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Abstract: Qinghai spruce forests play a key role in water conservation in the dry region of northwest
China. So, it is necessary to understand the impacts of climate change on the species to implement
adaptation strategies. Based on the four-emission scenario (i.e., RCP2.6 (Representative Concentration
Pathway), RCP4.5, RCP6.0 and RCP8.5) set by the Intergovernmental Panel on Climate Change
(IPCC) fifth assessment report, in the study, we predicted the potential distribution of Qinghai spruce
(Picea crassifolia Kom.) under current and future scenarios using a maximum entropy (Maxent) model.
Seven variables, selected from 22 variables according to correlation analysis combining with their
contribution rates to the distribution, are used to simulate the potential distribution of the species
under current and future scenarios. Simulated results are validated by area under the operating
characteristic curve (AUC). Results demonstrate that elevation, mean temperature of wettest quarter,
annual mean temperature, and mean diurnal range are more important in dominating the potential
distribution of Qinghai spruce. Ratios of the suitable area to the total study area are 34.3% in
current climate condition, 34% in RCP2.6, 33.9% in RCP4.5, 33.8% in RCP6.0, and 30.5% in RCP8.5,
respectively. The warmer the climate condition is, the more area of higher suitable classification
is changed to that of lower suitable classification. The ratios of real distribution area in simulated
unsuitable class to the real distribution area change from 4.3% (60.7 km2) in the current climate to
13% (185 km2) in RCP8.5, suggesting that the real distribution area may decrease in the future. We
conclude that there is a negative effect of climate change on the distribution of Qinghai spruce forest.
The result can help decision-makers to draft adaptation countermeasures based on climate change.

Keywords: Qinghai spruce (Picea crassifolia); climate change; maximum entropy model; Qilian
mountains national natural reserve

1. Introduction

Global warming is an indisputable fact, and the global annual temperature has increased 0.85 ◦C
between 1880 and 2012 and will continuously rise in the future [1]. Climate warming has been
widely proved to have a great influence on community composition and structure, vegetation pattern,
and ecosystem functions, especially, on species’ distribution [2–9]. Predicting the potential species
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distribution is significant to take safe and effective countermeasures to reduce the ecological risk
happening under climate change [10–12].

Species distribution model (SDM) is a useful tool to understand the effect of climatic change on
species’ distribution, which was developed by combining present data of a species with relevant
environment variables [13–19]. Many SDMs have been developed for predicting the potential
distribution of species under climate change, such as the Genetic Algorithm for Rule-set Prediction
(GARP) [20,21], Surface Range Envelope (SRE; usually called BIOCLIM) [22], Random Forests
(RFs) [23], Ecological Niche Factor Analysis (ENFA) [24], and Maximum Entropy (Maxent) [25].
They have been applied to predict the potential distribution of the selected species under current as
well as the future scenarios in many places [18,26,27].

Among these models, Maxent has been widely used in the world due to its advantages: (1) needing
only species occurrence data, that makes data easily collected; (2) using both continuous and categorical
environmental data at the same time; (3) generating a continuous probabilistic output, that is apt to
classify species suitability; (4) small sample size can meet its demand [28–33], that reducing laborious
jobs in data collection; (5) facilitating model interpretation [10,25,34,35]. Compared to other algorithms
such as GARP, BIOCLIM, and DOMAIN, Maxent has been found to be consistently better in its
prediction performance [25,36]. It has been extensively used in the studies on the prediction of species
distribution [18,26,27,37,38].

Qilian Mountains located in the northwest China and surrounded by desert and Gobi, is a crucial
water source in the northwest China because of the higher precipitation. Many inland rivers, such as
Shiyanghe River, Heihe River and Shulehe River, are originated from Qilian Mountains [39]. Qinghai
spruce (Picea crassifolia Kom.), the dominant tree species in the Qilian Mountains, is distributed in the
north-facing slope. It is characterized by a small population, a limited geographic range, and habitat
specialization [40]. The population with these characteristics has remarkable sensitivity to climate
change [41,42]. Qinghai spruce forest plays an important role in ecological service functions, especially
water conservation. Given this, Qinghai spruce becomes the protected object in Qilian Mountains
National Natural Reserve. One widespread hypothesis is that global warming will change distribution
ranges of species. Understanding changed distribution ranges of Qinghai spruce is meaningful for
maintaining ecological services and protection strategies.

