Wind Speed Variation Mapped Using SAR before and after Commissioning of Offshore Wind Farms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Sentinel 1A/B Data
2.1.2. Envisat Data
2.2. Study Area
- The distance to neighboring OWFs and clusters is at least 20 km to avoid any disturbance of the upstream wind flow by other nearby OWFs.
- The selected OWFs consist of at least 80 turbines, which is the average number of turbines for wind sites in northern European seas. For wind farm clusters, each OWF may have fewer turbines but the total for the cluster lives up to the criterion. We set this threshold to limit our analysis to the largest OWFs currently in operation.
- The OWF is located at a water depth of at least 10–15 m to avoid the bathymetry effects on the sea surface roughness and the SAR observations.
- The number of available SAR scenes over the OWF is at least 100 scenes for each wind sector. This is necessary to achieve reliable estimates of the mean wind speed. Note that the ratio of SAR scenes acquired after and before commissioning can be low for the most recent OWF installations.
2.3. Methods
2.3.1. Wind Speed Retrieval from SAR
2.3.2. Extraction of Wind Speeds
- The wind speed is between the cut-in (4 m/s) and cut-out (25 m/s) wind speed of the wind turbines to ensure that the turbines are in operation.
- The wind direction is from the easterly (45–135°), westerly (225–315°), and southerly (135–225°) sectors. Wide sector angles are considered to increase the number of samples for each case.
- The SAR wind maps fully cover the transect lines.
- Manual inspection is performed of the anomalous wind maps that have high or low wind speed to be sure that these scenes do not have any evidence of non-wind phenomena, such as processing artifacts and rain contamination.
2.3.3. Mean Wind Speed Calculation
2.3.4. Velocity Deficit Calculation
2.3.5. Horizontal Coastal Wind Speed Gradient Calculation
2.3.6. Wind Power Variation along the Centerline of the Nordsee Cluster
3. Results
3.1. Mean Wind Speed and Velocity Deficit: Westerly Winds
3.2. Mean Wind Speed and Velocity Deficit: Easterly Winds
3.3. Mean Wind Speed and Velocity Deficit: Southerly Winds
3.4. Horizontal Coastal Wind Speed Gradient Variation before OWFs
3.5. The Nordsee Cluster
3.6. Wind Power Variation along the Centerline of the Nordsee Cluster
3.7. Impact of the OWF and Cluster Capacity
4. Discussion
4.1. Wind Conditions before OWFs Are Commissioned
4.2. Wind Conditions after OWFs Are Commissioned
4.3. Temporal Wind Speed Variations
4.4. Effects of the Wind Farm Size and Layout
4.5. Future Perspectives
- Replace the threshold of the NRCS to remove anomalous SAR backscatter values caused by man-made objects with other sophisticated object detectors, such as a constant false alarm ratio.
- Account for the atmospheric stability conditions when SAR scenes are classified.
- Validate wind speeds and velocity deficits retrieved from SAR at different sites using, e.g., wind LiDAR, airborne observations, or turbine SCADA data.
- Extrapolate our results up to the wind turbine hub height to make the findings more suitable for offshore wind energy applications.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
SAR | Synthetic Aperture Radar |
OWF | Offshore Wind Farm |
NRCS | Normalized Radar Cross Section |
RMSE | Root Mean Square Error |
CFD | Computational Dynamics Models |
LiDAR | Light Detection and Ranging |
GMF | Geophysical Model Function |
VV | Vertical Polarized |
SAROPS | SAR Operational Products System |
CMOD5.N | C-Band Model 5.N |
References
- Wilson, J.C.; Elliott, M.; Cutts, N.D.; Mander, L.; Mendão, V. Coastal and Offshore Wind Energy Generation: Is it environmentally benign. Energies 2010, 3, 1383–1422. [Google Scholar] [CrossRef]
- Sesto, E.; Lipman, N.H. Wind Energy in Europe. Wind Europe, Brussels Belgium. 2020. Available online: https://gwec.net/global-offshore-wind-report-2021/ (accessed on 8 March 2022).
