Quantification of Off-Channel Inundated Habitat for Pacific Chinook Salmon (Oncorhynchus tshawytscha) along the Sacramento River, California, Using Remote Sensing Imagery
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Data
2.2. Estimate of Inundation Extent
2.3. Off-Channel Habitat Availability
2.4. Estimate of Off-Channel Habitat Residence Time
3. Results
3.1. Indices’ Threshold
3.1.1. mNDWI
3.1.2. AWEInsh and AWEIsh
3.2. Mid-Sacramento River Inundated Area
3.2.1. Computed Inundated Area
3.2.2. Flow-Inundation Relationship
3.2.3. Spatial Distribution of Inundated Areas
3.2.4. Estimates Comparison between Indices, Threshold Methodology, and Remote Sensing Products
3.3. Off-Channel Inundation Residence Time
4. Discussion
4.1. Off-Channel Habitat Identification Using Spectral Indices, Threshold Methodology and Remote Sensing Products
4.2. Off-Channel Habitat Residence Time
4.3. Available Off-Channel Habitat
4.4. Management Implications for Sacramento River Pacific Salmon
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kondolf, G.M.; Montgomery, D.R.; Piégay, H.; Schmitt, L. Geomorphic classification of rivers and streams. Tools Fluv. Geomorphol. 2003, 7, 171–204. [Google Scholar]
- Lewin, J.; Brewer, P.A.; Wohl, E. Fluvial Geomorphology. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 1989, 1061, 110–127. [Google Scholar]
- Sommer, T.R.; Nobriga, M.L.; Harrell, W.C.; Batham, W.; Kimmerer, W.J. Floodplain rearing of juvenile Chinook salmon: Evidence of enhanced growth and survival. Can. J. Fish. Aquat. Sci. 2001, 58, 325–333. [Google Scholar] [CrossRef]
- Tockner, K.; Stanford, J.A. Riverine flood plains: Present state and future trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef] [Green Version]
- Opperman, J.J.; Luster, R.; McKenney, B.A.; Roberts, M.; Meadows, A.W. Ecologically Functional Floodplains: Connectivity, Flow Regime, and Scale1. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 211–226. [Google Scholar] [CrossRef]
- Grosholz, E.; Gallo, E. The influence of flood cycle and fish predation on invertebrate production on a restored California floodplain. Hydrobiologia 2006, 568, 91–109. [Google Scholar] [CrossRef]
- Ahearn, D.S.; Viers, J.H.; Mount, J.F.; Dahlgren, R.A. Priming the productivity pump: Flood pulse driven trends in suspended algal biomass distribution across a restored floodplain. Freshw. Biol. 2006, 51, 1417–1433. [Google Scholar] [CrossRef]
- Corline, N.J.; Sommer, T.; Jeffres, C.A.; Katz, J. Zooplankton ecology and trophic resources for rearing native fish on an agricultural floodplain in the Yolo Bypass California, USA. Wetl. Ecol. Manag. 2017, 25, 533–545. [Google Scholar] [CrossRef]
- Humphries, P.; King, A.J.; Koehn, J.D. Fish, Flows and Flood Plains: Links between Freshwater Fishes and their Environment in the Murray-Darling River System, Australia. J. Appl. Phycol. 1999, 56, 129–151. [Google Scholar] [CrossRef]
- Lytle, D.A.; Poff, N.L. Adaptation to natural flow regimes. Trends Ecol. Evol. 2004, 19, 94–100. [Google Scholar] [CrossRef]
- Whited, D.C.; Kimball, J.S.; Lucotch, J.A.; Maumenee, N.K.; Wu, H.; Chilcote, S.D.; Stanford, J.A. A Riverscape Analysis Tool Developed to Assist Wild Salmon Conservation Across the North Pacific Rim. Fisheries 2012, 37, 305–314. [Google Scholar] [CrossRef]
