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Abstract: Quantification of the spatial pattern of urban heat island intensities across the transnational
urban agglomeration of the Tumen River is important for the promotion of sustainable regional
development. This study employed Landsat images and MODIS LST data obtained in 2016 to
determine the intensity of urban heat islands in this region, enabling direct comparison of data from
the sub-regions of China, Democratic People’s Republic of Korea (DPRK), and Russia. The average
urban heat island intensity for the region was found to be 1.0 ◦C, with the highest intensity of 3.0 ◦C
occurring during the summer time. The intensity of urban heat islands on the Chinese side was
higher than on the other two sides, with city size, socio-economic development levels and vegetation
coverage significantly affect their intensity. Urban heat island effects in Chinese cities in the region
contribute increases in maximum summer temperatures and the number of high-temperature days
that pose a threat to the health of their residents. The factors that influence urban heat island
intensities in these cities and the impacts of urban heat island effects on the quality of life and health
of residents are discussed. Therefore, it is desirable to reduce the impact of urban heat island effects
on cities in the region by increasing the area of green spaces they contain, as well as controlling their
size and population.

Keywords: transnational urban agglomeration of Tumen River; China; Democratic People’s Republic
of Korea; Russia; urban heat island intensity; land surface temperature

1. Introduction

Urban temperatures are significantly higher than those in the rural areas [1–3], with Urban Heat
Island Intensity (UHII) values [4] used to quantify these temperature differences [1]. These urban
heat island effects can directly (or indirectly) affect local climates [5], energy use [6,7], air quality [8,9],
the physical and chemical properties of soil [10], land surface phenology [11,12], biodiversity [13] and
natural/socio-economic factors that affect human health and comfort levels [6,14–16]. Therefore, it is
necessary to quantify the pattern of UHII so that their effect on urban environments can be alleviated
to increase the sustainability of cities and improve living conditions of their residents.

The transnational urban agglomeration of the Tumen River (TUATR) in northeastern Asia is
located across the region of China, Democratic People’s Republic of Korea (DPRK) and Russia, with this
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geographical area including the major port cities of Vladivostok, Luojin, and Chongjin [9,17] (Figure 1).
This region represents an important part of the “Chinese-Russian-DPRK-Mongolia” international
channel as a key component of the Chinese “The Belt and Road” strategy [17], which has also been
identified as a key region for the development of Russia’s Far East region and Luoxian Economic Zone
in DPRK. Therefore, the sustainable development of regional cities in this area is of great importance to
three countries [18–20]. The rapid urbanization of this region has resulted in an increase in the UHII in
this area [21], with global warming predicted to increase the temperature of this region further [22,23].
Therefore, quantifying the spatial pattern of UHII across the TUATR is important to promote the
sustainable development of regional cities in this area.
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Figure 1. The transnational urban agglomeration of the Tumen River (TUATR).

Recent reports have quantified the UHII present in the TUATR. Gao et al. [21] analyzed the spatial
pattern of UHII in Yanji City on the Chinese side of the TUATR in 2004, however, a study of UHII
in the entire region is currently lacking. The main reason for this lack of information is the fact that
UHII data has previously been sourced from meteorological stations, with significant differences in
the number, spatial distribution, and availability of meteorological stations across the region of China,
DPRK and Russia. This lack of coverage makes it difficult to effectively quantify UHII across the whole
TUATR in a timely and effective manner.
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Land Surface Temperature (LST) data obtained from Moderate-Resolution Imaging Spectroradiometer
(MODIS) sensors provide an alternative data source for quantifying the UHII [24–27]. LST provides
an indicator of the thermal conditions at the ground-air interface that is closely related to air
temperatures, thus providing an effective way of quantifying the UHII [28]. Calibrated MODIS LST
data [29,30] is sufficiently accurate to provide spatial resolution for data of around 1 km, which enables
analysis of UHII to be carried out in large-scale cities [31]. Moreover, MODIS LST data can be used in
a time-resolved mode to effectively reflect dynamic changes in UHII [32]. This has resulted in MODIS
LST data being widely used for the study of UHII Clinton and Gong [7], with Miles et al. [33] using
this approach to analyze the UHII in 28 cities in Siberia during summer and winter.

