Study on the Classification and Change Detection Methods of Drylands in Arid and Semi-Arid Regions
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Introduction
3. Methodology
3.1. Classification Method of Status
3.1.1. Feature Selection
Features by Remote Sensing
Environmental Factors
Critical Phases
3.1.2. Classifier
3.2. Change Types Detection Method
3.3. Verification Method
4. Results
4.1. Verification of Status Classification Results
4.1.1. Confusion Matrix Verification
4.1.2. Comparison of Classification Results and Statistical Data
4.2. Verification of Change Classification
4.3. Distribution and Comparison with Existing Data
4.4. Changes Distribution of Irrigated and Rainfed Drylands
5. Discussion
5.1. Classification Method of Irrigated and Rainfed Drylands
5.2. Classification Results of Irrigated and Rainfed Drylands
5.3. Classification of Change Types
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tingting, D. Remote Sensing Classification and Landscape Pattern of Irrigated Land and Dry Land in China; Chinese Academy of Sciences: Beijing, China, 2009. [Google Scholar]
- FAO. The State of Food and Agriculture 2019; Food and Agricultural Organization of the United Nations: Rome, Italy, 2019; Available online: https://www.fao.org/state-of-food-agriculture/2019/pt/ (accessed on 22 January 2022).
- (UNCSD), U.N.C.o.S.D. Comprehensive Assessment of the Freshwater Resources of the World; Report E/CN.17/1997/9; Stockholm Environment Institute (SEI): Stockholm, Sweden, 1997. [Google Scholar]
- Feng, C.; Hongbo, W.; Wenju, Y. Survey and evaluation of cultivated land quality grade in China. China Land Sci. 2014, 28, 75–82+97. [Google Scholar]
- Cameira, M.d.R.; Santos Pereira, L. Innovation Issues in Water, Agriculture and Food. Water-Sui 2019, 11, 1230. [Google Scholar] [CrossRef] [Green Version]
- Popova, Z.; Kercheva, M. CERES model application for increasing preparedness to climate variability in agricultural planning—risk analyses. Phys. Chem. Earth Parts A/B/C 2005, 30, 117–124. [Google Scholar] [CrossRef]
- Mingguo, J. Forecast and prevention of the soil erosion in typical irrigation district of Kunes River basin. Water Sci. Eng. Technol. 2010, 42–44. [Google Scholar] [CrossRef]
- Ruonan, J.; Wuping, Z.; Shuai, H. Resource and Environment Impact Assessment of Winter Wheat Production in Dry Land and Irrigated Land. J. Shanxi Agric. Sci. 2018, 46, 928–933+961. [Google Scholar]
- Yu, M.; Li, Q.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951-2010? Int. J. Climatol. 2014, 34, 545–558. [Google Scholar] [CrossRef]
- Huo, Z.; Dai, X.; Feng, S.; Kang, S.; Huang, G. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. J. Hydrol. 2013, 492, 24–34. [Google Scholar] [CrossRef]
- Ayantobo, O.O.; Li, Y.; Song, S.; Yao, N. Spatial comparability of drought characteristics and related return periods in mainland China over 1961–2013. J. Hydrol. 2017, 550, 549–567. [Google Scholar] [CrossRef]
- Zhang, C.; Ye, Y.; Fang, X.; Li, H.; Wei, X. Synergistic Modern Global 1 Km Cropland Dataset Derived from Multi-Sets of Land Cover Products. Remote Sens-Basel 2019, 11, 2250. Remote Sens. 2019, 11, 2250. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, W.; Li, H.; Imtiaz, M.; Li, Z.; Zhou, Q. Intercomparison on Four Irrigated Cropland Maps in Mainland China. Sensors 2018, 18, 1197. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Auch, R.F.; Vogelmann, J.E.; Feng, M.; Rigge, M.; Senay, G.; Verdin, J.P. Case Study Comparing Multiple Irrigated Land Datasets in Arizona and Colorado, USA. J. Am. Water Resour. 2018, 54, 505–526. [Google Scholar] [CrossRef]