- Gallart, F.; Llorens, P.; Latron, J.; Cid, N.; Rieradevall, M.; Prat, N. Validating alternative methodologies to estimate the regime of temporary rivers when flow data are unavailable. Sci. Total Environ. 2016, 565, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Roni, P.; Hall, J.E.; Drenner, S.M.; Arterburn, D. Monitoring the effectiveness of floodplain habitat restoration: A review of methods and recommendations for future monitoring. WIREs Water 2019, 6, 1355. [Google Scholar] [CrossRef]
- Sommer, T.R.; Harrell, W.C.; Solger, A.M.; Tom, B.; Kimmerer, W. Effects of flow variation on channel and floodplain biota and habitats of the Sacramento River, California, USA. Aquat. Conserv. Mar. Freshw. Ecosyst. 2004, 14, 247–261. [Google Scholar] [CrossRef]
- Kelley, R. Battling the Inland Sea: Floods, Public Policy, and the Sacramento Valley; University of California Press: Berkeley, CA, USA, 1989. [Google Scholar]
- Hanak, E.; Lund, J.R.; Dinar, A.; Gray, B.; Howitt, R.; Mount, J.; Moyle, P.; Thompson, B. Managing California’s Water: From Conflict to Reconciliation; Public Policy Institute of California: San Francisco, CA, USA, 2011. [Google Scholar]
- Kondolf, G.M.; Stillwater Sciences. Sacramento River Ecological Flows Study: Off-Channel Habitat Study Results; Technical Report prepared for The Nature Conservancy; Kondolf, G.M., Ed.; Stillwater Sciences: Berkeley, CA, USA; Chico, CA, USA, 2007. [Google Scholar]
- Moyle, P.B. Inland Fishes of California: Revised and Expanded; University of California Press: Berkeley, CA, USA, 2002. [Google Scholar]
- U.S. Bureau of Reclamation (USBR). Reinitiation of Consultation on the Coordinated Long-Term Operation of the Central Vallley Project and State Water Project. Final Biological Assessment; U.S. Department of the Interior: Washington, DC, USA, 2019.
- Maslin, P.E.; McKinney, W.R.; Moore, T.L. Intermittent streams as rearing habitat for Sacramento River Chinook salmon. In Anadromous Fish Restoration Program; United States Fish and Wildlife Service, Stockton: Washington, DC, USA, 1996. [Google Scholar]
- Limm, M.P.; Marchetti, M.P. Juvenile Chinook salmon (Oncorhynchus tshawytscha) growth in off-channel and main-channel habitats on the Sacramento River, CA using otolith increment widths. J. Appl. Phycol. 2009, 85, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Bellido-Leiva, F.J.; Lusardi, R.A.; Lund, J.R. Modeling the effect of habitat availability and quality on endangered winter-run Chinook salmon (Oncorhynchus tshawystscha) production in the Sacramento Valley. Ecol. Model. 2021, 447, 109511. [Google Scholar] [CrossRef]
- Woodson, L.E.; Wells, B.K.; Weber, P.K.; MacFarlane, R.B.; Whitman, G.E.; Johnson, R.C. Size, growth, and origin-dependent mortality of juvenile Chinook salmon Oncorhynchus tshawytscha during early ocean residence. Mar. Ecol. Prog. Ser. 2013, 487, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Yoshiyama, R.M.; Fisher, F.W.; Moyle, P.B. Historical Abundance and Decline of Chinook Salmon in the Central Valley Region of California. N. Am. J. Fish. Manag. 1998, 18, 487–521. [Google Scholar] [CrossRef]
- National Marine Fisheries Service (NMFS). Recovery Plan for the Evolutionarily Significant Units of Sacramento River Winter-Run Chinook Salmon and Central Valley Spring-Run Chinook Salmon and the Distinct Population Segment of California Central Valley Steelhead; California Central Valley Area Office: Sacramento, CA, USA, 2014.