- Rana, F.M.; Adamo, M.; Lucas, R.; Blonda, P. Sea surface wind retrieval in coastal areas by means of Sentinel-1 and numerical weather prediction model data. Remote Sens. Environ. 2019, 225, 379–391. [Google Scholar] [CrossRef]
- Hasager, C.B.; Hahmann, A.N.; Ahsbahs, T.; Karagali, I.; Sile, T.; Badger, M.; Mann, J. Europe’s offshore winds assessed with synthetic aperture radar, ASCAT and WRF. Wind Energy Sci. 2020, 5, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Ahsbahs, T.; Badger, M.; Volker, P.; Hansen, K.S.; Hasager, C.B. Applications of satellite winds for the offshore wind farm site Anholt. Wind Energy Sci. 2018, 3, 573–588. [Google Scholar] [CrossRef] [Green Version]
- Allan, T.D. Remote Sensing of the European Seas: A Historical Outlook; Springer: Dordrecht, The Netherlands, 2008; ISBN 9781402067716. [Google Scholar]
- Dagestad, K.-F.; Horstmann, J.; Mouche, A.; Perrie, W.; Shen, H.; Zhang, B.; Li, X.; Monaldo, F.; Pichel, W.; Lehner, S.; et al. Wind Retrieval from Synthetic Aperture Radar—An Overview. In Proceedings of the 4th SAR Oceanography Workshop (SEASAR 2012), Tromsø, Norway, 18–22 June 2012; pp. 18–22. [Google Scholar]
- Wang, H.; Yang, J.; Mouche, A.; Shao, W.; Zhu, J.; Ren, L.; Xie, C. GF-3 SAR oceanwind retrieval: The first view and preliminary assessment. Remote Sens. 2017, 9, 694. [Google Scholar] [CrossRef] [Green Version]
- Hasager, C.B.; Peña, A.; Christiansen, M.B.; Astrup, P.; Nielsen, M.; Monaldo, F.; Thompson, D.; Nielsen, P. Remote sensing observation used in offshore wind energy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, G.R. Theories for the interaction of electromagnetic and oceanic waves—A review. Bound.-Layer Meteorol. 1978, 13, 61–85. [Google Scholar] [CrossRef]
- Badger, M.; Ahsbahs, T.; Maule, P.; Karagali, I. Inter-calibration of SAR data series for offshore wind resource assessment. Remote Sens. Environ. 2019, 232, 111316. [Google Scholar] [CrossRef] [Green Version]
- Jagdish; Kumar, S.V.V.A.; Chakraborty, A.; Kumar, R. Validation of wind speed retrieval from RISAT-1 SAR images of the North Indian Ocean. Remote Sens. Lett. 2018, 9, 421–428. [Google Scholar] [CrossRef]
- Wang, H.; Shi, C.; Zhu, J. Assessment of Sentinel-1A/B SAR Derived Ocean Wind Speeds against Scatterometer in the Presence of Ocean Swells. E3S Web Conf. 2021, 299, 01001. [Google Scholar] [CrossRef]
- Ahsbahs, T.; Badger, M.; Karagali, I.; Larsén, X.G. Validation of sentinel-1A SAR coastal wind speeds against scanning LiDAR. Remote Sens. 2017, 9, 552. [Google Scholar] [CrossRef] [Green Version]
- J¢rgensen, B.H.; Furevik, B.; Hasager, C.B.; Astrup, P.; Rathmann, O.; Barthelmie, R.J.; Pryor, S.C. Off-shore wind fields obtained from mesoscale modeling and satellite SAR images. In Proceedings of the EWEA Offshore Wind Energy Special Topic Conference, Brussels, Belgium, 12 October 2001; pp. 2–5. [Google Scholar]
- Takeyama, Y.; Ohsawa, T.; Kozai, K.; Hasager, C.B.; Badger, M. Comparison of geophysical model functions for SAR wind speed retrieval in Japanese coastal waters. Remote Sens. 2013, 5, 1956–1973. [Google Scholar] [CrossRef] [Green Version]
- Hasager, C.B. Offshore winds mapped from satellite remote sensing. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 594–603. [Google Scholar] [CrossRef] [Green Version]
