Retrospective Predictions of Rice and Other Crop Production in Madagascar Using Soil Moisture and an NDVI-Based Calendar from 2010–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.2.1. Satellite-Based Vegetation Activity and Soil Moisture
2.2.2. Survey-Based Crop Production
2.2.3. Crop Distribution
2.2.4. Crop Calendars
2.2.5. Regional Definition
2.3. Relating Variations in Soil Moisture to Production
2.3.1. Yield and Soil Moisture Time Series
2.3.2. Scaling
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- INSTAT; UNICEF. Multiple Indicator Cluster Survey–MICS Madagascar, 2018, Final Report; Technical Report; INSTAT and UNICEF: Antananarivo, Madagascar, 2019. [Google Scholar]
- FAO. Madagascar–Impact of Early Warning Early Action; Technical Report; FAO: Rome, Italy, 2019. [Google Scholar]
- Harvey, C.A.; Rakotobe, Z.L.; Rao, N.S.; Dave, R.; Razafimahatratra, H.; Rabarijohn, R.H.; Rajaofara, H.; MacKinnon, J.L. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philos. Trans. R. Soc. Biol. Sci. 2014, 369, 20130089. [Google Scholar] [CrossRef] [Green Version]
- Golden, C.D.; Gephart, J.A.; Eurich, J.G.; McCauley, D.J.; Sharp, M.K.; Andrew, N.L.; Seto, K.L. Social-ecological traps link food systems to nutritional outcomes. Glob. Food Secur. 2021, 30, 100561. [Google Scholar] [CrossRef]
- Rakotobe, Z.; Harvey, C.A.; Rao, N.S.; Dave, R.; Rakotondravelo, J.C.; Randrianarisoa, J.; Ramanahadray, S.; Andriambolantsoa, R.; Razafimahatratra, H.; Rabarijohn, R.H.; et al. Strategies of smallholder farmers for coping with the impacts of cyclones: A case study from Madagascar. Int. J. Disaster Risk Reduct. 2016, 17, 114–122. [Google Scholar] [CrossRef] [Green Version]
- FAO. Madagascar–Response Overview—May 2021; Technical Report; FAO: Rome, Italy, 2021. [Google Scholar]
- FAO. GIEWS Update–Madagascar, February 2021; Technical Report; FAO: Rome, Italy, 2021. [Google Scholar]
- WFP. WFP Madagascar Country Brief (May 2021); Technical Report; World Food Programme: Rome, Italy, 2021. [Google Scholar]
- Makoni, M. Southern Madagascar faces “shocking” lack of food. Lancet 2021, 397, 2239. [Google Scholar] [CrossRef]
- Minten, B.; Barrett, C.B. Agricultural Technology, Productivity, and Poverty in Madagascar. World Dev. 2008, 36, 797–822. [Google Scholar] [CrossRef]
- UNDESA. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Schauberger, B.; Jägermeyr, J.; Gornott, C. A systematic review of local to regional yield forecasting approaches and frequently used data resources. Eur. J. Agron. 2020, 120, 126153. [Google Scholar] [CrossRef]
- Weiskopf, S.; Cushing, J.A.; Morelli, T.L.; Bonnie, M. Climate change risks and adaptation options for Madagascar. Ecol. Soc. 2021, 26, 36. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sens. 2013, 5, 1704–1733. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Micha, R.; Golden, C.D.; Mozaffarian, D.; Myers, S.S. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients. PLoS ONE 2016, 11, e0146976. [Google Scholar] [CrossRef] [PubMed]
- MacIntosh, T. Growing Relations: An Ethnographic Study on Rice, Vanilla, and Yams in Madagascar. Ph.D. Thesis, The University of Western Ontario, London, ON, Canada, 2020. [Google Scholar]