- Peterson, J.T.; Duarte, A. Decision analysis for greater insights into the development and evaluation of Chinook salmon restoration strategies in California’s Central Valley. Restor. Ecol. 2020, 28, 1596–1609. [Google Scholar] [CrossRef]
- Whited, D.C.; Kimball, J.S.; Lorang, M.S.; Stanford, J.A. Estimation of juvenile salmon habitat in Pacific Rim rivers using multiscalar remote sensing and geospatial analysis. River Res. Appl. 2013, 29, 135–148. [Google Scholar] [CrossRef]
- Chen, Y.; Cuddy, S.M.; Wang, B.; Merrin, L.E.; Pollock, D.; Sims, N. Linking inundation timing and extent to ecological response models using the Murray-Darling Basin Floodplain Inundation Model (MDB-FIM). In Proceedings of the MODSIM2011, 19th International Congress on Modelling and Simulation, Perth, Australia, 12–15 December 2011; Chan, F., Marinova, D., Anderssen, R.S., Eds.; Modelling and Simulation Society of Australia and New Zealand: Perth, Australia, 2011; pp. 4092–4098. [Google Scholar]
- Huang, C.; Chen, Y.; Wu, J.; Yu, J. Detecting floodplain inundation frequency using MODIS time-series imagery. In Proceedings of the 1st International Conference on Agro-Geoinformatics (Agro-Geoinformatics2012), Shanghai, China, 2–4 August 2012. [Google Scholar]
- Huang, C.; Chen, Y.; Wu, J. A DEM-based modified pixel swapping algorithm for floodplain inundation mapping at subpixel scale. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGASS), Melbourne, Australia, 21–26 July 2013. [Google Scholar]
- Huang, C.; Chen, Y.; Wu, J. Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and MODIS imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 350–362. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, B.; Pollino, C.; Cuddy, S.; Merrin, L.; Huang, C. Estimate of flood inundation and retention on wetlands using remote sensing and GIS. Ecohydrology 2013, 7, 1412–1420. [Google Scholar] [CrossRef]
- Wang, Y.; Colby, J.D.; Mulcahy, K.A. An efficient method for mapping flood extent in a coastal flood plain using Landsat TM and DEM data. Int. J. Remote Sens. 2002, 23, 3681–3696. [Google Scholar] [CrossRef]
- Frazier, P.; Page, K.; Louis, J.; Briggs, S.; Robertson, A. Relating wetland inundation to river flow using Landsat TM data. Int. J. Remote Sens. 2003, 24, 3755–3770. [Google Scholar] [CrossRef]
- Knebl, M.R.; Yang, Z.L.; Hutchison, K.; Maidment, D.R. Regional scale flood modelling using NEXRAD, rainfall, GIS and HEC-HMS\RAS: A case study for the San Antonio River basin summer 2002 storm event. J. Environ. Manag. 2005, 75, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Liew, S.C. The Mekong from satellite imagery: A quick look at a large river. Geomorphology 2007, 85, 259–274. [Google Scholar] [CrossRef]
- Hou, J.; van Dijk, A.I.J.M.; Renzullo, L.J.; Vertessy, R.A.; Mueller, N. Hydromorphological attributes for all Australian river reaches derived from Landsat dynamic inundation remote sensing. Earth Syst. Sci. Data 2019, 11, 1003–1015. [Google Scholar] [CrossRef] [Green Version]
- Brennan, S.R.; Schindler, D.E.; Cline, T.J.; Walsworth, T.E.; Buck, G.; Fernandez, D.P. Shifting habitat mosaics and fish production across river basins. Science 2019, 364, 783–786. [Google Scholar] [CrossRef] [PubMed]
- Whited, D.C.; Stanford, J.A.; Kimball, J.S. Application of airborne multispectral digital imagery to characterize riverine habitats at different base flows. River Res. Appl. 2002, 18, 583–594. [Google Scholar] [CrossRef]
- Gilvear, D.J.; Davids, C.; Tyler, A.N. The use of remotely sensed data to detect channel hydromorphology; River Tummel, Scotland. River Res. Appl. 2004, 20, 795–811. [Google Scholar] [CrossRef]
- Gilvear, D.J.; Sutherland, P.; Higgins, T. An assessment of the use of remote sensing to map habitat features important to sustaining lamprey populations. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 807–818. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Roberts, D.A.; Marcus, W.A.; Fonstad, M.A. Passive optical remote sensing of river channel morphology and in-stream habitat: Physical basis and feasibility. Remote Sens. Environ. 2004, 93, 493–510. [Google Scholar] [CrossRef] [Green Version]