The objectives in this study are to: (1) predict the potential distribution of the species under the
current situation; (2) forecast its suitability areas under four future climate scenarios, and (3) evaluate
the effects of climate change on the distribution of Qinghai spruce. Identifying the shift ranges of
suitable area under future scenarios is the innovation in the study.

2. Materials and Methods

2.1. Study Area

Qilian Mountains selected as our study area is situated at the northeast edge of the Tibet Plateau,
between 99◦25′–103◦28′ E and 36◦45′–39◦36′ N (Figure 1). The elevation ranges from 2000 to 6000 m.
In the southeast, the Southeast Asian monsoon is the influencing weather system, and in the northwest
the westerlies bring relatively dry air from Central Asia. Two atmospheric circulation systems
together with high elevation differences result in a significant precipitation gradient. Observations at
various meteorological stations (for the period 1960–2009) present that horizontally, higher mean annual
precipitation (525.9 mm) appeared in the southeast part and lower mean annual precipitation (293.1 mm)
occurred in the northwest part, vertically, the mean annual precipitation ranged from 250 mm in lowlands
to 700 mm in high elevations. Approximately 88% of precipitation occurs from May to September.
The mean annual temperature is 6 °C in lowlands and−10 °C in high elevations [43]. The combination of
precipitation and temperature results in horizontal and vertical differentiations of vegetation and soil.
Vegetation types in the study area are displayed in spatial sequences (from low to high elevations): desert,
desert steppe, steppe, steppe-forest, sub-alpine shrubby meadow and alpine frost-action barren zone.
Qinghai spruce forests distributed from 2500 m to 3500 m are in the steppe-forest zone [44].
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Figure 1. Location of the study area in Gansu Province, China, and its digital elevation model (DEM).

2.2. Qinghai Spruce Distribution Data

The date on the locations of Qinghai spruce was obtained from field survey conducted from
2015 to 2017 in the study area. A total of 178 species occurrence were recorded. To minimize the
spatial autocorrelation of the species occurrence points and reduce its impact on the model’s results,
the sampling sites were selected based on different environmental conditions and the distance between
two sampling points was more than 5 km. The real distribution map of forests was collected from
Gansu Qilian Mountains National Nature Reserve administration. We extracted the distribution of
Qinghai spruce forests after digitalizing the forests map.

2.3. Environmental Data

Environmental variables included three terrain variables and 19 bioclimatic variables. Terrain
variables like elevation, aspect, slope with a 90m spatial resolution were downloaded from the
USGS website (www.srtm.usgs.gov), which were re-sampled into 1 km spatial resolution using the
nearest neighbor re-sampling technique in ArcGIS10.3. The 19 bioclimatic variables for the current
and future scenarios with a 1 km spatial resolution were downloaded from the WorldClim data
set (http://www.worldclim.org/bioclim). The dataset was generated by interpolation of observed
weather data using a thin-plate smoothing spline during the period of 1950–2000. The interpolation
method considers latitude, longitude and elevation as independent variables [45,46]. The future climate
scenarios were present by 2070s data (the average data for 2060–2080) modeled by the Community
Climate System Model version 4 (CCSM4) representing four future greenhouse gases concentration
trajectories (i.e., RCP2.6 (Representative Concentration Pathway), RCP4.5, RCP6.0, and RCP8.5).
The four scenarios described the total radiative forcing values in 2100 would have reached 2.6 W/m2,
4.5 W/m2, 6.0 W/m2, and 8.5 W/m2 over the value in preindustrial period [47]. The 19 variables
downloaded were on a global scale, so they were extracted for the study area by GIS tool.