- Salmon, J.M.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. Global rain-fed, irrigated, and paddy croplands: A new high-resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 321–334. [Google Scholar] [CrossRef]
- Nagaraj, D.; Proust, E.; Todeschini, A.; Rulli, M.C.; D’Odorico, P. A new dataset of global irrigation areas from 2001 to 2015. Adv. Water Resour. 2021, 152, 103910. [Google Scholar] [CrossRef]
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Henrich, V.; Frenken, K.; Burke, J. Update of the Digital Global Map of Irrigation Areas to Version 5; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar] [CrossRef]
- Samasse, K.; Hanan, N.P.; Anchang, J.Y.; Diallo, Y. A High-Resolution Cropland Map for the West African Sahel Based on High-Density Training Data, Google Earth Engine, and Locally Optimized Machine Learning. Remote. Sens. 2020, 12, 1436. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Rojas, F.; Rubio, C.; Rizzo, M.; Bernabeu, M.; Akil, N.; Martín, F. Land Use and Land Cover in Irrigated Drylands: A Long-Term Analysis of Changes in the Mendoza and Tunuyán River Basins, Argentina (1986–2018). Appl. Spat. Anal. Policy 2020, 13, 875–899. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, W.; Zhang, J.; Pan, Y. Mapping Irrigated Areas in China from Remote Sensing and Statistical Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4490–4504. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, W.; Li, Z.; Zhou, Q. Extracting irrigated cropland spatial distribution in China based on time-series NDVI. Trans. Chin. Soc. Agric. Eng. 2017, 33, 276–284. [Google Scholar] [CrossRef]
- Xiang, K.; Yuan, W.; Wang, L.; Deng, Y. An LSWI-Based Method for Mapping Irrigated Areas in China Using Moderate-Resolution Satellite Data. Remote Sens. 2020, 12, 4181. [Google Scholar] [CrossRef]
- Xiang, K.; Ma, M.; Liu, W.; Dong, J.; Zhu, X.; Yuan, W. Mapping Irrigated Areas of Northeast China in Comparison to Natural Vegetation. Remote Sens. 2019, 11, 825. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhang, Z.; Zuo, L.; Sun, F.; Pan, T.; Li, J.; Zhao, X.; Wang, X. The Detecting of Irrigated Croplands Changes in 1987–2015 in Zhangjiakou. IEEE Access 2021, 9, 96076–96091. [Google Scholar] [CrossRef]
- Ma, Z.; Zheng, D.; Duan, Y.; Tuo, D.; Chen, Z. Problems and Countermeasures of Ecology and Sustainable Development of Agriculture in the Ecotone of the North Loess Plateau. Res. Soil Water Conserv. 2004, 11, 240–242. [Google Scholar]
- Yahui Liu, H.C. Problems and Suggestions of agricultural ecological Transformation in western China—A case study of Bayannur, Inner Mongolia. J. Shanxi Agric. Univ. 2022, 21, 19–25. [Google Scholar] [CrossRef]
- Songrui Ning, J.H.; Qili, H. Analysis of the change of cultivated land in Yulin City. Land Dev. Eng. Res. 2016, 2, 20–27. [Google Scholar]
- Feng Yang, S.G.; Chun, Y.; Tao, Y. Study on Optimization Layout of Cultivated Land and Basic Farmland of Shuozhou City in Shanxi Province. Resour. Dev. Mark. 2012, 28, 628–631, 635. [Google Scholar]
- Genglai Niu, H.W.; Wang, X.; Guo, F. Water saving analysis of agricultural comprehensive development in The Yellow River Irrigation area of Bayannur City. Inn. Mong. Water Conserv. 2006, 105, 14–15. [Google Scholar]