- Luck, M.A.; Maumenee, N.; Whited, D.; Lucotch, J.; Chilcote, S.; Lorang, M.; Goodman, D.; McDonald, K.; Kimball, J.; Stanford, J. Remote sensing analysis of physical complexity of North Pacific Rim rivers to assist wild salmon conservation. Earth Surf. Processes Landf. 2010, 35, 1330–1342. [Google Scholar] [CrossRef]
- Wirth, L.; Rosenberger, A.; Prakash, A.; Gens, R.; Margraf, F.J.; Hamazaki, T. A Remote-Sensing, GIS-Based Approach to Identify, Characterize, and Model Spawning Habitat for Fall-Run Chum Salmon in a Sub-Arctic, Glacially Fed River. Trans. Am. Fish. Soc. 2012, 141, 1349–1363. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K.; Arscott, D.B.; Claret, C. Riverine landscape diversity. Freshw. Biol. 2002, 47, 517–539. [Google Scholar] [CrossRef] [Green Version]
- Whited, D.C.; Lorang, M.S.; Harner, M.J.; Hauer, F.R.; Kimball, J.S.; Stanford, J.A. Climate, Hydrologic Disturbance, and Succession: Drivers of Floodplain Pattern. Ecology 2007, 88, 940–953. [Google Scholar] [CrossRef] [Green Version]
- Stanford, J.A.; Lorang, M.S.; Hauer, F.R. The shifting habitat mosaic of river ecosystems. Int. Ver. Theor. Angew. Limnol. 2005, 29, 123–136. [Google Scholar] [CrossRef]
- Shelton, M.L. Unimpaired and Regulated Discharge in the Sacramento River Basin, California. Yearb. Assoc. Pac. Coast Geogr. 1995, 57, 134–157. [Google Scholar] [CrossRef]
- Ralph, F.M.; Cordeira, J.M.; Neiman, P.J.; Hughes, M. Landfalling Atmospheric Rivers, the Sierra Barrier Jet, and Extreme Daily Precipitation in Northern California’s Upper Sacramento River Watershed. J. Hydrometeorol. 2016, 17, 1905–1914. [Google Scholar] [CrossRef]
- Kim, J.; Waliser, D.E.; Neiman, P.J.; Guan, B.; Ryoo, J.-M.; Wick, G.A. Effects of atmospheric river landfalls on the cold season precipitation in California. Clim. Dyn. 2013, 40, 465–474. [Google Scholar] [CrossRef]
- Kingsmill, D.E.; Neiman, P.J.; Moore, B.J.; Hughes, M.; Yuter, S.E.; Ralph, F.M. Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Mon. Weather Rev. 2013, 141, 2015–2036. [Google Scholar] [CrossRef] [Green Version]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef] [Green Version]
- Sommer, T.R.; Baxter, R.D.; Feyrer, F. Splittail Delisting: A Review of Recent Population Trends and Restoration Activities. Am. Fish. Soc. Symp. 2007, 53, 38. [Google Scholar]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Chowdary, V.; Chandran, R.V.; Neeti, N.; Bothale, R.; Srivastava, Y.; Ingle, P.; Ramakrishnan, D.; Dutta, D.; Jeyaram, A.; Sharma, J.; et al. Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. Agric. Water Manag. 2008, 95, 754–766. [Google Scholar] [CrossRef]
- Hui, F.; Xu, B.; Huang, H.; Yu, Q.; Gong, P. Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery. Int. J. Remote Sens. 2008, 29, 5767–5784. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Mohammadi, A.; Costelloe, J.F.; Ryu, D. Application of time series of remotely sensed normalized difference water, vegetation and moisture indices in characterizing flood dynamics of large-scale arid zone floodplains. Remote Sens. Environ. 2017, 190, 70–82. [Google Scholar] [CrossRef]
- Mishra, V.K.; Pant, T. Open surface water index: A novel approach for surface water mapping and extraction using multispectral and multisensory data. Remote Sens. Lett. 2020, 11, 973–9822. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zhenhua, Z.; Qin, Y. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Du, Z.; Li, W.; Zhou, D.; Tian, L.; Ling, F.; Wang, H.; Gui, Y.; Sun, B. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 2014, 5, 672–681. [Google Scholar] [CrossRef]
- Xie, H.; Luo, X.; Xu, X.; Pan, H.; Tong, X. Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction. Int. J. Remote Sens. 2016, 37, 1826–1844. [Google Scholar] [CrossRef]
