh, H.; Todorova, S.; Schmidt, M. Global ionosphere maps of VTEC from GNSS, satellite altimetry, and FORMOSAT-3/COSMIC data. J. Geod. 2011, 85, 975–987. [Google Scholar] [CrossRef]
- Tsai, L.C.; Tsai, W.H.; Schreiner, W.S.; Berkey, F.T.; Liu, J.Y. Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data. Earth Planet Space 2001, 53, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Hajj, G.A.; Ao, C.O.; Iijima, B.A.; Kuang, D.; Kursinski, E.R.; Mannucci, A.J.; Meehan, T.K.; Romans, L.J.; Juarez, M.D.; Yunck, T.P. CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res. 2004, 109, D06109. [Google Scholar] [CrossRef]
- BRE. Integrated GPS occultation receiver IGOR. In Data Sheet; Broadreach Engineering: Tempe, AZ, USA, 2003. [Google Scholar]
- Esterhuizen, S.; Franklin, G.; Hurst, K.; Mannucci, A.; Meehan, T.; Webb, F.; Young, L. TriG-A GNSS Precise Orbit and Radio Occultation Space Receiver. In Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, GA, USA, 22–25 September 2009; pp. 1442–1446. [Google Scholar]
- Angling, M.J.; Nogués-Correig, O.; Nguyen, V.; Vetra-Carvalho, S.; Bocquet, F.X.; Nordstrom, K.; Melville, S.E.; Savastano, G.; Mohanty, S.; Masters, D. Sensing the ionosphere with the Spire radio occultation constellation. J. Space Weather Space Clim. 2021, 11, 56. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.L.; Emmons, D.J.; Swarnalingam, N. Global GNSS-RO Electron Density in the Lower Ionosphere. Remote Sens. 2022, 14, 1577. https://doi.org/10.3390/rs14071577
Wu DL, Emmons DJ, Swarnalingam N. Global GNSS-RO Electron Density in the Lower Ionosphere. Remote Sensing. 2022; 14(7):1577. https://doi.org/10.3390/rs14071577
Chicago/Turabian StyleWu, Dong L., Daniel J. Emmons, and Nimalan Swarnalingam. 2022. "Global GNSS-RO Electron Density in the Lower Ionosphere" Remote Sensing 14, no. 7: 1577. https://doi.org/10.3390/rs14071577
APA StyleWu, D. L., Emmons, D. J., & Swarnalingam, N. (2022). Global GNSS-RO Electron Density in the Lower Ionosphere. Remote Sensing, 14(7), 1577. https://doi.org/10.3390/rs14071577