- Chen, S.; Hua, L.; He, Z.; Wei, D.; Xia Hou, G. Effect of Soil Erosion on Soil Properties in Deep Cultivated Hill Slope in Loess Plateau. Agro-Enviro. Prot. 2002, 21, 289–292. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 2010, 18, 2691–2697. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MYD11A1 MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006. Nasa Eosdis Land Process. Daac 2015. [Google Scholar] [CrossRef]
- Braithwaite, D.K.; Sorooshian, S.; Hsu, K.-L.; Ashouri, H.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Sorooshian, S.H.; Braithwaite, K.D.; Hamed, A. NOAA Climate Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR); National Oceanic and Atmospheric Administration: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhao, X.; Liu, B.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S. A 2010 update of National Land Use/Cover Database of China at 1:100000 scale using medium spatial resolution satellite images. Remote Sens. Environ. 2014, 149, 142–154. [Google Scholar] [CrossRef]
- Editorial Board and Editorial Staff of Yulin Statistical Yearbook 2017. Yulin Statistical Yearbook 2017; China Statistics Press: Beijing, China, 2017. [Google Scholar]
- Editorial Board and Editorial Staff of Shanxi Statistical Yearbook 2016. Shanxi Statistical Yearbook 2016; China Statistics Press: Beijing, China, 2016. [Google Scholar]
- Editorial Board and Editorial Staff of Shanxi Statistical Yearbook 2006. Shanxi Statistical Yearbook 2006; China Statistics Press: Beijing, China, 2006. [Google Scholar]
- Editorial Board and Editorial Staff of Xinzhou Statistical Yearbook 2006. Xinzhou Statistical Yearbook 2006; China Statistics Press: Beijing, China, 2006. [Google Scholar]
- Editorial Board and Editorial Staff of Yulin Statistical Yearbook 2006. Yulin Statistical Yearbook 2006; China Statistics Press: Beijing, China, 2006. [Google Scholar]
- Editorial Board and Editorial Staff of Xinzhou Statistical Yearbook 2016. Xinzhou Statistical Yearbook 2016; China Statistics Press: Beijing, China, 2016. [Google Scholar]
- Editorial Board and Editorial Staff of Inner Mongolia Statistical Yearbook 2016. Inner Mongolia Statistical Yearbook 2016; China Statistics Press: Beijing, China, 2016. [Google Scholar]
- Editorial Board and Editorial Staff of Bayannur Statistical Yearbook 2016. Bayannur Statistical Yearbook 2016; China Statistics Press: Beijing, China, 2016. [Google Scholar]
- Editorial Board and Editorial Staff of Bayannur Statistical Yearbook 2006. Bayannur Statistical Yearbook 2006; China Statistics Press: Beijing, China, 2006. [Google Scholar]
- Editorial Board and Editorial Staff of Inner Mongolia Statistical Yearbook 2006. Inner Mongolia Statistical Yearbook 2006; China Statistics Press: Beijing, China, 2006. [Google Scholar]
- Zeng, H.; Wu, B.; Zou, W.; Yan, N.; Zhang, M. Performance comparison of crop condition assessments in irrigated and rain-fed areas: A case study in Nebraska. J. Remote Sens. 2015, 19, 560–567. [Google Scholar]
- Jackson, T.J.; Chen, D.Y.; Cosh, M.; Li, F.Q.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Papagiannopoulou, C.; Miralles, D.G.; Decubber, S.; Demuzere, M.; Verhoest, N.E.C.; Dorigo, W.A.; Waegeman, W. A non-linear Granger-causality framework to investigate climate–vegetation dynamics. Geosci. Model Dev. 2017, 10, 1945–1960. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Liu, Y.; Xu, K.; Pan, Y. Effects of Drought on Vegetation Productivity of Farmland Ecosystems in the Drylands of Northern China. Remote Sens. 2021, 13, 1179. [Google Scholar] [CrossRef]