In order to avoid the cross-correlation within 19 bioclimatic variables and three terrain variables,
first, we assessed the contribution rate of each variable by the jackknife test of Maxent model, then
we conducted the multi-collinearity test using Pearson’s correlation coefficient in IBM-SPSS statistical
software (Statistical Product and Service Solutions, Version 20.0, SPSS Inc., Chicago, IL, USA), If two
variables have a Pearson correlation > |0.8|, only one with a high contribution rate was selected [48].

2.4. Ecological Niche Modeling

We used the Maxent model to predict the current and future potential distribution of Qinghai
spruce in the Qilian Mountains. The Maxent model is a machine learning technique that has
successfully been applied to model species distribution by only occurrence data and environmental
data [25]. The Maxent model contains two accessional procedures; one is area under the curve (AUC)
calculation. AUC values were used to evaluate the model performance, which are automatically
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generated using random pseudo absence background points [49], ranging from 0 to 1. Performance of
the model can be divided into five groups according to AUC values: excellent (>0.9), good (0.8–0.9),
accepted (0.7–0.8), bad (0.6–0.7), and invalid (<0.6) [26]. The other is the jackknife test; it can be used to
evaluate the importance of variables.

The species distribution point data should be saved in CSV format and contains coordinate
information such as species name, longitude and latitude. All environmental variables converted to
ASCII raster grids and species occurrence coordinates were converted to decimal degrees in ArcGIS 10.3.
Other settings were kept as default (500 iterations, 0.00001 convergence threshold, 10,000 maximum
background points). The program ran with 75% of presence locations and tested the model performance
with the remaining 25% of the presence locations [25]. A detailed mathematical definition of Maxent
was described in Phillips et al. [25].

The output of the model is a continuous probabilistic layer, ranging from 0 to 1. Areas with
higher values imply more favorable conditions for the species growth [25]. We selected the minimum
of the output by training presences (MTP) as a threshold or “cutoff” value for each scenario [50].
Ecologically, the MTP can be interpreted to contain those cells that are predicted to be at least as
suitable as those where the species was identified as present. We divided habitat suitability into four
classes: unsuitability, low suitability, moderate suitability, and high suitability.

3. Results

3.1. Variables Analysis

According to the contribution rate and Pearson’s correlation coefficient (see Table S1), only seven
variables were retained for modelling (see Table 1 in bold), including Elevation, Slope, Aspect, Bio1,
Bio2, Bio3, and Bio8. Bio1 is annual mean temperature, Bio2 is mean diurnal range, that is, mean
of monthly (max temp-min temp), Bio3 is isothermality that equals (Bio2/Bio7) (* 100), and Bio7 is
temperature annual range that is the maximum temperature of warmest month minus minimum
temperature of coldest month, bio8 is mean temperature of wettest quarter. The wettest quarter is
three months with the most rainfall during a year. The driest quarter is three months with minimum
precipitation during a year. In the study area, the wettest quarter includes June, July, and August,
and the driest quarter is December, January, and February. The wettest quarter is consistent with the
warmest season. During the wettest quarter, precipitation is in the form of rain.

Table 1. 22 Environmental variables downloaded and variables contribution rate (%) to the species
distribution under each scenario.