The purpose of this study was to quantify the spatial pattern of UHII across the TUATR throughout
2016. Landsat remote sensing images have been used to extract urban land information for this study
area, with MODIS LST data used to analyze UHII across the entire region which enabled intensities in
the region of China, DPRK and Russia to be compared. The factors that influence urban heat island
effects and their potential impact on the sustainability of cities and the health of their residents are
also discussed.

2. Study Area and Data

2.1. Overview of the Study Area

The TUATR is located between longitudes 128◦00′–133◦00′ and 41◦00′–44◦00′ latitudes,
comprising a total area of around 24,000 km2 (Figure 1). This region experiences a mid-temperate
monsoon climate with northwestern winds prevailing in winter and southeast winds predominating
in summer [34], with an average annual precipitation of between 400–650 mm and an average annual
temperature between 2–6 ◦C [9]. Its terrain gradually increases from the southeast coast to the
northwest interior, with the lowest point being less than 20 m and the highest point nearly 1600 m
above sea level. Ocean influences result in coastal areas having a moist, foggy climate expected for
a typical coastal region.

The TUATR is located at the borders of China, DPRK and Russia [9], with the Chinese side
containing Yanji City, Longjing City, Tumen City and Hunchun City in the Yanbian Korean Autonomous
Prefecture of Jilin Province. The Chinese side covers an area of approximately 10,100 square kilometers.
The North Hamgyong Province on the side in DPRK covers an area of approximately 6800 square
kilometers, which includes the cities of Hoeryong County, Puryong County, Wencheng County,
Saibie County, Ende County, Chongjin City, Luojin City and Xianfeng County. The Russian side of the
river covers an area of approximately 7100 square kilometers, including the major cities Vladivostok, Artem,
Hassan, and Nakhilkinsk. The total population of the region in 2016 was 9.03 million, with an urban
population of 2.31 million corresponding to an urbanization rate of 25.57%, with three cities containing
more than 300,000 people—Yanji City on the Chinese side, Chongjin City on the side in DPRK and
Vladivostok on the Russian side.

2.2. Data

The MODIS LST 8-day composites for 2016 were used to quantify the UHII sourced from
MOD11A2 V006 and MYD11A2 V006 datasets released by the National Aeronautics and Space
Administration (NASA)/Goddard Space Flight Center (GSFC) (http://ladsweb.nascom.nasa.gov/
data). The spatial resolution of the data was 1 km, with LST information measured at 10:30 and 13:30
during the day and 22:30 and 01:30 at night. The method of Wan et al. [35] was used to compile
monthly averages of MODIS LST data for each time period after removing the pixels with abnormal
values due to cloud, fires, smokestacks, and etc. Landsat 8 Operational Land Imager (OLI) imagery
from the United States Geological Survey (http://glovis.usgs.gov) was used to extract urban land
information. The spatial resolution of this data was 30 m, comprising a total of four sets of remote
sensing images (Table A1).

http://ladsweb.nascom.nasa.gov/data
http://ladsweb.nascom.nasa.gov/data
http://glovis.usgs.gov
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MODIS Normalized Difference Vegetation Index (NDVI) data was used to analyze the factors
influencing UHII using information sourced from the MOD13Q1 dataset obtained from NASA
(http://ladsweb.nascom.nasa.gov/data). Information from National Oceanic and Atmospheric
Administration (NOAA)’s Visible Infrared Imaging Radiometer on the National Polar-orbiting
Operational Environmental Satellite System (NPOESS) of the Preparatory Program (NPP) was used to
provide nighttime lighting data that was obtained through the NOAA/National Geophysical Data
Center (NGDC) (http://ngdc.noaa.gov/eog). White-sky albedo (WSA) data was sourced from the
NASA MCD43A3 dataset (http://ladsweb.nascom.nasa.gov/data). Digital Elevation Model (DEM)
data was sourced from the Geospatial Data Cloud Platform (http://www.gscloud.cn) of the Computer
Network Information Center of the Chinese Academy of Sciences. The spatial resolution of the data
was 90 m, and this data was generated from NASA’s Shuttle Radar Topography Mission (SRTM) in
2000. Population data was sourced from the Netherlands Environment Assessment Agencies (NEAA)’s
Historical Database of the Global Environment (HYDE) (http://www.mnp.nl/hyde). Data on the
population of children and elderly people from the China and DPRK were sourced from the AsiaPop
project (http://www.worldpop.org.uk/data/summary/?doi=10.5258/SOTON/WP00012). The spatial
resolution of the data was 1 km, and this data is compiled from demographic age/sex structure
proportional data, sourced on a country-by-country basis. Temperature observation data for the
Chinese side were extracted from historical weather data (http://tianqi.2345.com/).

