Response of Vegetation Phenology to the Interaction of Temperature and Precipitation Changes in Qilian Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. Meteorology Data
2.2.2. NDVI Data
2.2.3. Landcover Data
2.3. Methods
2.3.1. Extraction of Phenology
- (a)
- The start of the season (SOS): time it took for the left edge to increase to 10% measured from the left minimum level.
- (b)
- The end of the season (EOS): time it took for the right edge to decrease to 10% measured from the right minimum level.
- (c)
- The length of the season (LOS): time from the start to the end of the season.
2.3.2. Trend Analysis
2.3.3. GeoDetector
3. Results
3.1. Climate Change Trend
3.1.1. Temperature
3.1.2. Precipitation
3.2. Trends of the Phenological Parameters
3.2.1. SOS
3.2.2. EOS
3.2.3. LOS
3.3. Interpretation of Changes in Phenological Parameters by Meteorological Elements
4. Discussion
4.1. The Response of Grassland Phenology to Climate Changes
4.2. Limits in the Application of GeoDetector
4.3. Comparison with the MODIS Land Cover Dynamics (MCD12Q2) Product
4.4. Interpolation of Meteorological Data
5. Conclusions
- (1)
- From 2000 to 2019, significant changes occurred in temperature, precipitation, and grassland phenology in the Qilian Mountains. The temperature increased by 0.43 °C/10a and the precipitation increased by 12.84 mm/10a. SOS in most areas, except the northwestern mountain region, showed advancement by 5–20 days, with EOS being delayed in the north and southeast by more than 10 days and advanced in the northwest and central part of the study area by 5–20 days. The LOS in the southeast was elongated by 20–40 days, and, in the northwest, shortened by 10–30 days.
- (2)
- The interaction of the monthly average meteorological elements presented a more powerful interpretation of grassland phenology changes in the Qilian Mountains than any of the elements alone. For SOS, the highest interpretation degree by a single monthly average meteorological element was from the temperature change in May (q = 0.245), and the highest interpretation degree by multi-element interaction was from the interaction of the temperature change in May and the precipitation change in March (q = 0.646). For EOS, the highest interpretation degree for a single monthly average meteorological element was from the precipitation change in November (q = 0.190), and the highest interpretation degree for multi-element interactions was from the interaction of the temperature change in May and the precipitation change in January (q = 0.600). For LOS, the highest interpretation degree for a single monthly average meteorological element was from the temperature change in April (q = 0.236), and the highest interpretation degree for multi-element interactions was from the interaction of the temperature change in June and the precipitation change in March (q = 0.609). The interaction of the changes in meteorological elements in winter and the changes in meteorological elements in other periods had unneglectable impacts on the phenology of grassland in the Qilian Mountains.