Code Environmental Variables Unit Current RCP2.6 RCP4.5 RCP6.0 RCP8.5

Bio1 Annual mean temperature ◦C 16.0 15.5 22.3 23.7 27.0
Bio2 Mean diurnal range (mean of monthly (max temp-min temp)) ◦C 10.4 8.0 13.4 13.5 8.7
Bio3 Isothermality (Bio2/Bio7) (*100) 6.0 6.1 5.0 4.3 8.5
Bio4 Temperature seasonality (standard deviation×100) C of V
Bio5 Maximum temperature of warmest month ◦C
Bio6 Minimum temperature of coldest month ◦C
Bio7 Temperature annual range (Bio5–Bio6) ◦C
Bio8 Mean temperature of wettest quarter ◦C 24.4 24.0 19.9 17.9 17.5
Bio9 Mean temperature of driest season ◦C
Bio10 Mean temperature of warmest season ◦C
Bio11 Mean temperature of coldest season ◦C
Bio12 Annual precipitation mm
Bio13 Precipitation of wettest period mm
Bio14 Precipitation of driest period mm
Bio15 Precipitation seasonality C of V
Bio16 Precipitation of wettest season mm
Bio17 Precipitation of driest season mm
Bio18 Precipitation of warmest season mm
Bio19 Precipitation of coldest season mm

Ele Elevation m 29.2 30.1 23.5 23.7 21.3
Slo Slope º 11.5 14.1 13.8 14.7 14.7
Asp Aspect º 2.5 2.3 2.1 2.2 2.4

The variables in bold were key variables selected by their contribution rates and multi-collinearity test. RCP:
(Representative Concentration Pathway).
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We suppose the terrain variables would not change in the future scenarios. The contribution
of the other four variables to the climate variability under the four scenarios was shown in Table 2.
Bio2 and Bio3 had little contribution to the climate variability, while Bio1 had great contribution to
the climate variability. Bio1 increased rapidly with the increase in the greenhouse gas concentrations,
being 0.30 ◦C in RCP2.6, 1.05 ◦C in RCP4.5, 1.15 ◦C in RCP6.0, and 2.48 ◦C in RCP8.5. Comparing
Bio1 in the present situation, the change rates of Bio1 in four scenarios were 118.52, 118.52, 170.99, and
253.09%. Bio8 had less contribution than Bio1 but larger contribution than Bio2 and Bio3, to the climate
variability. It would increase with the increases in greenhouse gas concentrations, being 11.21 ◦C,
12.22 ◦C, 12.32 ◦C and 13.74 ◦C in RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. Its change rates in
four scenarios were 18.54%, 18.54%, 30.20% and 45.26% comparing with Bio8 in the present situation.

Table 2. Climatic variables selected in this study and their percent contribution to each scenario.

Variables
Current RCP2.6 RCP4.5 RCP6.0 RCP8.5

mean mean Change
rate (%) mean Change

rate (%) mean Change
rate (%) mean Change

rate (%)

Bio1 −16.20 3.00 −118.52 10.50 −164.81 11.50 −170.99 24.8 −253.09
Bio2 126.51 126.65 0.11 126.25 −0.21 125.77 −0.58 125.11 −1.11
Bio3 32.30 32.02 −0.87 31.74 −1.73 31.56 −2.29 31.25 −3.25
Bio8 94.59 112.13 18.54 122.20 29.19 123.16 30.20 137.40 45.26

Note: change rate is the ratio of mean under different scenarios minus mean under current to mean under current,
Bio1: Annual Mean Temperature (◦C *10); Bio2: Mean Diurnal Temperature Range (Mean of monthly (max temp
minus min temp)) (◦C*10); Bio3: Isothermally (P2/P7) (*100), Bio8: Mean temperature of wettest quarter (◦C *10).

3.2. Accuracy of the Maxent Model

AUC values were greater than 0.98 under the current and four climatic scenarios (Table 3).
According to the performance classification standard, the prediction accuracy was excellent in our
study, as AUC values are more than 0.9 in both training and test.

Table 3. Results of receiver operating characteristic (ROC) analysis under current climate and four
future scenarios.

