Three-Dimensional Simulation Model for Synergistically Simulating Urban Horizontal Expansion and Vertical Growth
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Horizontal Simulation Using FLUS Model
3.2. Building Heights Prediction Using RF
3.3. Synergistic Simulation
3.4. Model Validation
3.4.1. Horizontal Simulation Validation
3.4.2. Height Prediction Validation
3.5. Urban 3D Expansion Analysis
4. Results
4.1. Implementation and Results
4.2. Future 3D Simulation
5. Discussion
5.1. Contribution Weights Analysis of Spatial Factors
5.2. D Expansion Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Chen, G.; Liu, X.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions. Ann. Am. Assoc. Geogr. 2017, 107, 1040–1059. [Google Scholar] [CrossRef]
- Rao, Y.; Zhou, J.; Zhou, M.; He, Q.; Wu, J. Comparisons of three-dimensional urban forms in different urban expansion types: 58 sample cities in China. Growth Chang. 2020, 51, 1766–1783. [Google Scholar] [CrossRef]
- Koziatek, O.; Dragićević, S. iCity 3D: A geosimualtion method and tool for three-dimensional modeling of vertical urban development. Landsc. Urban Plan. 2017, 167, 356–367. [Google Scholar] [CrossRef]
- Yeh, A.G.-O.; Li, X. Economic development and agricultural land loss in the Pearl River Delta, China. Habitat Int. 1999, 23, 373–390. [Google Scholar] [CrossRef]
- Li, B.; Liu, Z.; Nan, Y.; Li, S.; Yang, Y. Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia. Sustainability 2018, 10, 2637. [Google Scholar] [CrossRef] [Green Version]
- Bürgi, M.; Hersperger, A.M.; Schneeberger, N. Driving forces of landscape change—Current and new directions. Landsc. Ecol. 2004, 19, 857–868. [Google Scholar] [CrossRef]
- Su, S.; Jiang, Z.; Zhang, Q.; Zhang, Y. Transformation of agricultural landscapes under rapid urbanization: A threat to sustainability in Hang-Jia-Hu region, China. Appl. Geogr. 2011, 31, 439–449. [Google Scholar] [CrossRef]
- Frolking, S.; Milliman, T.; Seto, K.C.; Friedl, M.A. A global fingerprint of macro-scale changes in urban structure from 1999 to 2009. Environ. Res. Lett. 2013, 8, 024004. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Zhang, Z.; Lu, D.; Xiang, B. Spatiotemporal dynamics of impervious surface areas across China during the early 21st century. Chin. Sci. Bull. 2013, 58, 1691–1701. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, X. An extended cellular automaton using case-based reasoning for simulating urban development in a large complex region. Int. J. Geogr. Inf. Sci. 2006, 20, 1109–1136. [Google Scholar] [CrossRef]
- Wu, F.; Webster, C.J. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ. Plan. B Plan. Des. 1998, 25, 103–126. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Liu, L.; He, J.; Ai, B. A bottom-up approach to discover transition rules of cellular automata using ant intelligence. Int. J. Geogr. Inf. Sci. 2008, 22, 1247–1269. [Google Scholar] [CrossRef]
- Li, X.; Yang, Q.; Liu, X. Discovering and evaluating urban signatures for simulating compact development using cellular automata. Landsc. Urban Plan. 2008, 86, 177–186. [Google Scholar] [CrossRef]
- Shirley, L.J.; Battaglia, L.L. Projecting Fine Resolution Land-Cover Dynamics for a Rapidly Changing Terrestrial–Aquatic Transition in Terrebonne Basin, Louisiana, U.S.A. J. Coast. Res. 2008, 2008, 1545–1554. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.-O. Data mining of cellular automata’s transition rules. Int. J. Geogr. Inf. Sci. 2004, 18, 723–744. [Google Scholar] [CrossRef]
- Rienow, A.; Stenger, D.; Menz, G. Sprawling cities and shrinking regions—Forecasting urban growth in the RUHR for 2025 by coupling cells and agents. Erdkunde 2014, 68, 85–107. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Ai, B. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. Int. J. Geogr. Inf. Sci. 2014, 28, 234–255. [Google Scholar] [CrossRef]