- Li, J.; Peng, B.; Wei, Y.; Ye, H. Accurate extraction of surface water in complex environment based on Google Earth Engine and Sentinel-2. PLoS ONE 2021, 16, e0253209. [Google Scholar] [CrossRef] [PubMed]
- Lusardi, R.A.; Hammock, B.G.; Jeffres, C.A.; Dahlgren, R.; Kiernan, J.D. Oversummer growth and survival of juvenile coho salmon (Oncorhynchus kisutch) across a natural gradient of stream water temperature and prey availability: An in situ enclosure experiment. Can. J. Fish. Aquat. Sci. 2020, 77, 413–424. [Google Scholar] [CrossRef]
- Jeffres, C.A.; Holmes, E.J.; Sommer, T.R.; Katz, J.V. Detrital food web contributes to aquatic ecosystem productivity and rapid salmon growth in a managed floodplain. PLoS ONE 2020, 15, e0216019. [Google Scholar] [CrossRef]
- Zillig, K.W.; Lusardi, R.A.; Moyle, P.B.; Fangue, N.A. One size does not fit all: Variation in thermal eco-physiology among Pacific salmonids. Rev. Fish Biol. Fish. 2021, 31, 95–114. [Google Scholar] [CrossRef]
- Lyon, J.; Stuart, I.; Ramsey, D.; O’Mahony, J. The effect of water level on lateral movements of fish between river and off-channel habitats and implications for management. Mar. Freshw. Res. 2010, 61, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Lacey, R.W.; Millar, R.G. Reach scale hydraulic assessment of instream salmonid habitat restoration. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 1631–1644. [Google Scholar] [CrossRef]
- Mason, J.C.; Handscomb, D.C. Chebyshev Polynomials; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- del Rosario, R.B.; Redler, Y.J.; Newman, K.; Brandes, P.L.; Sommer, T.; Reece, K.; Vincik, R. Migration Patterns of Juvenile Winter-run-sized Chinook Salmon (Oncorhynchus tshawytscha) through the Sacramento–San Joaquin Delta. San Fr. Estuary Watershed Sci. 2013, 11, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Moyle, P.B.; Lusardi, R.A.; Samuel, P.J.; Katz, J.V. State of the Salmonids: Status of California’s Emblematic Fishes, 2017; Technical Report prepared for California Trout; University of California: Davis, CA, USA, 2017. [Google Scholar]
- National Marine Fisheries Service (NMFS). Species in the Spotlight: Sacramento River Winter-run Chinook Salmon. Priority Actions 2021–2025; California Central Valley Area Office: Sacramento, CA, USA, 2021.
- Yagmur, N.; Musaoglu, N.; Taskin, G. Detection of Shallow Water area with Machine Learning Algorithms. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1269–1273. [Google Scholar] [CrossRef] [Green Version]
- Petersen-Øverleir, A. Modelling stage—discharge relationships affected by hysteresis using the Jones formula and nonlinear regression. Hydrol. Sci. J. 2006, 51, 365–388. [Google Scholar] [CrossRef] [Green Version]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Fenton, J.D.; Keller, R.J. The Calculation of Streamflow from Measurements of Stage; Report 01/6; CRC for Catchment Hydrology: Victoria, Australia, September 2001; p. 84. [Google Scholar]
- Czuba, J.A.; David, S.R.; Edmonds, D.A.; Ward, A.S. Dynamics of surface-water connectivity in a low-gradient meandering river floodplain. Water Resour. Res. 2019, 55, 1849–1870. [Google Scholar] [CrossRef]
- Yarnell, S.M.; Petts, G.E.; Schmidt, J.C.; Whipple, A.A.; Beller, E.E.; Dahm, C.N.; Goodwin, P.; Viers, J.H. Functional Flows in Modified Riverscapes: Hydrographs, Habitats and Opportunities. Bioscience 2015, 65, 963–972. [Google Scholar] [CrossRef] [Green Version]
- Horne, A.; Szemis, J.M.; Kaur, S.; Webb, J.A.; Stewardson, M.J.; Costa, A.; Boland, N. Optimization tools for environmental water decisions: A review of strengths, weaknesses, and opportunities to improve adoption. Environ. Modell. Softw. 2016, 84, 326–338. [Google Scholar] [CrossRef]
- Horne, A.; Kaur, S.; Szemis, J.; Costa, A.; Webb, J.A.; Nathan, R.; Stewardson, M.; Lowe, L.; Boland, N. Using optimization to develop a “designer” environmental flow regime. Environ. Model. Softw. 2017, 88, 188–199. [Google Scholar] [CrossRef]