- Cameron, I.; Lumsdon, P.; Walker, N.; Woodhouse, I. Synthetic Aperture Radar for Offshore Wind Resource Assessment and Wind Farm Development in the UK. In Proceedings of theSEASAR 2006: Advances in SAR Oceanography from Envisat and ERS Missions, Frascati, Italy, 23–26 January 2006; Volume 613, pp. 1–6. [Google Scholar]
- Doubrawa, P.; Barthelmie, R.J.; Pryor, S.C.; Hasager, C.B.; Badger, M.; Karagali, I. Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas. Remote Sens. Environ. 2015, 168, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Barthelmie, R.J.; Badger, J.; Pryor, S.C.; Hasager, C.B.; Christiansen, M.B.; Jørgensen, B.H. Offshore coastal wind speed gradients: Issues for the design and development of large offshore windfarms. Wind Eng. 2007, 31, 369–382. [Google Scholar] [CrossRef]
- Romeiser, R.; Ufermann, S.; Kern, S. Status report on the remote sensing of current features by spaceborne synthetic aperture radar. In Proceedings of the 2nd Workshop Coastal Marine Application SAR, Hamburg, Germany, 3 June 2004; pp. 105–123. [Google Scholar]
- Hasager, C.; Astrup, P.; Barthelmie, R.; Dellwik, E. Validation of Satellite SAR Offshore Wind Speed Maps to In-Situ Data, Microscale and Mesoscale Model Results; Forskningscenter Risoe: Roskilde, Denmark, 2002; Volume 1298, ISBN 8755029590. [Google Scholar]
- Hasager, C.B.; Nygaard, N.G.; Volker, P.J.H.; Karagali, I.; Andersen, S.J.; Badger, J. Wind farm wake: The 2016 Horns Rev photo case. Energies 2017, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Porté-agel, F. Wind-Turbine and Wind-Farm Flows: A Review. Bound.-Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, M.B.; Hasager, C.B. Wake effects of large offshore wind farms identified from satellite SAR. Remote Sens. Environ. 2005, 98, 251–268. [Google Scholar] [CrossRef]
- Ahsbahs, T.; Nygaard, N.G.; Newcombe, A.; Badger, M. Wind farm wakes from SAR and doppler radar. Remote Sens. 2020, 12, 462. [Google Scholar] [CrossRef] [Green Version]
- Barthelmie, R.J.; Pryor, S.C.; Frandsen, S.T.; Hansen, K.S.; Schepers, J.G.; Rados, K.; Schlez, W.; Neubert, A.; Jensen, L.E.; Neckelmann, S. Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J. Atmos. Ocean. Technol. 2010, 27, 1302–1317. [Google Scholar] [CrossRef]
- Herges, T.G.; Maniaci, D.C.; Naughton, B.T.; Mikkelsen, T.; Sjöholm, M. High resolution wind turbine wake measurements with a scanning lidar. J. Phys. Conf. Ser. 2017, 854. [Google Scholar] [CrossRef] [Green Version]
- Käsler, Y.; Rahm, S.; Simmet, R.; Kühn, M. Wake measurements of a multi-MW wind turbine with coherent long-range pulsed doppler wind lidar. J. Atmos. Ocean. Technol. 2010, 27, 1529–1532. [Google Scholar] [CrossRef] [Green Version]
- Bodini, N.; Zardi, D.; Lundquist, J.K. Three-dimensional structure of wind turbine wakes as measured by scanning lidar. Atmos. Meas. Tech. 2017, 10, 2881–2896. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Wang, T.; Li, B.; Sun, H.; Yang, H.; Han, Z.; Wang, Y.; Zhao, F. Investigation of wind turbine performance coupling wake and topography effects based on LiDAR measurements and SCADA data. Appl. Energy 2019, 255, 113816. [Google Scholar] [CrossRef]