- (3)
- The response of grassland phenology to climate change in the Qilian Mountains was not strictly local, and there were pipeline effects. The climate change in the upper reaches of the river transferred its influence downstream via the runoff of the river, which thereafter affected the growth of the downstream vegetation and the phenologies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Ta1 | Ta2 | Ta3 | Ta4 | Ta5 | Ta6 | Ta7 | Ta8 | Ta9 | Ta10 | Ta11 | Ta12 | pre1 | pre2 | pre3 | pre4 | pre5 | pre6 | pre7 | pre8 | pre9 | pre10 | pre11 | pre12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ta1 | 0.111 | |||||||||||||||||||||||
Ta2 | 0.495 | 0.095 | ||||||||||||||||||||||
Ta3 | 0.477 | 0.567 | 0.242 | |||||||||||||||||||||
Ta4 | 0.469 | 0.540 | 0.535 | 0.233 | ||||||||||||||||||||
Ta5 | 0.501 | 0.571 | 0.580 | 0.510 | 0.245 | |||||||||||||||||||
Ta6 | 0.451 | 0.534 | 0.592 | 0.544 | 0.582 | 0.131 | ||||||||||||||||||
Ta7 | 0.458 | 0.467 | 0.524 | 0.531 | 0.618 ** | 0.535 | 0.093 | |||||||||||||||||
Ta8 | 0.526 | 0.444 | 0.550 | 0.544 | 0.576 | 0.528 | 0.427 | 0.121 | ||||||||||||||||
Ta9 | 0.465 | 0.528 | 0.570 | 0.524 | 0.595 | 0.552 | 0.547 | 0.493 | 0.159 | |||||||||||||||
Ta10 | 0.502 | 0.509 | 0.574 | 0.573 | 0.585 | 0.555 | 0.433 | 0.435 | 0.484 | 0.078 | ||||||||||||||
Ta11 | 0.451 | 0.346 | 0.559 | 0.528 | 0.527 | 0.508 | 0.465 | 0.458 | 0.513 | 0.492 | 0.140 | |||||||||||||
Ta12 | 0.509 | 0.590 | 0.506 | 0.549 | 0.512 | 0.529 | 0.547 | 0.538 | 0.514 | 0.577 | 0.605 ** | 0.212 | ||||||||||||
pre1 | 0.520 | 0.513 | 0.590 | 0.602 ** | 0.612 ** | 0.541 | 0.538 | 0.531 | 0.574 | 0.494 | 0.490 | 0.629 ** | 0.113 | |||||||||||
pre2 | 0.511 | 0.411 | 0.562 | 0.529 | 0.534 | 0.511 | 0.482 | 0.428 | 0.441 | 0.462 | 0.483 | 0.526 | 0.545 | 0.113 | ||||||||||
pre3 | 0.492 | 0.507 | 0.546 | 0.560 | 0.646 ** | 0.582 | 0.542 | 0.562 | 0.528 | 0.528 | 0.468 | 0.619 ** | 0.583 | 0.494 | 0.096 | |||||||||
pre4 | 0.478 | 0.594 | 0.457 | 0.552 | 0.546 | 0.497 | 0.522 | 0.548 | 0.513 | 0.509 | 0.569 | 0.434 | 0.522 | 0.502 | 0.495 | 0.197 | ||||||||
pre5 | 0.425 | 0.428 | 0.564 | 0.541 | 0.536 | 0.395 | 0.455 | 0.457 | 0.540 | 0.479 | 0.458 | 0.482 | 0.453 | 0.380 | 0.531 | 0.440 | 0.065 | |||||||
pre6 | 0.429 | 0.473 | 0.522 | 0.557 | 0.628 ** | 0.553 | 0.488 | 0.516 | 0.516 | 0.443 | 0.478 | 0.592 | 0.462 | 0.502 | 0.488 | 0.447 | 0.485 | 0.134 | ||||||
pre7 | 0.449 | 0.428 | 0.446 | 0.488 | 0.571 | 0.473 | 0.372 | 0.438 | 0.516 | 0.413 | 0.418 | 0.487 | 0.470 | 0.456 | 0.433 | 0.408 | 0.459 | 0.376 | 0.117 | |||||