The administrative boundary data for the Chinese side were taken from 1:4 million national and
provincial vector administrative boundary data (http://ngcc.sbsm.gov.cn) issued by the National
Basic Geographic Information Center of China. The administrative boundary data for the sides
in DPRK and Russia were obtained from the Global Administrative Region Boundary Data Set
(http://www.gadm.org/).

3. Methodologies

The method of Tao et al. [36] was used to extract regional urban land from Landsat images
taken in 2016 (please refer to Text A1 in the Appendix A for details). Here, the urban land
denotes the urban built-up area, i.e., the portion that is dominated (more than 50% in cover) by
non-vegetated, human-constructed elements, such as roads, buildings, runways, and industrial
facilities [37]. Analysis of the accuracy of the urban land used in this study were carried out using
high-resolution remote sensing data from Google Earth, which showed that the overall accuracy of
the data was 88.25% with a Kappa coefficient of 0.87. This indicates that the data used in this study
accurately reflected the spatial pattern of regional urban land use.

The method of [7], was used to quantify the UHII at different time periods based on differences
between LST levels of urban land and a 10 km buffer zone around the urban land (Figure A1). The UHII
was calculated using Equation (1):

UHIIi,m,t = LSTU
i,m,t − LSTR

i,m,t (1)

where, UHIIi,m,t represents the UHII of the i-th city in the m-th month of the t-th time period (i.e., 01:30,

10:30, 13:30, or 22:30). LSTU
i,m,t represents the average surface temperature of urban land in a city for

the same period (Table A2). LSTR
i,m,t represents the average surface temperature for the same period in

a 10 km buffer zone around the city (Table A2). The water body pixels within the buffer zone and the
pixels with an elevation more than 50 m above the highest point in the city were excluded from this
analysis to avoid the influences from water and difference in elevation according to Zhou et al. [38].

Yearly, seasonal and monthly UHII for the entire region and the three zone of China, DPRK and
Russia were calculated using Equations (2)–(5):

UHIIR = ∑S UHIIR,S/4 (2)

http://ladsweb.nascom.nasa.gov/data
http://ngdc.noaa.gov/eog
http://ladsweb.nascom.nasa.gov/data
http://www.gscloud.cn
http://www.mnp.nl/hyde
http://www.worldpop.org.uk/data/summary/?doi=10.5258/SOTON/WP00012
http://tianqi.2345.com/
http://ngcc.sbsm.gov.cn
http://www.gadm.org/
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where, UHIIR represents the average annual UHII in the R-th region. The denominator of 4 denotes the
number of seasons, UHIIR,S represents the average UHII of the R-th region in the S season, which was
expressed as:

UHIIR,S = ∑m UHIIR,S,m/3 (3)

where, the denominator of 3 denotes the number of months in one season, UHIIR,S,m represents the
average UHII of the R-th region in the m-th month of the S season, which was expressed as:

UHIIR,S,m = ∑t UHIIR,S,m,t/4 (4)

where, the denominator of 4 denotes the number of time periods (i.e., 01:30, 10:30, 13:30, or 22:30),
UHIIR,S,m,t represents the average UHII of the R-th region in the t-th period of the m-th month,
which was expressed as:

UHIIR,S,m,t = ∑i UHIIR,S,m,t,i/I (5)

where, UHIIR,S,m,t,i represents the UHII information of the i-th city in the R-th region, and I represent
the total number of cities in the R-th region. In this region, the Spring includes March, April, and May,
the Summer includes June, July, and August, the Autumn includes September, October, and November,
while the Winter includes December, January, and February.