- Golden, C.D.; Vaitla, B.; Ravaoliny, L.; Vonona, M.A.; Anjaranirina, E.G.; Randriamady, H.J.; Glahn, R.P.; Guth, S.E.; Fernald, L.C.; Myers, S.S. Seasonal trends of nutrient intake in rainforest communities of north-eastern Madagascar. Public Health Nutr. 2019, 22, 2200–2209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dostie, B.; Haggblade, S.; Randriamamonjy, J. Seasonal poverty in Madagascar: Magnitude and solutions. Food Policy 2002, 27, 493–518. [Google Scholar] [CrossRef]
- Bouman, B.; Humphreys, E.; Tuong, T.P.; Barker, R. Rice and water. Adv. Agron. 2007, 92, 187–237. [Google Scholar] [CrossRef]
- Randriamarolaza, L.Y.A.; Aguilar, E.; Skrynyk, O.; Vicente-Serrano, S.M.; Domínguez-Castro, F. Indices for daily temperature and precipitation in Madagascar, based on quality-controlled and homogenized data, 1950–2018. Int. J. Climatol. 2022, 42, 265–288. [Google Scholar] [CrossRef]
- Rigden, A.J.; Ongoma, V.; Huybers, P. Kenyan tea is made with heat and water: How will climate change influence its yield? Environ. Res. Lett. 2020, 15, 044003. [Google Scholar] [CrossRef]
- Rigden, A.J.; Mueller, N.D.; Holbrook, N.M.; Pillai, N.; Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 2020, 1, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- ICTSD-IPC. ICTSD-IPC Platform on Climate Change, Agriculture and Trade: Considerations for Policymakers; Technical Report; ICTSD and IPC: Geneva, Switzerland, 2009. [Google Scholar]
- Oldeman, L.R. Technical Paper 21: An Agroclimatic Characterization of Madagascar; Technical Report; ISRIC: Wageningen, The Netherlands, 1990. [Google Scholar]
- Dunham, A.E.; Erhart, E.M.; Wright, P.C. Global climate cycles and cyclones: Consequences for rainfall patterns and lemur reproduction in southeastern Madagascar. Glob. Chang. Biol. 2011, 17, 219–227. [Google Scholar] [CrossRef]
- Arivelo, T.A.; Lin, Y.L. Climatology of Heavy Orographic Rainfall Induced by Tropical Cyclones over Madagascar: From Synoptic to Mesoscale Perspectives. Earth Sci. Res. 2016, 5, 132. [Google Scholar] [CrossRef] [Green Version]
- Didan, K. MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG V006 [Data set]. In NASA EOSDIS Land Processes DAAC; 2015. Available online: https://lpdaac.usgs.gov/products/mod13c2v006/ (accessed on 22 December 2021). [CrossRef]
- Johnson, D.M.; Rosales, A.; Mueller, R.; Reynolds, C.; Frantz, R.; Anyamba, A.; Pak, E.; Tucker, C. USA Crop Yield Estimation with MODIS NDVI: Are Remotely Sensed Models Better than Simple Trend Analyses? Remote Sens. 2021, 13, 4227. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 2009, 30, 4643–4662. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; De Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Crow, W.T.; Wagner, W. Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6780–6792. [Google Scholar] [CrossRef]
- Monfreda, C.; Ramankutty, N.; Foley, J.A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 2008, 22, GB1022. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006 [Data set]. In NASA EOSDIS Land Processes DAAC; 2015. Available online: https://lpdaac.usgs.gov/products/mcd12c1v006/ (accessed on 22 December 2021). [CrossRef]
- Xiong, J.; Thenkabail, P.; Tilton, J.; Gumma, M.; Teluguntla, P.; Congalton, R.; Yadav, K.; Dungan, J.; Oliphant, A.; Poehnelt, J.; et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Africa 30 m V001 [Data set]. In NASA EOSDIS Land Processes DAAC; 2017. Available online: https://lpdaac.usgs.gov/products/gfsad30afcev001/ (accessed on 22 December 2021). [CrossRef]