AUC Current RCP2.6 RCP4.5 RCP6.0 RCP8.5

AUC (Training data) 0.980 0.981 0.982 0.981 0.981
AUC (Test data) 0.968 0.968 0.969 0.968 0.964

3.3. Variables’ Contribution and Variables’ Response to Suitability

After seven variables ran the Maxent model, the contribution rate of each variable by the jackknife
test was obtained. Table 1 showed contribution rates were different in different scenarios. The potential
distribution of Qinghai spruce under current were significantly affected by elevation (29.2%), Bio8
(24.4%), Bio1 (16.0%), slope (11.5%), Bio2 (10.4%). The potential distribution of Qinghai spruce under
the RCP2.6 scenario was mainly contributed by elevation (30.1%), Bio8 (24.4%), Bio1 (15.5%), slope
(14.1). The important variables under the RCP4.5 scenario were elevation (23.5%), Bio1 (22.3%), Bio8
(19.9%), slope (13.8), Bio2 (13.4%), Bio3 (5.0%), and aspect (2.1%). The potential distribution of Qinghai
spruce under the RCP6.0 scenario was most constrained by elevation (23.7%), Bio1 (23.7%), Bio8 (17.9%),
slope (14.7%), and Bio2 (13.5%). The potential distribution of the species under the RCP8.5 scenario were
most strongly associated with Bio1 (27.0%), elevation (21.3%), Bio8 (17.5%), and slope (14.7%).

The jackknife test indicated that Elevation, Bio8, Bio1 and Bio2 provided very high gains when
they were used independently (Figure 2). According to gains being more than 1, Figure 2A showed
that potential distribution of Qinghai spruce under the current was significantly affected by Bio8 with
gain 1.57, elevation with gain 1.53, and Bio1 with gain 1.43. The potential distribution of Qinghai
spruce in the RCP2.6 scenario was mainly contributed by Bio8, elevation, Bio1, and Bio2, their gains
were 1.66, 1.55, 1.43, and 1.04, respectively (Figure 2B). The important variables under the RCP4.5
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scenario were Bio8 (gain, 1.68), elevation (gain, 1.55), Bio1 (gain, 1.44), and Bio2 (gain, 1.08) (Figure 2C).
The variables most constraining the potential distribution of Qinghai spruce under the RCP6.0 scenario
were the same as that under RCP4.5 with the same gains except for Bio8 (gain 1.65) (Figure 2D).
The potential distribution of the species under the RCP8.5 scenario was most strongly associated with
Bio8, elevation, Bio1, and Bio2, their gains were 1.67, 1.55, 1.42, and 1.01, respectively (Figure 2E).
On the whole, Bio8, elevation, Bio1, and Bio2 were more important variables for predicting the
distribution of Qinghai spruce.Forests 2018, 9, x FOR PEER REVIEW  7 of 16 
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Figure 2. (A) The results of the jackknife test of variables’ contribution in modeling Qinghai spruce’s
habitat distribution under current climate condition; (B) The results of the jackknife test of variables’
contribution in modeling Qinghai spruce’s habitat distribution under climate change scenarios RCP2.6;
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(C) The results of the jackknife test of variables’ contribution in modeling Qinghai spruce’s habitat
distribution under climate change scenarios RCP4.5; (D) The results of the jackknife test of variables’
contribution in modeling Qinghai spruce’s habitat distribution under climate change scenarios RCP6.0;
(E) The results of the jackknife test of variables’ contribution in modeling Qinghai spruce’s habitat
distribution under climate change scenarios RCP8.5.(The regularized training gain describes how much
better the Maxent distribution fits the presence data compared to a uniform distribution. The dark blue
bars indicate the gain from using each variable in isolation, the light blue bars indicate the gain lost by
removing the single variable from the full model, and the red bar indicates the gain using all of the
variables)., 34% in, 33.9% in RCP4.5, 33.8% in RCP6.0, and 30.5% in RCP8.5.