- Wu, F. Calibration of stochastic cellular automata: The application to rural-urban land conversions. Int. J. Geogr. Inf. Sci. 2002, 16, 795–818. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G. Calibration of cellular automata by using neural networks for the simulation of complex urban systems. Environ. Plan. A 2001, 33, 1445–1462. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Yao, Y.; Hong, Y.; Zhang, J. Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques. Int. J. Geogr. Inf. Sci. 2018, 32, 2076–2097. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Wu, X.; Yao, Y.; Wu, X.; Chen, Y. Multiple intra-urban land use simulations and driving factors analysis: A case study in Huicheng, China. GISci. Remote Sens. 2019, 56, 282–308. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Benguigui, L.; Czamanski, D.; Roth, R. Modeling Cities in 3D: A Cellular Automaton Approach. Environ. Plan. B Plan. Des. 2008, 35, 413–430. [Google Scholar] [CrossRef]
- Qin, J.; Fang, C.; Wang, X. The Three-dimensional Urban Growth Simulating Based on Cellular Automata. J. Geo-Inf. Sci. 2013, 15, 662–671. [Google Scholar] [CrossRef]
- Lin, J.; Huang, B.; Chen, M.; Huang, Z. Modeling urban vertical growth using cellular automata—Guangzhou as a case study. Appl. Geogr. 2014, 53, 172–186. [Google Scholar] [CrossRef]
- He, Q.; Liu, Y.; Zeng, C.; Yin, C.; Tan, R. Simultaneously simulate vertical and horizontal expansions of a future urban landscape: A case study in Wuhan, Central China. Int. J. Geogr. Inf. Sci. 2017, 31, 1907–1928. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, J.; Hong, Y.; Liang, H.; He, J. Mapping fine-scale urban housing prices by fusing remotely sensed imagery and social media data. Trans. GIS 2018, 22, 561–581. [Google Scholar] [CrossRef]
- Qin, J.; Fang, C.; Fang, Y.; Li, G.; Wang, S. Evaluation of three-dimensional urban expansion: A case study of Yangzhou City, Jiangsu Province, China. Chin. Geogr. Sci. 2015, 25, 224–236. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, X.; Li, X.; Liu, P.; Hong, Y.; Zhang, Y.; Mai, K. Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. Int. J. Geogr. Inf. Sci. 2017, 31, 2452–2479. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Lieske, S. Modeling and Predicting Vertical Urban Growth: An Exploratory Review. GeoComputation. 2019. Available online: https://auckland.figshare.com/articles/conference_contribution/Detecting_Modeling_and_Predicting_Vertical_Urban_Growth_An_exploratory_review/9863141/2 (accessed on 14 February 2022). [CrossRef]
- Lin, J.; Wan, H.; Cui, Y. Analyzing the spatial factors related to the distributions of building heights in urban areas: A comparative case study in Guangzhou and Shenzhen. Sustain. Cities Soc. 2020, 52, 101854. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Liang, X.; Zhang, H.; Li, X. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Chen, G.; Leng, J.; Wen, Y.; Chen, G. Coupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones. Int. J. Geogr. Inf. Sci. 2020, 34, 1930–1952. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Ai, B.; Li, X.; Tian, G.; Chen, Y.; Li, S. Simulating urban dynamics in China using a gradient cellular automata model based on S-shaped curve evolution characteristics. Int. J. Geogr. Inf. Sci. 2018, 32, 73–101. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Liang, X.; Chen, G. Multi-scenarios Simulation of Urban Growth Boundaries in Pearl River Delta Based on FLUS-UGB. J. Geo-Inf. Sci. 2018, 20, 532–542. [Google Scholar]
- Zhao, L.; Liu, X.; Liu, P.; Chen, G.; He, J. Urban Expansion Simulation and Early Warning based on Geospatial Partition and FLUS Model. J. Geo-Inf. Sci. 2020, 22, 517–530. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Wang, X.; Dong, J.; Wei, B.; Duan, H.; Jiao, J.; Xie, Y. Three-Dimensional Urban Expansion Analysis of Valley-Type Cities: A Case Study of Chengguan District, Lanzhou, China. Sustainability 2019, 11, 5663. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G.; Cornell, J.D.; Hall, C.A.S. Modeling the spatial pattern of land-use change with GEOMOD2: Application and validation for Costa Rica. Agric. Ecosyst. Environ. 2001, 85, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Jr, R.G.P.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Shi, X.; Wu, S.; Liu, T. Simulating complex urban development using kernel-based non-linear cellular automata. Ecol. Model. 2008, 211, 169–181. [Google Scholar] [CrossRef]
- Jr, R.G.P.; Walker, R.; Yao-Kumah, R.; Arima, E.; Aldrich, S.; Caldas, M.; Vergara, D. Accuracy Assessment for a Simulation Model of Amazonian Deforestation. Ann. Assoc. Am. Geogr. 2007, 97, 677–695. [Google Scholar] [CrossRef]