- Chen, W.; Olden, J.D. Designing flows to resolve human and environmental water needs in a dam-regulated river. Nat. Commun. 2017, 8, 2158. [Google Scholar] [CrossRef] [PubMed]
- Lane, B.; Ortiz-Partida, J.P.; Sandoval-Solis, S. Extending water resources performance metrics to river ecosystems. Ecol. Indic. 2020, 114, 106336. [Google Scholar] [CrossRef] [Green Version]
- Stein, E.D.; Zimmerman, J.; Yarnell, S.M.; Stanford, B.; Lane, B.; Taniguchi-Quan, K.T.; Obester, A.; Grantham, T.E.; Lusardi, R.A.; Sandoval-Solis, S. The California Environmental Flows Framework: Meeting the Challenges of Developing a Large-Scale Environmental Flows Program. Front. Environ. Sci. 2021, 9, 481. [Google Scholar] [CrossRef]
- Yarnell, S.M.; Stein, E.D.; Webb, J.A.; Grantham, T.; Lusardi, R.A.; Zimmerman, J.; Peek, R.A.; Lane, B.A.; Howard, J.; Sandoval-Solis, S. A functional flows approach to selecting ecologically relevant flow metrics for environmental flow applications. River Res. Appl. 2020, 36, 318–324. [Google Scholar] [CrossRef]
- Palmer, M.; Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 2019, 365, eaaw2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, J. Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biol. Conserv. 1998, 83, 269–278. [Google Scholar] [CrossRef]
- Jeffres, C.A.; Opperman, J.J.; Moyle, P.B. Ephemeral floodplain habitats provide best growth conditions for juvenile Chinook salmon in a California river. J. Appl. Phycol. 2008, 83, 449–458. [Google Scholar] [CrossRef]
- Ward, J.V.; Stanford, J.A. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul. Rivers Res. Manag. 1995, 11, 105–119. [Google Scholar] [CrossRef]
Spectral Region | USGS LandSat-8 | Sentinel-2 | ||||
---|---|---|---|---|---|---|
Band | Wavelength (μm) | Pixel Size (m) | Band | Wavelength (μm) | Pixel Size (m) | |
Blue | 2 | 0.45–0.51 | 30 | 2 | 0.4966 | 10 |
Green | 3 | 0.53–0.59 | 30 | 3 | 0.560 | 10 |
Red | 4 | 0.64–0.67 | 30 | 4 | 0.6645 | 10 |
Near Infrared (NIR) | 5 | 0.85–0.88 | 30 | 8 | 0.8351 | 10 |
Shortwave Infrared 1 (SWIR1) | 6 | 1.57–1.65 | 30 | 11 | 1.6137 | 20 |
Shortwave Infrared 2 (SWIR2) | 7 | 2.11–2.29 | 30 | 12 | 2.2024 | 20 |
Product | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LandSat-8 | 12 | 8 | 13 | 20 | 23 | 28 | 29 | 26 | 24 | 28 | 16 | 12 |
Sentinel-2 | 2 | 5 | 7 | 3 | 5 | 11 | 11 | 10 | 7 | 12 | 8 | 5 |
OCWB | Latitude | Longitude | Sacramento River Flow (m3/s) |
---|---|---|---|
Site 14 (RM 187R) | 39.673 | −121.992 | >730 |
Site 15 (RM 189.5L) | 39.672 | −121.980 | >650 |
Site 17 (RM 191.7R) | 39.689 | −121.955 | >870 |
Site 22 (RM 203R) | 39.786 | −122.034 | >650 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellido-Leiva, F.J.; Lusardi, R.A.; Lund, J.R. Quantification of Off-Channel Inundated Habitat for Pacific Chinook Salmon (Oncorhynchus tshawytscha) along the Sacramento River, California, Using Remote Sensing Imagery. Remote Sens. 2022, 14, 1443. https://doi.org/10.3390/rs14061443
Bellido-Leiva FJ, Lusardi RA, Lund JR. Quantification of Off-Channel Inundated Habitat for Pacific Chinook Salmon (Oncorhynchus tshawytscha) along the Sacramento River, California, Using Remote Sensing Imagery. Remote Sensing. 2022; 14(6):1443. https://doi.org/10.3390/rs14061443
Chicago/Turabian StyleBellido-Leiva, Francisco J., Robert A. Lusardi, and Jay R. Lund. 2022. "Quantification of Off-Channel Inundated Habitat for Pacific Chinook Salmon (Oncorhynchus tshawytscha) along the Sacramento River, California, Using Remote Sensing Imagery" Remote Sensing 14, no. 6: 1443. https://doi.org/10.3390/rs14061443
APA StyleBellido-Leiva, F. J., Lusardi, R. A., & Lund, J. R. (2022). Quantification of Off-Channel Inundated Habitat for Pacific Chinook Salmon (Oncorhynchus tshawytscha) along the Sacramento River, California, Using Remote Sensing Imagery. Remote Sensing, 14(6), 1443. https://doi.org/10.3390/rs14061443