Figure 3 showed that response curves of seven environmental variables to the potential
distribution of Qinghai spruce. From Figure 3 we could see: the highest suitability for Qinghai
spruce occurred in the areas where elevation was from 2650 to 3050 m, annual mean temperature (Bio1)
was between 1.5 and 2.5 ◦C, mean temperature of wettest quarter (Bio8) between 11.0 and 12.5 ◦C,
Mean diurnal range (Bio2) from 11.0 to 12.1 ◦C, Isothermality (Bio3) from 31.8 to 33.0, aspect from 310
to 40◦, slope between 4.8 to 30◦.
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3.4. Potential Distribution of Qinghai Spruce under Different Climate Scenario

The suitability of Qinghai spruce was classified using four probability classes based on
Khafaga [51] and Remya [52]. The MTP threshold, or the level at which no omission errors, was
detected as 0.089. That is, areas with probability <0.089 were unsuitability areas. The range between
0.089 and 1 was divided into three classes, 0.089–0.3 named as low suitability, 0.3–0.6 as moderate
suitability, >0.6 as high suitability. So, four classifications of suitability were obtained.
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The potential distribution maps of Qinghai spruce under current climate and four scenarios were
shown in Figure 4. The Qinghai spruce is distributed mainly over the middle and eastern parts of
the study area. The simulated distribution area of Qinghai spruce under current climate and four
scenarios are considerably larger than real distribution area (Figure 4).
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Figure 4. The actual distribution and potential of Qinghai spruce under current climate and four scenarios.

As shown in Table 4, the distribution area with moderate suitability under current climate is
4250.7 km2, the area with low suitability is 2994.1 km2, and the area with high suitability is 1312.0 km2.
The total suitable area occupied 34.3% of the study area. In four scenarios, the total suitable area
gradually decreased with climate warming, being 8556.8, 8473.1, 8438.5, 8420.6, and 7604.2 km2 under
current, RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively (Table 4). The warmer the climate is, the less
suitable the area is. The suitable distribution area occupied 34%, 33.9%, 33.8%, 30.5% of study area
under four scenarios (i.e., RCP2.6, RCP4.5, RCP6.0 and RCP8.5), respectively.

Table 4. Habitat suitability classes area of Qinghai spruce.

Current RCP2.6 RCP4.5 RCP6.0 RCP8.0

Unsuitable area (km2) 16,362.6 16,446.4 16,481.0 16,498.9 17,315.2
Low suitability area (km2) 2994.1 3191.0 3189.8 3117.8 3191.4
Moderate suitability area (km2) 4250.7 4126.5 4040.8 3952.9 31913.6
High suitability area (km2) 1312.0 1155.6 1207.9 1349.9 1221.3
Total suitability area (km2) 8556.8 8473.1 8438.5 8420.6 7604.2
Change area (km2) −83.8 −118.4 −136.3 −857.6
Percent (%) 34.3 34.0 33.9 33.8 30.5
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3.5. The Transfer Matrix of Suitable Distribution Areas under the Current and Future Scenarios

The transfer matrix of suitable distribution classes under the current and future scenarios showed
that the warmer the climate condition is, the more area with higher-level suitability is changed to that
with lower-level suitability (Figure 5). For example, there were 443.5 km2 areas with low suitability,
58.8 km2 areas with moderate suitability and 3.9 km2 areas with high suitability area in current climate
condition would be changed to unsuitable area in RCP2.6. There was 598.3 km2 of area with moderate
suitability and 18.0 km2 of area with high suitability area in current climate condition that would be
changed to area with low suitability in RCP2.6. There was 367.6 km2 of area with high suitability in
current climate condition that would be changed to area with moderate suitability in RCP2.6. Totally,
1490.1 km2 of area with higher level suitability in current climate condition would be changed to area
with lower level suitability in RCP2.6. There was 1108.4 km2 of area with low suitability, 684.8 km2

of area with moderate suitability and 149.6 km2 of area with high suitability area in current climate
condition would be changed to unsuitable area in RCP8.5. There was 1192.1 km2 of area with moderate
suitability and 191.1 km2 of area with high suitability in current climate condition would be changed
to area with low suitability in RCP8.5. There was 538.0 km2 of area with high suitability in current
climate condition would be changed to area with moderate suitability in RCP8.5. Totally, 3672.9 km2