pre8 | 0.423 | 0.563 | 0.403 | 0.482 | 0.520 | 0.509 | 0.505 | 0.506 | 0.481 | 0.477 | 0.532 | 0.456 | 0.502 | 0.467 | 0.453 | 0.406 | 0.496 | 0.437 | 0.402 | 0.208 | ||||
pre9 | 0.413 | 0.564 | 0.481 | 0.517 | 0.572 | 0.527 | 0.504 | 0.464 | 0.432 | 0.447 | 0.528 | 0.567 | 0.469 | 0.472 | 0.499 | 0.454 | 0.496 | 0.388 | 0.489 | 0.385 | 0.157 | |||
pre10 | 0.451 | 0.457 | 0.452 | 0.467 | 0.485 | 0.469 | 0.431 | 0.434 | 0.452 | 0.448 | 0.450 | 0.429 | 0.461 | 0.473 | 0.453 | 0.444 | 0.422 | 0.476 | 0.431 | 0.404 | 0.444 | 0.170 | ||
pre11 | 0.506 | 0.459 | 0.533 | 0.544 | 0.590 | 0.465 | 0.406 | 0.475 | 0.520 | 0.464 | 0.463 | 0.571 | 0.467 | 0.474 | 0.429 | 0.462 | 0.429 | 0.408 | 0.373 | 0.450 | 0.494 | 0.405 | 0.078 | |
pre12 | 0.515 | 0.505 | 0.530 | 0.539 | 0.604 ** | 0.607 ** | 0.556 | 0.505 | 0.537 | 0.515 | 0.532 | 0.581 | 0.562 | 0.544 | 0.550 | 0.507 | 0.510 | 0.471 | 0.411 | 0.441 | 0.492 | 0.458 | 0.473 | 0.119 |
Ta1 | Ta2 | Ta3 | Ta4 | Ta5 | Ta6 | Ta7 | Ta8 | Ta9 | Ta10 | Ta11 | Ta12 | pre1 | pre2 | pre3 | pre4 | pre5 | pre6 | pre7 | pre8 | pre9 | pre10 | pre11 | pre12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ta1 | 0.113 | |||||||||||||||||||||||
Ta2 | 0.431 | 0.092 | ||||||||||||||||||||||
Ta3 | 0.405 | 0.525 | 0.161 | |||||||||||||||||||||
Ta4 | 0.413 | 0.469 | 0.452 | 0.173 | ||||||||||||||||||||
Ta5 | 0.389 | 0.523 | 0.456 | 0.422 | 0.075 | |||||||||||||||||||
Ta6 | 0.434 | 0.534 | 0.498 | 0.473 | 0.512 | 0.137 | ||||||||||||||||||
Ta7 | 0.474 | 0.457 | 0.459 | 0.456 | 0.521 | 0.559 ** | 0.177 | |||||||||||||||||
Ta8 | 0.453 | 0.366 | 0.476 | 0.480 | 0.467 | 0.516 | 0.476 | 0.110 | ||||||||||||||||
Ta9 | 0.470 | 0.412 | 0.496 | 0.454 | 0.477 | 0.501 | 0.495 | 0.414 | 0.103 | |||||||||||||||
Ta10 | 0.460 | 0.454 | 0.516 | 0.540 | 0.518 | 0.532 | 0.476 | 0.417 | 0.435 | 0.072 | ||||||||||||||
Ta11 | 0.346 | 0.274 | 0.474 | 0.439 | 0.406 | 0.448 | 0.459 | 0.400 | 0.409 | 0.445 | 0.078 | |||||||||||||
Ta12 | 0.386 | 0.504 | 0.345 | 0.424 | 0.364 | 0.424 | 0.465 | 0.459 | 0.417 | 0.528 | 0.467 | 0.128 | ||||||||||||
pre1 | 0.467 | 0.475 | 0.521 | 0.545 | 0.600 ** | 0.538 | 0.572 ** | 0.507 | 0.551 ** | 0.497 | 0.478 | 0.548 ** | 0.123 | |||||||||||
pre2 | 0.418 | 0.434 | 0.459 | 0.515 | 0.425 | 0.477 | 0.498 | 0.458 | 0.442 | 0.452 | 0.425 | 0.462 | 0.485 | 0.092 | ||||||||||
pre3 | 0.411 | 0.447 | 0.438 | 0.477 | 0.551 ** | 0.578 ** | 0.535 | 0.498 | 0.479 | 0.519 | 0.402 | 0.480 | 0.540 | 0.454 | 0.050 | |||||||||
pre4 | 0.407 | 0.483 | 0.386 | 0.442 | 0.449 | 0.426 | 0.492 | 0.459 | 0.432 | 0.466 | 0.502 | 0.333 | 0.514 | 0.462 | 0.428 | 0.136 | ||||||||
pre5 | 0.433 | 0.449 | 0.446 | 0.450 | 0.446 | 0.440 | 0.511 | 0.456 | 0.419 | 0.458 | 0.434 | 0.350 | 0.438 | 0.434 | 0.479 | 0.396 | 0.084 | |||||||
pre6 | 0.428 | 0.406 | 0.431 | 0.497 | 0.544 | 0.541 | 0.500 | 0.498 | 0.477 | 0.465 | 0.380 | 0.451 | 0.423 | 0.437 | 0.405 | 0.426 | 0.434 | 0.137 | ||||||