- Platis, A.; Siedersleben, S.K.; Bange, J.; Lampert, A.; Bärfuss, K.; Hankers, R.; Cañadillas, B.; Foreman, R.; Schulz-Stellenfleth, J.; Djath, B.; et al. First in situ evidence of wakes in the far field behind offshore wind farms. Sci. Rep. 2018, 8, 2163. [Google Scholar] [CrossRef] [PubMed]
- Goit, J.P.; Shimada, S.; Kogaki, T. Can Lidars replace meteorological masts in wind energy? Energies 2019, 12, 3680. [Google Scholar] [CrossRef] [Green Version]
- Rösner, B.; Egli, S.; Thies, B.; Beyer, T.; Callies, D.; Pauscher, L.; Bendix, J. Fog and Low Stratus Obstruction of Wind Lidar Observations in Germany A Remote Sensing-Based Data Set for Wind Energy Planning. Energies 2020, 13, 3859. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; De Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. Ocean. 2007, 112, 1–18. [Google Scholar] [CrossRef]
- Zhang, B.; Mouche, A.; Lu, Y.; Perrie, W.; Zhang, G.; Wang, H. A Geophysical Model Function for Wind Speed Retrieval from C-Band HH-Polarized Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1521–1525. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, B.; Perrie, W.; Mouche, A.A.; Li, X.; Wang, H. A C-Band geophysical model function for determining coastal wind speed using synthetic aperture radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2417–2428. [Google Scholar] [CrossRef] [Green Version]
- Monaldo, F.; Jackson, W.G.; Li, X. A weather eye on coastal winds. Eos 2015, 96. [Google Scholar] [CrossRef]
- Schneemann, J.; Theuer, F.; Rott, A.; Dörenkämper, M.; Kühn, M. Offshore wind farm global blockage measured with scanning lidar. Wind Energy Sci. Discuss. 2020, 1–26. [Google Scholar] [CrossRef]
- Hasager, C.B.; Vincent, P.; Husson, R.; Mouche, A.; Badger, M.; Peña, A.; Volker, P.; Badger, J.; Di Bella, A.; Palomares, A.; et al. Comparing satellite SAR and wind farm wake models. J. Phys. Conf. Ser. 2015, 625, 012035. [Google Scholar] [CrossRef] [Green Version]
- Karagali, I.; Badger, M.; Hahmann, A.N.; Peña, A.; Hasager, C.B.; Sempreviva, A.M. Spatial and temporal variability of winds in the Northern European Seas. Renew. Energy 2013, 57, 200–210. [Google Scholar] [CrossRef]
- Peña, A.; Gryning, S.E.; Hasager, C.B. Measurements and modelling of the wind speed profile in the marine atmospheric boundary layer. Bound.-Layer Meteorol. 2008, 129, 479–495. [Google Scholar] [CrossRef]
- Cañadillas, B.; Foreman, R.; Barth, V.; Siedersleben, S.; Lampert, A.; Platis, A.; Djath, B.; Schulz-Stellenfleth, J.; Bange, J.; Emeis, S.; et al. Offshore wind farm wake recovery: Airborne measurements and its representation in engineering models. Wind Energy 2020, 23, 1249–1265. [Google Scholar] [CrossRef]
- Neumann, T.; Emeis, S. Long-range modifications of the wind field by offshore wind parks--Results of the project WIPAFF. Meteorol. Z. 2020, 29, 355–376. [Google Scholar]
- Djath, B.; Schulz-Stellenfleth, J.; Cañadillas, B. Impact of atmospheric stability on X-band and C-band synthetic aperture radar imagery of offshore windpark wakes. J. Renew. Sustain. Energy 2018, 10, 043301. [Google Scholar] [CrossRef] [Green Version]
OWFs | Country | Center Area (Longitude, Latitude) | Commissioning | Number of Turbines | Capacity (MW) | Approximate Distance from the Shore (km) |
---|---|---|---|---|---|---|
Anholt | Denmark | 56°36′00″N 11°12′36″E | September 2013 | 111 | 400 | 14–20 |