The methods of Peng et al. [31] and Zhou et al. [39] were used to analyze the factors that influence
the intensities of regional urban heat islands, with seasonal and daily changes in intensities used as
basic analytical units. Eight variables were selected, including differences in NDVI, WSA and DEM
values between urban and rural environments, geographical distance from the ocean, total area of
urban land use, urban population density and urban nighttime light intensities. Both Pearson and
Spearman correlation analysis methods were used to quantify the relationships between these factors
and the UHII during different seasons and time periods.

4. Results

4.1. Spatial Pattern of UHII in 2016

The average UHII in the entire region in 2016 was 0.98 ◦C, with intensity levels in summer
significantly higher than levels during other seasons (Figure 2a). The average UHII in the entire region
throughout the summer was 1.70 ◦C, with average intensities throughout the other three seasons
between 0.49–0.94 ◦C (Table 1). The UHII in the entire region varied significantly, with intensity levels
reaching a highest value of 1.81 ◦C in July, with the lowest value of 0.40 ◦C occurring in January
(Figure 2b, Table 2).

The daily UHII in the entire region was significantly higher than during the night (Figure 2c),
with average UHII at 10:30 and 13:30 of 1.16 ◦C and 1.46 ◦C and average UHII at 22:30 and 1:30 of
0.68 ◦C and 0.65 ◦C, respectively (Table 3). The UHII during the day were found to be around 2 times the
values that occurred during the night. UHII at 13:30 in July was the highest at 3.03 ◦C, with the UHII at
10:30 in January being the lowest at 0.19 ◦C, corresponding to a difference of 2.84 ◦C (Figure 2d, Table 3).

Table 1. Average Urban Heat Island Intensity (UHII) for different seasons in 2016.

Range Spring (◦C) Summer (◦C) Autumn (◦C) Winter (◦C) Annual (◦C)

The entire region 0.94 1.70 0.81 0.49 0.98
China 1.12 2.08 0.80 0.39 1.10
Russia 0.94 1.57 0.99 0.81 1.08
DPRK 0.75 1.45 0.63 0.29 0.78
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Table 2. UHII for different months in 2016.

Range January
(◦C)

February
(◦C)

March
(◦C)

April
(◦C)

May
(◦C)

June
(◦C)

July
(◦C)

August
(◦C)

September
(◦C)

October
(◦C)

November
(◦C)

December
(◦C)

The entire region 0.40 0.61 0.73 0.89 1.18 1.57 1.81 1.72 1.14 0.69 0.59 0.47
China 0.35 0.48 0.90 1.08 1.39 1.95 2.17 2.12 1.26 0.66 0.47 0.34
Russia 0.80 0.83 0.73 0.87 1.21 1.46 1.66 1.59 1.39 0.83 0.75 0.79
DPRK 0.06 0.53 0.57 0.74 0.95 1.31 1.61 1.44 0.76 0.58 0.56 0.27

Table 3. UHII at different times in 2016.

Range 10:30 (◦C) 13:30 (◦C) 22:30 (◦C) 1:30 (◦C)

The entire region 1.16 1.46 0.68 0.65
China 1.37 1.57 0.76 0.69
Russia 1.23 1.57 0.78 0.71
DPRK 0.86 1.24 0.48 0.54
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4.2. Spatial Pattern of UHII in Chinese, DPRK and Russian Regions in 2016

The annual UHII on the Chinese side was greater than those on the other two sides (Figure 3a).
In 2016, average UHII were 1.10 ◦C in China, 1.08 ◦C in Russia and 0.78 ◦C in DPRK across the study
area (Table 1). Therefore, the average UHII on the Chinese side was 0.02 ◦C higher than on the Russian
side and 0.32 ◦C higher than on the side in DPRK (Table 1).
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The UHII in the region of China, DPRK, and Russia varied significantly over the four seasons
(Tables 1 and 2, Figure 3b). In spring and summer, the UHII on the Chinese side was highest,
with values of 1.12 ◦C and 2.08 ◦C, respectively. The UHII on the side of DPRK were lowest,
with average values of 0.75 ◦C and 1.45 ◦C, respectively. In autumn and winter, the UHII on the
Russian side were the highest at 0.99 ◦C and 0.81 ◦C, with intensities on the side of DPRK being the
lowest at 0.63 ◦C and 0.29 ◦C (Table 1). The UHII on the Russian side during January–February were
the highest, with temperatures being higher by around 0.7 ◦C (Figure 3c). The UHII on the Chinese
side during March to August were higher than 1.0 ◦C, with the Russian side having intensity levels
greater than 0.7 ◦C from September to December (Figure 3c, Table 2).