pre7 | 0.441 | 0.441 | 0.393 | 0.495 | 0.545 ** | 0.527 | 0.456 | 0.483 | 0.457 | 0.442 | 0.478 | 0.405 | 0.436 | 0.475 | 0.429 | 0.384 | 0.416 | 0.418 | 0.187 | |||||
pre8 | 0.375 | 0.471 | 0.331 | 0.449 | 0.454 | 0.463 | 0.439 | 0.407 | 0.442 | 0.461 | 0.473 | 0.391 | 0.402 | 0.436 | 0.412 | 0.381 | 0.448 | 0.363 | 0.386 | 0.161 | ||||
pre9 | 0.390 | 0.480 | 0.419 | 0.449 | 0.526 | 0.452 | 0.504 | 0.497 | 0.446 | 0.479 | 0.431 | 0.437 | 0.438 | 0.446 | 0.419 | 0.440 | 0.436 | 0.360 | 0.431 | 0.356 | 0.129 | |||
pre10 | 0.387 | 0.370 | 0.365 | 0.395 | 0.444 | 0.434 | 0.442 | 0.367 | 0.372 | 0.442 | 0.380 | 0.392 | 0.431 | 0.399 | 0.428 | 0.382 | 0.398 | 0.446 | 0.398 | 0.378 | 0.405 | 0.165 | ||
pre11 | 0.447 | 0.467 | 0.462 | 0.487 | 0.549 ** | 0.541 | 0.412 | 0.500 | 0.484 | 0.461 | 0.457 | 0.488 | 0.454 | 0.469 | 0.404 | 0.463 | 0.424 | 0.367 | 0.365 | 0.418 | 0.442 | 0.392 | 0.190 | |
pre12 | 0.496 | 0.464 | 0.466 | 0.491 | 0.477 | 0.543 | 0.535 | 0.548 ** | 0.450 | 0.515 | 0.476 | 0.497 | 0.522 | 0.496 | 0.463 | 0.405 | 0.401 | 0.425 | 0.419 | 0.423 | 0.424 | 0.464 | 0.476 | 0.053 |
Ta1 | Ta2 | Ta3 | Ta4 | Ta5 | Ta6 | Ta7 | Ta8 | Ta9 | Ta10 | Ta11 | Ta12 | pre1 | pre2 | pre3 | pre4 | pre5 | pre6 | pre7 | pre8 | pre9 | pre10 | pre11 | pre12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ta1 | 0.128 | |||||||||||||||||||||||
Ta2 | 0.474 | 0.104 | ||||||||||||||||||||||
Ta3 | 0.449 | 0.553 | 0.205 | |||||||||||||||||||||
Ta4 | 0.462 | 0.520 | 0.470 | 0.236 | ||||||||||||||||||||
Ta5 | 0.431 | 0.546 | 0.486 | 0.454 | 0.154 | |||||||||||||||||||
Ta6 | 0.504 | 0.574 ** | 0.546 | 0.518 | 0.521 | 0.174 | ||||||||||||||||||
Ta7 | 0.467 | 0.480 | 0.493 | 0.498 | 0.568 | 0.554 | 0.188 | |||||||||||||||||
Ta8 | 0.491 | 0.410 | 0.496 | 0.520 | 0.512 | 0.546 | 0.484 | 0.150 | ||||||||||||||||
Ta9 | 0.511 | 0.482 | 0.551 | 0.508 | 0.550 | 0.552 | 0.539 | 0.455 | 0.157 | |||||||||||||||
Ta10 | 0.482 | 0.480 | 0.535 | 0.591 ** | 0.552 | 0.555 | 0.470 | 0.442 | 0.477 | 0.073 | ||||||||||||||
Ta11 | 0.424 | 0.329 | 0.525 | 0.505 | 0.461 | 0.494 | 0.485 | 0.475 | 0.495 | 0.494 | 0.120 | |||||||||||||
Ta12 | 0.466 | 0.554 | 0.406 | 0.483 | 0.405 | 0.478 | 0.500 | 0.522 | 0.493 | 0.569 | 0.562 | 0.182 | ||||||||||||
pre1 | 0.496 | 0.496 | 0.561 | 0.570 | 0.603 ** | 0.539 | 0.573 ** | 0.557 | 0.553 | 0.492 | 0.525 | 0.597 ** | 0.099 | |||||||||||
pre2 | 0.488 | 0.454 | 0.528 | 0.546 | 0.451 | 0.536 | 0.497 | 0.488 | 0.486 | 0.500 | 0.501 | 0.534 | 0.513 | 0.128 | ||||||||||
pre3 | 0.488 | 0.480 | 0.520 | 0.548 | 0.589 ** | 0.609 ** | 0.569 | 0.548 | 0.536 | 0.551 | 0.477 | 0.578 ** | 0.585 ** | 0.510 | 0.079 | |||||||||
pre4 | 0.473 | 0.553 | 0.435 | 0.510 | 0.491 | 0.477 | 0.516 | 0.514 | 0.518 | 0.514 | 0.555 | 0.413 | 0.561 | 0.520 | 0.506 | 0.205 | ||||||||