Horns Rev 2 Horns Rev 3 | Denmark | 55°36′00″N 7°35′24″E | August 2019 | 91 | 209 | 30 |
55°49′00″N 7°42′00″E | September 2009 | 49 | 407 | 29–44 | ||
Butendiek | Germany | 54°354′00″N 7°45′00″E | August 2015 | 80 | 288 | 34 |
Amrumbank West Nordsee Ost Meerwind Süd/Ost | Germany | 54°30′00″N 7°48′00″E | December 2014 | 80 | 302 | 35 |
54°26′00″N 7°41′00″E | May 2015 | 80 | 288 | 35 | ||
54°23′00″N 7°42′00″E | October 2015 | 80 | 288 | 35 | ||
East Anglia One | United Kingdom | 52°14′53″N 2°30′23″E | July 2020 | 102 | 714 | 45 |
Global Tech 1 Albatros Hohe See | Germany | 54°30′00″N 6°21′30″E | September 2015 | 80 | 400 | 93 |
54°29′1″N 6°15′8″E | January 2020 | 16 | 112 | 95 | ||
54°26′00″N 6°19′00″E | November 2019 | 71 | 497 | 95 | ||
Greater Gabbard Galloper | United Kingdom | 51°52′48″N 1°56′24″E | April 2018 | 140 | 504 | 23 |
51°52′48″N 1°56′24″E | April 2018 | 56 | 353 | 30 | ||
Hornsea Project One | United Kingdom | 53°53′00″N 1°48′00″E | December 2019 | 174 | 1218 | 150 |
OWF | Before Commissioning Envisat Sentinel 1A/B | After Commissioning Sentinel 1A/1B | |
---|---|---|---|
Anholt | 1310 | 0 | 1371 |
Horns Rev cluster | 268 | 0 | 364 |
Butendiek | 1140 | 60 | 1189 |
Nordsee cluster | 1020 | 2 | 547 |
East Anglia One | 781 | 774 | 162 |
Global Tech cluster | 1083 | 641 | 227 |
Greater Gabbard and Galloper | 827 | 0 | 549 |
Hornsea Project One | 832 | 572 | 173 |
Total | 7261 | 2049 | 4582 |
Westerly | Easterly | Southerly | |||||||
---|---|---|---|---|---|---|---|---|---|
OWF/Cluster | Before | After | Ratio (%) | Before | After | Ratio (%) | Before | After | Ratio (%) |
Anholt | 363 | 343 | 94.4 | 188 | 178 | 94.7 | 262 | 178 | 67.9 |
Horns Rev cluster | 82 | 113 | 137.8 | 68 | 39 | 57.3 | 68 | 39 | 57.3 |
Butendiek | 368 | 430 | 116.8 | 197 | 180 | 91.4 | 239 | 233 | 97.5 |
Nordsee cluster | 320 | 196 | 61.25 | 148 | 84 | 56.7 | 203 | 165 | 81.3 |
East Anglia One | 473 | 32 | 6.76 | 215 | 18 | 8.3 | 368 | 47 | 12.8 |
Global Tech cluster | 574 | 76 | 13.2 | 250 | 43 | 17.2 | 348 | 68 | 19.5 |
Greater Gabbard and Galloper | 212 | 39 | 18.4 | 99 | 42 | 42.4 | 193 | 39 | 20.2 |
Hornsea Project One | 393 | 44 | 11.20 | 153 | 14 | 9.15 | 279 | 25 | 9.0 |
Total | 2785 | 1273 | 1318 | 598 | 1960 | 794 |
OWFs/Cluster | Westerly | ΔU (%) Easterly | ΔU (%) Southerly | Average ΔU (%) |
---|---|---|---|---|
Anholt | 2 | 5.8 | 2.5 | 3.4 |
Horns Rev cluster | 6.8 | 4 | 4 | 4.9 |
Butendiek | 4 | 5 | 2.5 | 3.8 |
Nordsee cluster | 3 | 6.8 | 7.5 | 5.8 |
East Anglia One | 7 | 4 | 8 | 6.3 |
Global Tech cluster | 8.2 | 5 | 4 | 5.7 |
Greater Gabbard and Galloper | 2 | 9.5 | 10 | 7.17 |
Hornsea Project One | 7 | 10.2 | 5 | 7.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owda, A.; Badger, M. Wind Speed Variation Mapped Using SAR before and after Commissioning of Offshore Wind Farms. Remote Sens. 2022, 14, 1464. https://doi.org/10.3390/rs14061464
Owda A, Badger M. Wind Speed Variation Mapped Using SAR before and after Commissioning of Offshore Wind Farms. Remote Sensing. 2022; 14(6):1464. https://doi.org/10.3390/rs14061464
Chicago/Turabian StyleOwda, Abdalmenem, and Merete Badger. 2022. "Wind Speed Variation Mapped Using SAR before and after Commissioning of Offshore Wind Farms" Remote Sensing 14, no. 6: 1464. https://doi.org/10.3390/rs14061464