The differences in UHII in the region of China, DPRK, and Russia was greatest during the day
(Figure 3d). At 10:30, the UHII on the Chinese side was highest at 1.37 ◦C, with the side in DPRK
affording the lowest value at 0.86 ◦C, corresponding to a temperature difference of 0.51 ◦C between
the two sides (Table 3). At 13:30, the UHII on the Chinese and Russian sides were the highest at
1.57 ◦C, with the side in DPRK the lowest at 1.24 ◦C, corresponding to a difference of 0.33 ◦C. At 22:30,
the UHII on the Russian side was the highest at 0.78 ◦C, with the side in DPRK the lowest at 0.48 ◦C,
corresponding to a difference of 0.30 ◦C. The UHII on the Russian side at 01:30 was the highest at
0.71 ◦C, with the side in DPRK the lowest at 0.54 ◦C, corresponding to a difference of 0.17 ◦C (Table 3).
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and Russia in 2016: (a) Annual UHII; (b) UHII for different seasons; (c) UHII for different months;
(d) Different UHII at different times of the day.

4.3. Factors Affecting UHII

The UHII in the summer and winter were not significantly correlated, indicating that different
seasonal factors were affecting intensity levels throughout the year (Table 4, Table A3). In addition,
the UHII in the daytime and nighttime were not significantly correlated as well, indicating the factors
affecting UHII were diverse in the different periods (Table 4, Table A3).
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The UHII in the region during the summer day were significantly correlated to NDVI, urban land
area, total urban population, and night-time light intensities of cities (Table 5, Table A4). Correlation
coefficients between the UHII and the total population of cities and between UHII and urban land
area were the highest at 0.76, which passed a significance test at a 0.01 level. The correlation
coefficients between urban nighttime light intensity and UHII was 0.67, which also passed a 0.01 level
significance test. The correlation coefficient between UHII and ∆NDVI was 0.57, passing a 0.05 level
significance level. This correlation analysis shows that larger cities, higher levels of social and
economic development, and lower coverage by urban vegetation results in urban heat islands with
higher intensities.

Table 4. Pearson’s correlation coefficients of UHII for different seasons and time periods.

Variables
Day Night

Spring Summer Autumn Winter Spring Summer Autumn

Day
Summer 0.83 **
Autumn 0.73 ** 0.86 **
Winter 0.14 0.24 0.39

Night

Spring −0.34 0.10 0.24 0.49 *
Summer −0.25 0.17 0.16 0.61 ** 0.82 **
Autumn −0.64 ** −0.25 −0.03 0.32 0.87 ** 0.61 **
Winter −0.57 * −0.27 0.03 0.34 0.81 ** 0.50 * 0.94 **

Note: ** p < 0.01; * p < 0.05.

Table 5. Pearson’s correlation analysis of UHII and various influencing factors.

Variables ∆NDVI ∆WSA DEM
Distance
from the

Ocean

Urban
Land
Area

Urban
Population

Urban
Population

Density

Urban
Nighttime

Light Intensity

Day

Spring −0.35 0.33 0.26 0.11 0.42 0.38 −0.05 0.45 *
Summer −0.57 * 0.35 0.07 0.06 0.76 ** 0.76 ** 0.04 0.67 **
Autumn −0.50 * 0.09 0.06 −0.04 0.76 ** 0.77 ** −0.06 0.82 **
Winter −0.18 0.04 −0.01 −0.26 0.38 0.29 0.03 0.60 **
Annual −0.51 * 0.29 0.14 0.01 0.69 ** 0.67 ** −0.01 0.73 **