pre5 | 0.453 | 0.457 | 0.498 | 0.496 | 0.474 | 0.453 | 0.522 | 0.481 | 0.505 | 0.495 | 0.470 | 0.401 | 0.454 | 0.433 | 0.532 | 0.469 | 0.072 | |||||||
pre6 | 0.461 | 0.455 | 0.500 | 0.559 | 0.572 | 0.589 ** | 0.500 | 0.524 | 0.532 | 0.470 | 0.456 | 0.542 | 0.471 | 0.523 | 0.472 | 0.472 | 0.499 | 0.162 | ||||||
pre7 | 0.463 | 0.466 | 0.429 | 0.525 | 0.571 | 0.548 | 0.447 | 0.483 | 0.527 | 0.457 | 0.489 | 0.473 | 0.490 | 0.498 | 0.466 | 0.408 | 0.451 | 0.432 | 0.201 | |||||
pre8 | 0.451 | 0.541 | 0.397 | 0.470 | 0.473 | 0.494 | 0.482 | 0.465 | 0.508 | 0.497 | 0.535 | 0.449 | 0.460 | 0.515 | 0.464 | 0.436 | 0.494 | 0.432 | 0.415 | 0.230 | ||||
pre9 | 0.453 | 0.540 | 0.468 | 0.525 | 0.534 | 0.516 | 0.520 | 0.506 | 0.477 | 0.466 | 0.494 | 0.522 | 0.461 | 0.493 | 0.498 | 0.488 | 0.498 | 0.434 | 0.494 | 0.391 | 0.186 | |||
pre10 | 0.450 | 0.433 | 0.425 | 0.446 | 0.460 | 0.471 | 0.481 | 0.418 | 0.441 | 0.467 | 0.475 | 0.421 | 0.479 | 0.467 | 0.486 | 0.441 | 0.438 | 0.516 | 0.454 | 0.441 | 0.470 | 0.201 | ||
pre11 | 0.498 | 0.497 | 0.498 | 0.542 | 0.549 | 0.557 | 0.432 | 0.529 | 0.541 | 0.482 | 0.499 | 0.558 | 0.502 | 0.502 | 0.447 | 0.497 | 0.476 | 0.417 | 0.413 | 0.475 | 0.508 | 0.445 | 0.186 | |
pre12 | 0.529 | 0.493 | 0.493 | 0.512 | 0.536 | 0.566 | 0.543 | 0.524 | 0.519 | 0.523 | 0.512 | 0.536 | 0.512 | 0.520 | 0.485 | 0.461 | 0.440 | 0.456 | 0.423 | 0.457 | 0.466 | 0.488 | 0.493 | 0.082 |
References
- IPCC. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Zuo, H.; Li, D.; Hu, Y.; Bao, Y.; Lü, S. Characteristics of climatic trends and correlation between pan-evaporation and environmental factors in the last 40 years over China. Chin. Sci. Bull. 2005, 50, 1235–1241. [Google Scholar] [CrossRef]
- Rong, Z.; Zhao, C.; Liu, J.; Gao, Y.; Zang, F.; Guo, Z.; Mao, Y.; Wang, L. Modeling the effect of climate change on the potential distribution of Qinghai Spruce (Picea crassifolia kom.) in Qilian Mountains. Forests 2019, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.F.; Yang, T.B.; Zeng, B.; Zhu, X.F.; Xu, H.J. Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000–2011. J. Mt. Sci. 2013, 10, 1050–1062. [Google Scholar] [CrossRef]
- Xianzhi, Y.; Qiang, Z.; Qiyun, X.; Wan-xiao, X.; Hui, G.; Zhi-juan, S. Characteristics of climate change in Qilian Mountains region in recent 50 years. Plateau Meteorol. 2009, 28, 85–90. [Google Scholar]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef]
- Wang, G.X.; Bai, W.; Li, N.; Hu, H.C. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China. Clim. Chang. 2011, 106, 463–482. [Google Scholar] [CrossRef]
- You, Y.F.; Wang, S.Y.; Pan, N.Q.; Ma, Y.X.; Liu, W.H. Growth stage-dependent responses of carbon fixation process of alpine grasslands to climate change over the Tibetan Plateau, China. Agric. For. Meteorol. 2020, 291, 11. [Google Scholar] [CrossRef]