- Turner, N.C. Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. J. Exp. Bot. 2004, 55, 2413–2425. [Google Scholar] [CrossRef] [Green Version]
- Irmak, S.; Sharma, V. Large-scale and long-term trends and magnitudes in irrigated and rainfed maize and soybean water productivity: Grain yield and evapotranspiration frequency, crop water use efficiency, and production functions. Trans. ASABE 2015, 58, 103–120. [Google Scholar] [CrossRef]
- Ma, D. A Meta-Analysis on Effect of Agronomic Measures on Yield and Water Use Efficiency of Wheat and Maize in Northern China; The University of Chinese Academy of Sciences: Beijing, China, 2020. [Google Scholar]
- Guoqing, W.; Jianyun, Z.; Ruimin, H.E.; Xinai, J. Trends of temperature change in middle of Yellow River and its impact to the evaporation potential. J. Water Resour. Water Eng. 2007, 18, 32–36. [Google Scholar]
- Sun, D.; Kafatos, M. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett. 2007, 34, L24406. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.J.M.l. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- He, Y. Analysis of water resources exploitation and utilization in Wutai County. Shanxi Water Resour. 2014, 08, 6–8. [Google Scholar]
- Lei, C. Research on Water Resource Dispatching Model and Implementation of Dispatching Decision Support System in Hutuo River Basin. Master’s Thesis, China University of Geosciences, Beijing, China, 2019. [Google Scholar]
- Zhiyong, L. Application of Intelligent Water Meter for Agricultural Irrigation in Filtration Sihe Pumping Station. Intelligence 2011, 25, 68. [Google Scholar]
- Yong, Z. Discussion on countermeasures of sustainable development in agricultural irrigation area. Shanxi Water Conserv. 2007, 06, 85–86. [Google Scholar]
Phase | Feature | Importance |
---|---|---|
7–1 | NDVI/pre | 2.421076683 |
7–1 | NDVI/-LST | 2.759799328 |
7–1 | NDW/pre | 3.049326345 |
7–1 | NDWI/-LST | 1.812169093 |
7–2 | NDVI/pre | 1.910314563 |
7–2 | NDVI/-LST | 2.388141123 |
7–2 | NDW/pre | 3.365386511 |
7–2 | NDWI/-LST | 1.897729877 |
8–1 | NDVI/pre | 2.025320583 |
8–1 | NDVI/-LST | 3.767285626 |
8–1 | NDW/pre | 2.519476331 |
8–1 | NDWI/-LST | 2.092639257 |
8–2 | NDVI/pre | 0.908218837 |
8–2 | NDVI/-LST | 3.096507977 |
8–2 | NDW/pre | 2.958657798 |
8–2 | NDWI/-LST | 1.361460535 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
Classification factor | NDVI/P | NDVI/P | NDVI/P | NDVI/P | NDVI/P | NDVI | NDV Increment |
NDWI/-T | NDWI/-T | NDWI/-T | NDWI/-T | NDWI/-T | NDWI | NDWI increment | |
NDWI/P | NDWI/P | NDWI/P | NDWI/P | NDWI/P | |||
NDVI/-T | NDVI/-T | NDVI/-T | NDVI/-T | NDVI/-T | |||
Cumulative days | 15 | 30 | 60 | 90 | starts on 15 April | 30 | 30 |
Phases | 5–1 to 9–2 | 5–1 to 9–2 | 5–1 to 9–2 | 5–1 to 9–2 | 5–1 to 9–2 | 5–1 to 9–2 | 5–1 to 9–2 |
The overall accuracy | 0.853 | 0.857 | 0.822 | 0.843 | 0.84 | 0.824 | 0.784 |
Kappa coefficient | 0.694 | 0.697 | 0.631 | 0.671 | 0.664 | 0.632 | 0.556 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | |
Classification factor | NDVI increment/P increment | NDVI | NDVI/P | NDVI | NDVI/P | NDVI | NDVI/P |