- Hu, Z.; Du, P.; Guo, D. Analysis of Urban Expansion and Driving Forces in Xuzhou City Based on Remote Sensing. J. China Univ. Min. Technol. 2007, 17, 267–271. [Google Scholar] [CrossRef]
- Fan, F.; Wang, Y.; Qiu, M.; Wang, Z. Evaluating the Temporal and Spatial Urban Expansion Patterns of Guangzhou from 1979 to 2003 by Remote Sensing and GIS Methods. Int. J. Geogr. Inf. Sci. 2009, 23, 1371–1388. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Chen, H.; Xu, H. A Study on the Intensity and Spatial Pattern of Urban Residential Growth in Shanghai from 1947 to 2002. J. Nat. Resour. 2005, 20, 400–406. [Google Scholar]
Category | Data | Year | Resolution | Data Resource |
---|---|---|---|---|
Basic geographic information data | Administrative boundaries, city center, district centers, river, lake, ocean, railway stations, subway stations | 2015 | National Catalogue Service for Geographic Information | |
Parks and green spaces | 2020 | OpenStreetMap | ||
DEM | 2000–2013 | 30 m | ASTER GDEM V3 | |
Slope | 30 m | Calculated from DEM | ||
Socioeconomic data | GDP | 2015 | 1 km | Resource and Environment Science and Data Center, Chinese Academy of Sciences |
Population | 2015 | 100 m | World pop | |
Nighttime light intensity | 2015 | 15″ (450 m) | NOAA/NGDC—EOG | |
Housing prices | 2017 | 5 m | [27] | |
Climate and environmental data | PM2.5 | 2014–2016 | 0.01° (1.11 km) | SEDAC |
Land use data | Fine cadastral land use | 2009, 2014 | Bureau of Land and Resources of Shenzhen | |
Building data | Building heights | 2016 | Gaode Map API | |
Points of interest | Shopping malls, hospitals, entertainment facilities, supermarkets, restaurants, parks, bus stations, factories | 2016 | Gaode Map API | |
All levels of road data | Highway, railway, national road, provincial road, urban road network | 2020 | OpenStreetMap |
2014 | N | P | C | R | I | |
---|---|---|---|---|---|---|
2009 | ||||||
N | 1368.5030 | 14.5539 | 5.5249 | 10.6865 | 16.7462 | |
P | 6.4993 | 85.7941 | 0.0000 | 0.0183 | 0.0152 | |
C | 0.3568 | 0.0137 | 26.0410 | 0.0005 | 0.0000 | |
R | 0.2559 | 0.0005 | 0.0000 | 187.8887 | 0.0007 | |
I | 3.7533 | 0.2685 | 0.0106 | 0.0047 | 266.4813 |
Land Use Types | 2024 | 2034 |
---|---|---|
Non-construction land (N) | 1313.7372 | 1253.2788 |
Public management services land (P) | 110.6550 | 121.6656 |
Commercial land (C) | 40.1922 | 48.8844 |
Residential land (R) | 219.6963 | 238.7700 |
Industrial land (I) | 309.0222 | 330.7032 |
Urban Land Types | 2024 | 2034 |
---|---|---|
Public management services land (P) | 181.2678 | 199.3047 |
Commercial land (C) | 101.7893 | 123.8028 |
Residential land (R) | 520.0457 | 565.1953 |
Industrial land (I) | 538.8655 | 576.6723 |
Spatial Factors | Contribution Weights |
---|---|
DEM | 5.09% |
Slope | 4.93% |
Distance to parks and green spaces | 6.21% |
Distance to waters | 5.46% |
Housing prices | 6.15% |
Density of entertainment facilities | 6.41% |
Density of supermarkets | 6.17% |
Density of restaurants | 6.39% |
Density of factories | 3.55% |
Density of shopping malls | 6.09% |
Population density | 5.52% |
Density of hospitals | 6.44% |
Nighttime light intensity | 5.26% |
Distance to city center | 7.35% |
Distance to district centers | 6.59% |
Distance to urban roads | 6.12% |
Density of bus stations | 6.30% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Liu, X.; Xu, X.; Liu, C.; Chen, K. Three-Dimensional Simulation Model for Synergistically Simulating Urban Horizontal Expansion and Vertical Growth. Remote Sens. 2022, 14, 1503. https://doi.org/10.3390/rs14061503
Zhao L, Liu X, Xu X, Liu C, Chen K. Three-Dimensional Simulation Model for Synergistically Simulating Urban Horizontal Expansion and Vertical Growth. Remote Sensing. 2022; 14(6):1503. https://doi.org/10.3390/rs14061503
Chicago/Turabian StyleZhao, Linfeng, Xiaoping Liu, Xiaocong Xu, Cuiming Liu, and Keyun Chen. 2022. "Three-Dimensional Simulation Model for Synergistically Simulating Urban Horizontal Expansion and Vertical Growth" Remote Sensing 14, no. 6: 1503. https://doi.org/10.3390/rs14061503
APA StyleZhao, L., Liu, X., Xu, X., Liu, C., & Chen, K. (2022). Three-Dimensional Simulation Model for Synergistically Simulating Urban Horizontal Expansion and Vertical Growth. Remote Sensing, 14(6), 1503. https://doi.org/10.3390/rs14061503