- Gan, G.J.; Liu, Y.B.; Sun, G. Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Sci. Rev. 2021, 212, 103451. [Google Scholar] [CrossRef]
- Lieth, H. Phenology and seasonality modeling. Ecol. Stud. 1974, 120, 461. [Google Scholar]
- Zhu, K.; Wan, M. Phenology; Science Press: Beijing, China, 1975. [Google Scholar]
- Ren, S.; Peichl, M. Enhanced spatiotemporal heterogeneity and the climatic and biotic controls of autumn phenology in northern grasslands. Sci. Total Environ. 2021, 788, 147806. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Chen, X.; Lang, W.; Schwartz, M.D. Climatic Controls of the Spatial Patterns of Vegetation Phenology in Midlatitude Grasslands of the Northern Hemisphere. J. Geophys. Res. Biogeosci. 2018, 123, 2323–2336. [Google Scholar] [CrossRef]
- Piao, S.; Tan, J.; Chen, A.; Fu, Y.H.; Ciais, P.; Liu, Q.; Janssens, I.A.; Vicca, S.; Zeng, Z.; Jeong, S.-J. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 2015, 6, 6911. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.H.; Zhao, H.; Piao, S.; Peaucelle, M.; Peng, S.; Zhou, G.; Ciais, P.; Huang, M.; Menzel, A.; Peñuelas, J. Declining global warming effects on the phenology of spring leaf unfolding. Nature 2015, 526, 104–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffen, W.; Noble, I.; Canadell, J.; Apps, M.; Schulze, E.D.; Jarvis, P.G.; Baldocchi, D.; Ciais, P.; Cramer, W.; Ehleringer, J.; et al. The terrestrial carbon cycle: Implications for the Kyoto Protocol. Science 1998, 280, 1393–1394. [Google Scholar]
- Chen, C.; Park, T.; Wang, X.H.; Piao, S.L.; Xu, B.D.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Liu, H.Y.; Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 2005, 32, 4. [Google Scholar] [CrossRef]
- Qiao, C.; Shen, S.; Cheng, C.; Wu, J.; Jia, D.; Song, C. Vegetation Phenology in the Qilian Mountains and Its Response to Temperature from 1982 to 2014. Remote Sens. 2021, 13, 286. [Google Scholar] [CrossRef]
- Wu, C.Y.; Wang, J.; Ciais, P.; Penuelas, J.; Zhang, X.Y.; Sonnentag, O.; Tian, F.; Wang, X.Y.; Wang, H.J.; Liu, R.G.; et al. Widespread decline in winds delayed autumn foliar senescence over high latitudes. Proc. Natl. Acad. Sci. USA 2021, 118, 10. [Google Scholar] [CrossRef]
- Yang, Y.; Qi, N.; Zhao, J.; Meng, N.; Lu, Z.; Wang, X.; Kang, L.; Wang, B.; Li, R.; Ma, J.; et al. Detecting the Turning Points of Grassland Autumn Phenology on the Qinghai-Tibetan Plateau Spatial Heterogeneity and Controls. Remote Sens. 2021, 13, 4797. [Google Scholar] [CrossRef]
- Gao, X.; Huang, X.X.; Lo, K.; Dang, Q.W.; Wen, R.Y. Vegetation responses to climate change in the Qilian Mountain Nature Reserve, Northwest China. Glob. Ecol. Conserv. 2021, 28, 12. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Princple and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Shuai, Y.M.; Schaaf, C.B.; Strahler, A.H.; Li, X.W.; Gao, F.; Liu, J.; Wolfe, R.E.; Wang, J.; Zhang, X.Y.; Zhu, Q.J. Monitoring vegetation phenology using improved MODIS products. In Proceedings of the Conference on Electronic Imaging and Multimedia Technology V, Beijing, China, 12–15 November 2007. [Google Scholar]