of area with higher level suitability in current climate condition would be changed to area with lower
level suitability in RCP8.5.
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Figure 5. The transfer matrix of Qinghai spruce’ potential distribution area between current and four
future climatic scenarios(A1: UA to UA, A2: UA to LA, A3: UA to MA, A4: UA to HA, B1: LA to UA,
B2: LA to LA, B3: LA to MA, B4: LA to HA, C1: MA to UA, C2: MA to LA, C3: MA to MA, C4: MA
to HA, D1: HA to UA, D2: HA to LA, D3: HA to MA, D4:HA to HA. UA: Unsuitable area; LA: Low
suitability area; MA: Moderate suitability area; 4, HA: High suitability area).
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3.6. The Relationship Between Qinghai Spruce’ Actual Distribution and Potential Distribution Under Current
and Four Scenarios

According to the actual distribution area (Figure 4), there was 1422.1 km2 of Qinghai spruce
forests in the study area, mainly distributed in the middle and east parts of the reserve. Overlapping
the real distribution with potential distributions of current and future scenarios, we found that the
area of real distribution in unsuitable class increased from 60.7 km2 (4.3%) in the current climate to
185 km2 (13%) in RCP 8.5 (Table 5).

Table 5. The statistic area of Qinghai spruce’ actual distribution in four classes under current and
four scenarios.

Classes
Current RCP2.6 RCP4.5 RCP6.0 RCP8.5

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Unsuitable 60.7 4.3 138.2 9.7 137.7 9.7 138.8 9.8 185.0 13.0
Moderate suitability 323.5 22.7 251.6 17.7 262.5 18.5 259.0 18.2 199.4 14.4

High suitability 654.2 46.0 679.5 47.8 647.4 45.5 633.5 44.5 644.3 45.3

Total suitability area 383.7 27.0 352.8 24.8 374.5 26.3 390.7 27.5 388.7 27.3

4. Discussion

It is necessary to understand the interrelationship between the size of species geographic range
and species extinction risk under global climate change scenarios [53,54]. Which is crucial to set up
management strategies for the habitat conservation and sustainability of species in the future [55,56].
For the purpose, we must identify the distribution of species under the current and climate change
scenarios. SDM is one of the important tools for determining species distribution [57]. Many SDMs
have been developed, among them the Maxent model performs well with its advantages mentioned in
introduction to predict species’ distribution ranges at macro-scales [58,59]. In this study, we used the
Maxent model to predict Qinghai spruce distribution ranges on the current and future scenarios and
presented an assessment about habitat suitability of the species, an extremely important ecological and
hydrological tree species in the Qilian Mountains.

Model accuracy assessment is an essential step to ensure that the species distribution models
(SDMs) reflect species-habitat relationships [60]. Generally, AUC is selected as an assessment standard.
Models with a value larger than 0.7 exhibit good performance [26,61]. In our study, AUC values were
greater than 0.964 for Qinghai spruce under the current and four climatic change scenarios, indicating
that the model has excellent performance for simulating the distribution of the species.