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 2010, 19, 607–620. [Google Scholar] [CrossRef]
- Franke, J.A.; Müller, C.; Elliott, J.; Ruane, A.C.; Jägermeyr, J.; Balkovic, J.; Ciais, P.; Dury, M.; Falloon, P.D.; Folberth, C.; et al. The GGCMI Phase 2 experiment: Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0). Geosci. Model Dev. 2020, 13, 2315–2336. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diagne, A.; Amovin-Assagba, E.; Futakuchi, K.; Wopereis, M.C.S. Estimation of cultivated areas, number of farming households and yield of major rice-growing environments in Africa. In Realizing Africa’s Rice Promise; CAB International: Wallingford, UK, 2013; pp. 35–45. [Google Scholar] [CrossRef] [Green Version]
- Waddington, S.R.; Li, X.; Dixon, J.; Hyman, G.; De Vicente, M.C. Getting the focus right: Production constraints for six major food crops in Asian and African farming systems. Food Secur. 2010, 2, 27–48. [Google Scholar] [CrossRef]
- Reynolds, T.W.; Waddington, S.R.; Anderson, C.L.; Chew, A.; True, Z.; Cullen, A. Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Secur. 2015, 7, 795–822. [Google Scholar] [CrossRef] [Green Version]
- Harrison, L.; Michaelsen, J.; Funk, C.; Husak, G. Effects of temperature changes on maize production in Mozambique. Clim. Res. 2011, 46, 211–222. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, N.; Kilic, T.; Brubaker, J.; Murray, S.; de la Fuente, A. Droughts and floods in Malawi: Impacts on crop production and the performance of sustainable land management practices under weather extremes. Environ. Dev. Econ. 2021, 26, 432–449. [Google Scholar] [CrossRef]
- Hoffman, A.L.; Kemanian, A.R.; Forest, C.E. Analysis of climate signals in the crop yield record of sub-Saharan Africa. Glob. Chang. Biol. 2018, 24, 143–157. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Rakotoarison, N.; Raholijao, N.; Razafindramavo, L.M.; Rakotomavo, Z.A.P.H.; Rakotoarisoa, A.; Guillemot, J.S.; Randriamialisoa, Z.J.; Mafilaza, V.; Ramiandrisoa, V.A.M.P.; Rajaonarivony, R.; et al. Assessment of Risk, Vulnerability and Adaptation to Climate Change by the Health Sector in Madagascar. Int. J. Environ. Res. Public Health 2018, 15, 2643. [Google Scholar] [CrossRef] [Green Version]
- Styger, E.; Rakotondramasy, H.M.; Pfeffer, M.J.; Fernandes, E.C.; Bates, D.M. Influence of slash-and-burn farming practices on fallow succession and land degradation in the rainforest region of Madagascar. Agric. Ecosyst. Environ. 2007, 119, 257–269. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Di Tommaso, S.; Burke, M.; Kilic, T. Twice Is Nice: The Benefits of Two Ground Measures for Evaluating the Accuracy of Satellite-Based Sustainability Estimates. Remote Sens. 2021, 13, 3160. [Google Scholar] [CrossRef]
- USAID. Climate Risks in Food for Peace Geographies: Madagascar; Technical Report; USAID: Washington, DC, USA, 2019.
- Tsujimoto, Y.; Horie, T.; Randriamihary, H.; Shiraiwa, T.; Homma, K. Soil management: The key factors for higher productivity in the fields utilizing the system of rice intensification (SRI) in the central highland of Madagascar. Agric. Syst. 2009, 100, 61–71. [Google Scholar] [CrossRef]