- Picard, G.; Quegan, S.; Delbart, N.; Lomas, M.R.; Le Toan, T.; Woodward, F.I. Bud-burst modelling in Siberia and its impact on quantifying the carbon budget. Glob. Chang. Biol. 2005, 11, 2164–2176. [Google Scholar] [CrossRef] [Green Version]
- Shang, R.; Liu, R.G.; Xu, M.Z.; Liu, Y.; Zuo, L.; Ge, Q.S. The relationship between threshold-based and inflexion-based approaches for extraction of land surface phenology. Remote Sens. Environ. 2017, 199, 167–170. [Google Scholar] [CrossRef]
- Liu, R.; Shang, R.; Liu, Y.; Lu, X. Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory, protection of key point, noise resistance and curve stability. Remote Sens. Environ. 2017, 189, 164–179. [Google Scholar] [CrossRef] [Green Version]
- Liu, R. Compositing the Minimum NDVI for MODIS Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1396–1406. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y. Generation of new cloud masks from MODIS land surface reflectance products. Remote Sens. Environ. 2013, 133, 21–37. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, P.Q.; Zhang, W.; Hu, F. A Spatial Interpolation Method for Surface Air Temperature and Its Error Analysis. Chin. J. Atmos. Sci. 2006, 30, 146–152. [Google Scholar]
- Thornton, P.E.; Running, S.W.; White, M.A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 1997, 190, 214–251. [Google Scholar] [CrossRef] [Green Version]
- Jiyuan, L.; Mingliang, L.; Xiangzheng, D.; Dafang, Z.; Zengxiang, Z.; Di, L. The land use and land cover change database and its relative studies in China. J. Geogr. Sci. 2002, 12, 275–282. [Google Scholar] [CrossRef]
- Zhuang, D.; Liu, J.; Liu, M. Research activities on land-use/cover change in the past ten years in China using space technology. Chin. Geogr. Sci. 1999, 9, 330–334. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hänninen, H.; Rossi, S.; Smith, N.G.; Pau, S.; Liu, Z.; Feng, G.; Gao, J.; Liu, J. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Chang. 2020, 10, 777–780. [Google Scholar] [CrossRef]
- Fu, Y.H.; Piao, S.; Zhao, H.; Jeong, S.J.; Wang, X.; Vitasse, Y.; Ciais, P.; Janssens, I.A. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob. Chang. Biol. 2014, 20, 3743–3755. [Google Scholar] [CrossRef]
- Piao, S. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res. 2003, 108, 4401. [Google Scholar] [CrossRef]
- Ji, S.N.; Classen, A.T.; Zhang, Z.H.; He, J.S. Asymmetric winter warming advanced plant phenology to a greater extent than symmetric warming in an alpine meadow. Funct. Ecol. 2017, 31, 2147–2156. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.; Gray, J.; Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006; United States Geological Survey: Reston, VA, USA, 2019. [CrossRef]