Our results showed that the variables related to air temperature (Bio1, Bio8) and elevation
were dominant variables in determining the suitable habitat for Qinghai spruce. Previous studies
demonstrated that distribution of the species was affected by temperature in July, annual precipitation
and aspect [44]. Xu et al [39] indicated mean temperature of the warmest quarter, precipitation of
the wettest quarter, annual solar radiation, and topographic wetness index were important variables.
High suitability of Qinghai spruce was the optimal combination of average annual precipitation,
average air temperature in July, and solar radiation, being 380 mm, 11.5 ◦C, and 2 × 103 kWh/m2,
respectively [62]. Therefore, the temperature factor was the dominant variable that determined the
distribution of Qinghai spruce. Qinghai spruce was mainly distributed on the shady slope. Increased
temperatures may lead to a decrease in the distribution of the species in low altitude and an increase
in the growing season. Under different climate change scenarios, the increase of the temperature in
the study area was much greater than that in precipitation, which may lead to drought in the study
area. So, it is not conducive to the growth of spruce. It should be noted that Qilian Mountains regions
are dominated by westerly jet, that is, so-called “silk-road” pattern [63]. Song et al. [64] and Song
and Zhou [65] revealed the pattern influencing the air temperature. Therefore, the “silk-road” pattern
should be further considered to study the effect of temperature on the distribution of Qinghai spruce.
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Our research found that the suitable area would decrease under four climate change scenarios
(RCP2.6, RCP4.5, RCP6.0 and RCP8.5). This is consistent with results of previous studies, which
suggested that the global warming has negative effects on species distribution ranges [7,66].
The suitable area decreased under RCP8.5 is larger than the other three scenarios due to different
changes of temperature under four scenarios. RCP2.6 is the lowest carbon emission scenario, RCP4.5
and RCP6.0 are medium carbon emission scenarios, whereas, RCP8.5 is an extreme carbon emission
scenario. The increase in temperature was much greater under RCP8.5 than under the other three
scenarios (Table 2). By contrast, Xu et al. [67] reported that the potential distribution area of Qinghai
spruce increased under climate warming. The difference may be attributed to different selected climate
models. Previous studies demonstrated that different models and different realizations in the same
model may show quite different historical temperature evolution [68] There are 19 general circulation
models (GCMs) in WorldClim, in these studies, we selected the CCSM4 model because it was widely
adopted to simulate future climate change projection [69,70]. However, the comparative analysis of
climate model performance in Qilian Mountains is needed in further research, which could provide the
criterion for selecting models. In this way, we can use the average value of climatic variables obtained
from GCMs to run Maxent model in the Qilian Mountains, and thus avoiding the uncertainty of future
climate projections. In addition, input variables’ selection is also a key step. Different results about the
effect of climate warming on Qinghai spruce distribution in the Qilian Mountains may be caused by
input variables. The study of Xu et al. [67] had no screening variables, and the sampling points were
mostly concentrated in the central and eastern regions. The multi-collinearity problem existed among
variables and the autocorrelation problem of the sampling points was not considered. This may be the
reason why our results are different from theirs.

Many variables have multi-collinearity that results in an overfitting simulation of species
distribution [71]. Therefore, it is necessary for screening variables to run SDMs. There are various
selection techniques such as expert knowledge method [27,62], pair-wise correlation analyses [72], X2

test [73], PCA analysis [74], and jackknife analyses [75–78]. In our study, we used jackknife test and
Pearson’s correlation coefficient to select variables. Variables were selected with the higher contribution
and least correlation (r < 0.8). Comparative study of variable selection methods will be conducted
further for promoting the accuracy of SDM.

Our results showed that the predicted potential distribution under current and future scenarios
was larger than realized distribution. This is possibly because the Maxent model predicted the species
fundamental niche rather than realized niche [27,31]. In reality, a species might have failed to disperse
due to geographic barriers, human disturbance or associated species’ competition [31,42,79,80]. In our
study area, realized distribution of the species had suffered from intensive deforestation. It was
reported that some area of Qinghai spruce forest has been converted into grasslands [44] in the middle
part of the study area and has been transformed to farmland in the east [39]. The comparative analysis
of potential species distribution under current climate and the realized species distribution could
identify human activities and provide information about prior areas to restore the species.

5. Conclusions

In this study, we successfully modeled the potential distribution of Qinghai spruce for the current
and future climate change scenarios. Our results verify the hypothesis that global warming will change
distribution ranges of species, which is crucial for understanding spatiotemporal dynamics of Qinghai
spruce under climate change scenarios. The current suitable areas predicted should have two measures
to protect the distribution area of the species. One is conservation prioritization measure; the other
is restoration measure. Conservation prioritization area is the predicted suitable area which has real
distribution. The restoration area is the place where the predicted suitable area which has no real
distribution, especially the high suitable area in the middle and eastern part of the Qilian Mountains.
Our results could be used to provide reliable information on devising adaptive responses for the
sustainable management of the species.
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