Night

Spring −0.10 0.13 −0.11 −0.04 0.44 * 0.48 * 0.02 0.38
Summer −0.70 ** 0.51 * 0.12 0.21 0.50 * 0.52 * 0.18 0.29
Autumn −0.28 0.17 −0.33 −0.27 0.17 0.22 −0.06 0.19
Winter 0.14 0.08 −0.35 −0.30 0.08 0.11 −0.06 0.22
Annual −0.27 0.02 −0.23 −0.16 0.28 0.31 0.01 0.28

Note: ** p < 0.01; * p < 0.05. ∆NDVI is the average NDVI for urban land minus the average NDVI in a 10 km buffer
zone surrounding each urban land zone. ∆WSA is the mean value of urban land WSA minus the average WSA
within the 10 km buffer zone.

The findings from this study are consistent with previous reports by Zipper et al. [40], who found
that the UHII were closely correlated to differences in vegetation coverage between urban and rural
areas. Jenerette et al. [41] also found that increases in urban population resulted in an increase in
intensity of urban heat island effects, with vegetation thought to reduce surface temperatures through
transpiration processes. Therefore, a lower degree of urban vegetation coverage [42–45] and urban
population growth can lead to increases in anthropogenic heat emissions [7,46,47] resulting in urban
heat islands with higher intensities.

5. Discussions

5.1. Impact of Urban Heat Island Effects on Residents’ Health

Urban heat island effects lead to an increase in urban temperatures that can cause
high-temperature heat waves in the summer that increase children’s skin allergies and the incidence of
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heart disease amongst the elderly [48–50]. In addition, increased numbers of pollutants accumulate in
heat island centers, which can directly stimulate people’s respiratory mucosa that can result in the
onset of respiratory diseases [51–53].

Urban heat island effects result in a trend towards increasing maximum summer temperatures
and greater numbers of high-temperature days in Chinese cities in this area. Using Hunchun as an
example, the maximum temperature in summer in this city increased from 33 ◦C in 2011 to 34 ◦C
in 2017, corresponding to an average annual increase of 0.03 ◦C (Figure 4a), reaching a high of 36 ◦C
in 2016. At the same time, the number of high-temperature days above 32 ◦C increased from 7 days
in 2011 to 14 days in 2017, with an average annual increase over this period of around 1 day (Figure 4b).
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Figure 4. Changes in maximum temperatures and the number of high-temperature days recorded
during the summer in 2011–2017 in the Chinese cities, including Yanji City, Tumen City, Longjing City,
and Hunchun City: (a) maximum temperatures; (b) number of high-temperature days. Note: Only the
temperatures of 4 cities in China were analyzed due to availability of data. High temperature days
were counted when the maximum daily temperature exceeded 32 ◦C.

To understand the influences of urban heat island effect on residents’ health, we first conducted
face-to-face interviews and questionnaires with 211 residents under different age from 5 July to 10 July
in 2018 in Yanji City, the largest city in our study area, and then analyzed the data on deaths from 2010 to
2014 acquired from the Center for Disease Control and Prevention in the same city (Figure 5). We found
that 67.77% of respondents were affected by the high temperature in summer due to urban heat island
effects (Figure 5a), and more than 20% of respondents replied that the high temperature resulted in
physical discomfort, insomnia, inappetence, heat stroke, respiratory diseases, and decreasing outdoor
activities (Figure 5b). In addition, the population and proportion of deaths due to diseases related to high
temperature in summer—mainly including hypertension, cardiomyopathy, and asthma—both showed
an increasing trend from 2010 to 2014 in Yanji City (Figure 5c). Thus, the urban heat island effect has
been an important factor impacting residents’ health.