SOS | EOS | LOS | ||||
---|---|---|---|---|---|---|
q Statistic | p Value | q Statistic | p Value | q Statistic | p Value | |
Ta1 1 | 0.111 | <0.001 | 0.113 | <0.001 | 0.128 | <0.001 |
Ta2 | 0.095 | <0.001 | 0.092 | <0.001 | 0.104 | <0.001 |
Ta3 | 0.242 * | <0.001 | 0.161 | <0.001 | 0.205 * | <0.001 |
Ta4 | 0.233 * | <0.001 | 0.173 | <0.001 | 0.236 * | <0.001 |
Ta5 | 0.245 * | <0.001 | 0.075 | 0.007 | 0.154 | <0.001 |
Ta6 | 0.131 | <0.001 | 0.137 | <0.001 | 0.174 | <0.001 |
Ta7 | 0.093 | <0.001 | 0.177 | <0.001 | 0.188 | <0.001 |
Ta8 | 0.121 | <0.001 | 0.110 | <0.001 | 0.150 | <0.001 |
Ta9 | 0.159 | <0.001 | 0.103 | <0.001 | 0.157 | <0.001 |
Ta10 | 0.078 | 0.006 | 0.072 | 0.019 | 0.073 | 0.014 |
Ta11 | 0.140 | 0.094 | 0.078 | <0.001 | 0.120 | <0.001 |
Ta12 | 0.212 * | <0.001 | 0.128 | <0.001 | 0.182 | <0.001 |
pre1 2 | 0.113 | <0.001 | 0.123 | <0.001 | 0.099 | <0.001 |
pre2 | 0.113 | <0.001 | 0.092 | <0.001 | 0.128 | <0.001 |
pre3 | 0.096 | <0.001 | 0.050 | 0.245 | 0.079 | 0.005 |
pre4 | 0.197 | <0.001 | 0.136 | <0.001 | 0.205 * | <0.001 |
pre5 | 0.065 | 0.045 | 0.084 | <0.001 | 0.072 | 0.006 |
pre6 | 0.134 | <0.001 | 0.137 | <0.001 | 0.162 | <0.001 |
pre7 | 0.117 | <0.001 | 0.187 | <0.001 | 0.201 * | <0.001 |
pre8 | 0.208 * | <0.001 | 0.161 | <0.001 | 0.230 * | <0.001 |
pre9 | 0.157 | <0.001 | 0.129 | <0.001 | 0.186 | <0.001 |
pre10 | 0.170 | <0.001 | 0.165 | <0.001 | 0.201 * | <0.001 |
pre11 | 0.078 | 0.094 | 0.190 | <0.001 | 0.186 | <0.001 |
pre12 | 0.119 | <0.001 | 0.053 | 0.214 | 0.082 | 0.005 |
LOS | ||
---|---|---|
q Statistic | p Value | |
SOS | 0.589 | <0.001 |
EOS | 0.708 | <0.001 |
SOS EOS 1 | 0.999 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zou, Y.; He, J.; Zhang, W.; Gao, L.; Zhuang, D. Response of Vegetation Phenology to the Interaction of Temperature and Precipitation Changes in Qilian Mountains. Remote Sens. 2022, 14, 1248. https://doi.org/10.3390/rs14051248
Li C, Zou Y, He J, Zhang W, Gao L, Zhuang D. Response of Vegetation Phenology to the Interaction of Temperature and Precipitation Changes in Qilian Mountains. Remote Sensing. 2022; 14(5):1248. https://doi.org/10.3390/rs14051248
Chicago/Turabian StyleLi, Cheng, Yuyang Zou, Jianfeng He, Wen Zhang, Lulu Gao, and Dafang Zhuang. 2022. "Response of Vegetation Phenology to the Interaction of Temperature and Precipitation Changes in Qilian Mountains" Remote Sensing 14, no. 5: 1248. https://doi.org/10.3390/rs14051248
APA StyleLi, C., Zou, Y., He, J., Zhang, W., Gao, L., & Zhuang, D. (2022). Response of Vegetation Phenology to the Interaction of Temperature and Precipitation Changes in Qilian Mountains. Remote Sensing, 14(5), 1248. https://doi.org/10.3390/rs14051248