Arid | Semi-Arid | Semi-Wet | Wet | National | |
---|---|---|---|---|---|
Rice | 1.86 | 7.36 | 19.47 | 10.87 | 39.56 |
Cassava | 5.81 | 4.51 | 11.05 | 8.48 | 29.85 |
Maize | 0.50 | 0.72 | 1.57 | 0.90 | 3.69 |
Potato | 3.10 | 1.10 | 3.16 | 3.31 | 10.68 |
Calendar 1 | |||||
---|---|---|---|---|---|
Arid | Semi-arid | Semi-wet | Wet | National | |
Rice | 0.83 (0.6–0.96) | 0.94 (0.84–0.97) | 0.67 (0.11–0.92) | 0.73 (−0.2–0.91) | 0.56 (−0.1–0.88) |
Cassava | 0.76 (0.29–0.92) | 0.24 (−0.3–0.75) | 0.46 (−0.2–0.88) | −0.24 (−0.93–0.43) | 0.72 (0.37–0.92) |
Maize | 0.66 (0.2–0.88) | −0.04 (−0.64–0.63) | 0.31 (−0.41–0.7) | 0.15 (−0.64–0.7) | 0.65 (0.13–0.95) |
Potato | 0.25 (−0.39–0.91) | 0.49 (−0.59–0.9) | 0.45 (−0.1–0.85) | 0.54 (−0.07–0.87) | 0.65 (0.1–0.92) |
Calendar 2 | |||||
Arid | Semi-arid | Semi-wet | Wet | National | |
Rice | 0.78 (0.5–0.93) | 0.94 (0.81–0.97) | 0.77 (0.38–0.92) | 0.77 (−0.45–0.91) | 0.69 (0.22–0.9) |
Cassava | 0.87 (0.57–0.96) | 0.3 (−0.44–0.7) | 0.47 (−0.23–0.89) | −0.19 (−0.87–0.49) | 0.8 (0.44–0.97) |
Maize | 0.51 (−0.12–0.88) | 0.19 (−0.81–0.75) | 0.93 (0.79–0.98) | 0.57 (−0.21–0.89) | 0.47 (−0.36–0.84) |
Potato | 0.03 (−0.66–0.94) | 0.78 (−0.24–0.98) | −0.05 (−0.9–0.8) | 0.74 (0.17–0.97) | 0.49 (−0.1–0.96) |
Calendar 3 | |||||
Arid | Semi-arid | Semi-wet | Wet | National | |
Rice | 0.73 (0.38–0.93) | 0.91 (0.74–0.96) | 0.94 (0.81–0.98) | 0.85 (0.19–0.95) | 0.89 (0.57–0.96) |
Cassava | 0.88 (0.67–0.96) | 0.49 (−0.26–0.81) | 0.75 (0.21–0.94) | −0.24 (−0.86–0.72) | 0.92 (0.73–0.98) |
Maize | 0.7 (0.34–0.9) | 0 (−0.61–0.61) | 0.38 (−0.34–0.81) | 0.57 (−0.19–0.9) | 0.93 (0.7–0.99) |
Potato | 0.29 (−0.42–0.97) | 0.43 (−0.65–0.92) | 0.74 (−0.05–0.98) | 0.65 (−0.06–0.95) | 0.68 (0.04–0.94) |
Calendar 4 | |||||
Arid | Semi-arid | Semi-wet | Wet | National | |
Rice | 0.74 (0.44–0.93) | 0.95 (0.83–0.98) | 0.95 (0.87–0.99) | 0.93 (0.7–0.96) | 0.9 (0.57–0.98) |
Cassava | 0.89 (0.71–0.96) | 0.66 (−0.22–0.94) | 0.75 (0.23–0.94) | −0.24 (−0.87–0.71) | 0.92 (0.74–0.98) |
Maize | 0.7 (0.34–0.9) | 0.66 (0.07–0.92) | 0.61 (0.01–0.86) | 0.84 (0.52–0.94) | 0.93 (0.7–0.99) |
Potato | 0.93 (0.82–0.99) | −0.93 (−0.99–−0.6) | 0.74 (−0.05–0.98) | 0.83 (0.5–0.96) | 0.81 (0.38–0.97) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigden, A.J.; Golden, C.; Huybers, P. Retrospective Predictions of Rice and Other Crop Production in Madagascar Using Soil Moisture and an NDVI-Based Calendar from 2010–2017. Remote Sens. 2022, 14, 1223. https://doi.org/10.3390/rs14051223
Rigden AJ, Golden C, Huybers P. Retrospective Predictions of Rice and Other Crop Production in Madagascar Using Soil Moisture and an NDVI-Based Calendar from 2010–2017. Remote Sensing. 2022; 14(5):1223. https://doi.org/10.3390/rs14051223
Chicago/Turabian StyleRigden, Angela J., Christopher Golden, and Peter Huybers. 2022. "Retrospective Predictions of Rice and Other Crop Production in Madagascar Using Soil Moisture and an NDVI-Based Calendar from 2010–2017" Remote Sensing 14, no. 5: 1223. https://doi.org/10.3390/rs14051223
APA StyleRigden, A. J., Golden, C., & Huybers, P. (2022). Retrospective Predictions of Rice and Other Crop Production in Madagascar Using Soil Moisture and an NDVI-Based Calendar from 2010–2017. Remote Sensing, 14(5), 1223. https://doi.org/10.3390/rs14051223