In addition, the total population of elderly and children, which are susceptible to high temperature
in summer, on the sides in China and DPRK in recent years both show an increasing trend.
From 2000 to 2015, the total population of elderly on the Chinese side increased from 157,000 to
173,000, corresponding to an increase of 10.19%, whilst the total number of children increased from
27,500 to 30,300, corresponding to an increase of 10.18%. The total population of elderly on the side in
DPRK increased from 66,100 to 71,700, corresponding to an increase of 8.47%, whilst the total number
of children increased from 45,400 to 49,200, corresponding to an increase of 8.37% (Figure 6).
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Figure 5. Influences of urban heat island effects on residents in Yanji City: (a) proportion of affected
respondents; (b) proportion of respondents with different influences *; (c) population and proportion of
deaths due to diseases related to high temperature in summer **. Note: Only the influences in Yanji City
were analyzed due to availability of data. * I: physical discomfort, II: insomnia, inappetence or heat
stroke, III: respiratory diseases, IV: decreasing outdoor activities, V: other influences. ** The diseases
related to high temperature in summer mainly include hypertension, cardiopathy, and asthma.Sustainability 2018, 10, x FOR PEER REVIEW  11 of 16 
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Figure 6. Changes in the total population of children and elderly people from 2000 to 2015 in the region
of China and DPRK of the TUATR: (a) changes in population of children; (b) changes in population of
the elderly. Note: Due to the limited availability of data, only population distributions for children and
elderly people in the region of China and DPRK were analyzed.



Sustainability 2018, 10, 2637 11 of 16

Rapid urbanization of the region and global warming are likely to increase the intensity of
urban heat island effects in the TUATR, which will result in an increased threat to the health of
residents [5,22,54]. Therefore, it is recommended that future urbanization policies attempt to reduce
the impact of urban heat island effects in this region by increasing urban green space, controlling the
development of cities and reducing urban anthropogenic heat emissions. Ultimately, any reduction in
the impact of urban heat islands on local temperatures in these cities is likely to have a positive impact
on the health and well-being of its residents.

5.2. Future Perspectives

This study has analyzed the spatial pattern of UHII across the TUATR using the cloud-free
observations of LST, which resulted in data deficient in some periods. To limit the influences of data
deficient, we performed monthly composition according to Wan et al. [35]. Thus, the variances of
UHII intra-month have not been analyzed in this study. In addition, we used both of the Pearson’s
correlation and the Spearman’s correlation to analyze the relationships of UHII for different seasons
and time periods as well as the factors influencing UHII (Tables 4 and 5, Tables A3 and A4). We found
that the two approaches would result in different correlations in some cases. For example, the daytime
UHII in Spring had significantly negative correlation with the nighttime UHII in Autumn as a result of
Pearson’s correlation (Table 4), whereas they were not significantly correlated according to Spearman’s
correlation analysis (Table A3). In terms of the mechanism, such significant relationship for different
time periods in different seasons cannot be well explained. This highlighted that utilization of multiple
statistical approaches can help us to validate results between each other.

Future research will concentrate on using remote sensing ASTER and Landsat data with relatively
high resolution [55] to analyze annual urban heat island variations and the impact of urban morphology
on their intensities. This data will also be used to examine the influence of green space on UHII and
use this information to produce effective guidelines to optimize urban land use and the sustainability
of cities [56].

6. Conclusions

Landsat images and MODIS LST data have been used to quantify spatial patterns of UHII across
the TUATR in 2016. The average UHII in this region was found to be 1.0 ◦C, with the highest intensity
of 3.0 ◦C occurring in the daytime during summer. The UHII on the Chinese side were significantly
higher than those on the sides in DPRK and Russia, with intensities influenced by a number of factors
including the size of their cities, social and economic activities, and vegetation coverage. Urban heat
island effects resulted in maximum summer temperatures and the number of high-temperature days in
Chinese cities being increased significantly, thus posing a potential threat to the health and wellbeing of
their residents. Therefore, the UHII in this region should be reduced by increasing the number of green
spaces present, controlling the sizes of cities, and reducing urban anthropogenic heat emission levels.
All of these measures would contribute significantly to increasing the sustainability of its regional
cities and improving the quality of life of its residents.
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Appendix A

Text A1. The extraction of urban land.