NDWI increment/-T increment | NDWI | NDWI/-T | NDWI | NDWI/-T | NDWI | NDWI/-T | |
NDWI increment/P increment | NDWI/P | NDWI/P | NDWI/P | ||||
NDVI increment/-T increment | NDVI/-T | NDVI/-T | NDVI/-T | ||||
Cumulative days | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Phases | 5–1 to 9–2 | 6–2 to 8–1 | 6–2 to 8–1 | 7–1 to 8–2 | 7–1 to 8–2 | 6–1, 6–2 | 6–1, 6–2 |
The overall accuracy | 0.817 | 0.791 | 0.847 | 0.81 | 0.851 | 0.774 | 0.8 |
Kappa coefficient | 0.614 | 0.559 | 0.684 | 0.6 | 0.687 | 0.527 | 0.579 |
15 | 16 | 17 | 18 | 19 | 20 | ||
Classification factor | NDVI | NDVI/P | NDVI | NDVI/P | NDVI | NDVI/P | |
NDWI | NDWI/-T | NDWI | NDWI/-T | NDWI | NDWI/-T | ||
NDWI/P | NDWI/P | NDWI/P | |||||
NDVI/-T | NDVI/-T | NDVI/-T | |||||
Cumulative days | 30 | 30 | 30 | 30 | 30 | 30 | |
Phases | 7–1, 7–2 | 7–1, 7–2 | 8–1, 8–2 | 8–1, 8–2 | 7–2, 8–1 | 7–2, 8–1 | |
The overall accuracy | 0.795 | 0.839 | 0.792 | 0.838 | 0.817 | 0.86 | |
Kappa coefficient | 0.57 | 0.667 | 0.564 | 0.66 | 0.607 | 0.71 |
City | Taiyuan | Shuozhou | Xinzhou | Lvliang | Hushi | Baotou | Ordos | Bayannaoer | Yulin |
---|---|---|---|---|---|---|---|---|---|
Non-cultivated land | 45,477.78 | 45,139.71 | 162,476.05 | 125,306.93 | 106,938.28 | 65,092.35 | 841,678.40 | 121,785.44 | 246,892.39 |
Non-cultivated land to rainfed dryland | 2971.21 | 3994.10 | 12,151.23 | 12,602.47 | 5683.05 | 1960.06 | 8738.07 | 412.53 | 22,444.99 |
Non-cultivated land to irrigated dryland | 415.25 | 533.79 | 1458.60 | 404.07 | 1619.11 | 1295.50 | 11,425.43 | 6127.62 | 3893.23 |
Rainfed dryland to non-cultivated land | 4365.40 | 8033.43 | 14,271.17 | 15,607.43 | 5517.16 | 1571.47 | 5331.76 | 563.97 | 29,332.19 |
Rainfed dryland | 10,042.54 | 26,175.87 | 47,063.72 | 50,993.02 | 32,529.77 | 12,754.14 | 20,182.09 | 695.63 | 103,421.50 |
Rainfed dryland to irrigated dryland | 1261.59 | 2513.28 | 2885.15 | 1267.70 | 9029.89 | 3023.80 | 3170.75 | 2168.54 | 6039.73 |
Irrigated dryland to non-cultivated land | 1472.54 | 775.59 | 2246.60 | 1311.50 | 1445.86 | 2250.71 | 3912.57 | 5162.55 | 3949.21 |
Irrigated dryland to rainfed dryland | 2134.59 | 2098.22 | 5032.12 | 3753.54 | 3771.33 | 4960.14 | 3232.69 | 996.16 | 11,748.95 |
irrigated dryland | 2646.76 | 9273.03 | 13,486.74 | 4700.51 | 16,218.18 | 12,553.71 | 11,074.32 | 51,448.95 | 12,426.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Zhang, Z.; Zuo, L.; Pan, T.; Zhao, X.; Wang, X.; Sun, F.; Xu, J.; Liu, Z. Study on the Classification and Change Detection Methods of Drylands in Arid and Semi-Arid Regions. Remote Sens. 2022, 14, 1256. https://doi.org/10.3390/rs14051256
Zhu Z, Zhang Z, Zuo L, Pan T, Zhao X, Wang X, Sun F, Xu J, Liu Z. Study on the Classification and Change Detection Methods of Drylands in Arid and Semi-Arid Regions. Remote Sensing. 2022; 14(5):1256. https://doi.org/10.3390/rs14051256
Chicago/Turabian StyleZhu, Zijuan, Zengxiang Zhang, Lijun Zuo, Tianshi Pan, Xiaoli Zhao, Xiao Wang, Feifei Sun, Jinyong Xu, and Ziyuan Liu. 2022. "Study on the Classification and Change Detection Methods of Drylands in Arid and Semi-Arid Regions" Remote Sensing 14, no. 5: 1256. https://doi.org/10.3390/rs14051256
APA StyleZhu, Z., Zhang, Z., Zuo, L., Pan, T., Zhao, X., Wang, X., Sun, F., Xu, J., & Liu, Z. (2022). Study on the Classification and Change Detection Methods of Drylands in Arid and Semi-Arid Regions. Remote Sensing, 14(5), 1256. https://doi.org/10.3390/rs14051256