Presently, three main types of method are used to extract urban land from remote sensing images,
including unsupervised classification, supervised classification, and visual interpretation. Although the
visual interpretation requires a large amount of human resources, it shows high accuracy and reliability.
Thus, we extracted urban land from the Landsat data in 2016 through visual interpretation. First,
we developed interpretation criteria for each land use/cover type based on combination of Landsat
bands, the sampling points from field survey data [36]. These land use/cover types included coniferous
forest, broadleaf forest, mixed forest, alpine birch forest, grassland, paddy field, dry farmland, water,
marshland, bare land, urban land, and alpine tundra. The interpretation criteria included the features
on spectrum, shape, and texture as well as the mainly distributed area, and were developed by
identifying such features of sampling points from field survey in terms of different land use/cover
types. Second, we performed a visual-interpretation-based land use/cover classification of Landsat
data using the interpretation criteria to obtain the spatial patterns of each land use/cover type in
2016. During the visual interpretation, the standard false color composite images based on green,
red, and near-infrared bands were primarily used as references, while the information on short wave
infrared band were used as supplement. We identified the land use/cover type pixel by pixel according
to the differences on spectral characteristics and the shape and texture features among various land
use/cover types. Finally, we extracted urban land from the obtained land use/cover data.
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Table A1. Specific information on the Landsat data used in this study.

Satellite Sensor Path/Row Date

Landsat 8 OLI

114/30 12 October 2016
114/31 12 October 2016
115/30 28 May 2016
115/31 28 May 2016

Table A2. The urban and rural pixels used for the analysis in this study.

Region City Urban Pixels * Rural Pixels *

China

Yanji 91,698 454,056
Longjing 19,281 416,903
Tumen 15,901 292,133

Hunchun 44,600 530,119

Russia

Artem 35,466 450,528
Nadezhdinskiy 12,297 350,451
Vladivostok 75,401 281,511
Khasanskiy 6648 255,153

DPRK

Chongjin 37,334 198,724
Puryong 1174 64,693
Luojin 12,007 120,927
Ende 4555 136,380

Hoeryong 3866 96,158
Saibie 2673 139,296

Xianfeng 3506 90,023
Wencheng 4225 148,747

Note: * The pixel size is 30 × 30 m2.

Table A3. Spearman’s correlation coefficients of UHII for different seasons and time periods.

Variables
Day Night

Spring Summer Autumn Winter Spring Summer Autumn

Day
Summer 0.67 **
Autumn 0.61 ** 0.91 **
Winter 0.03 −0.01 −0.05

Night

Spring −0.34 0.14 0.14 0.46 *
Summer −0.22 0.25 0.18 0.40 0.82 **
Autumn −0.36 0.14 0.15 0.38 0.92 ** 0.69 **
Winter −0.33 −0.02 0.09 0.38 0.79 ** 0.60 ** 0.88 **

Note: ** p < 0.01; * p < 0.05.

Table A4. Spearman’s correlation Analysis of UHII and various influencing factors.

Variables ∆NDVI ∆WSA DEM
Distance
from the

Ocean

Urban
Land
Area

Urban
Population

Urban
Population

Density

Urban
Nighttime

Light Intensity

Day

Spring −0.45 * 0.32 0.30 0.06 0.28 0.28 −0.15 0.30
Summer −0.66 ** 0.24 0.12 0.08 0.80 ** 0.84 ** −0.11 0.67 **
Autumn −0.50 * 0.10 0.22 0.13 0.70 ** 0.72 ** −0.12 0.53 *
Winter −0.01 0.07 0.07 −0.18 0.08 −0.03 0.02 0.36
Annual −0.55 * 0.20 0.18 0.06 0.63 ** 0.63 ** −0.20 0.55 *

Night

Spring −0.13 0.06 −0.14 −0.19 0.31 0.27 −0.01 0.41
Summer −0.70 ** 0.60 ** −0.12 −0.08 0.28 0.35 0.10 0.34
Autumn −0.44 0.21 −0.37 −0.44 0.29 0.29 0.01 0.33
Winter 0.13 0.03 −0.34 −0.44 0.04 0.03 0.01 0.06
Annual −0.30 0.15 −0.14 −0.26 0.20 0.21 0.07 0.30

Note: ** p < 0.01; * p < 0.05. ∆NDVI are the average NDVI for urban land minus the average NDVI in a 10 km buffer
zone surrounding each urban land zone. ∆WSA is the mean value of urban land WSA minus the average WSA
within the 10 km buffer zone.
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