A Comparative Study of the Landfall Precipitation by Tropical Cyclones ARB 01 (2002) and Luban (2018) near the Arabian Peninsula
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
3. Results
3.1. Precipitation Distribution
3.2. Brightness Temperature
3.3. Wind Speed
3.4. Water Vapor Flux
4. Discussion
4.1. Vertical Wind Shear and Atmospheric Vertical Motion
4.2. Divergence Configuration
4.3. The Coordination of WVF and Vertical Velocity in Vertical Direction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, S.; Li, S.; Hou, Y.; Hu, P.; Liu, Z.; Feng, J. Increasing threat of landfalling typhoons in the western North Pacific between 1974 and 2013. Int. J. Appl. Earth Observ. Geoinf. 2018, 68, 279–286. [Google Scholar] [CrossRef]
- Srisangeerthanan, S.; Lewangamage, C.S.; Wickramasuriya, S.S. Tropical Cyclone Damages in Sri Lanka. Wind Eng. JAWE 2015, 40, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wu, L.; Liu, Q. Tropical Cyclone Damages in China 1983–2006. Bull. Am. Meteorol. Soc. 2009, 90, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Wang, Y. Rainfall Distribution in Landfalling Tropical Cyclones; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Rogers, R.; Marks, F.; Marchok, T. Tropical Cyclone Rainfall; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Chen, B.-F.; Davis, C.A.; Kuo, Y.-H. Examination of the Combined Effect of Deep-Layer Vertical Shear Direction and Lower-Tropospheric Mean Flow on Tropical Cyclone Intensity and Size Based on the ERA5 Reanalysis. Mon. Weather Rev. 2021, 149, 4057–4076. [Google Scholar] [CrossRef]
- Matayas, C. Relating tropical cyclone rainfall patterns to storm size. In Proceedings of the Delivered at the Association of American Geographers South East Division Annual Meeting, West Palm Beach, FL, USA, 21 November 2005. [Google Scholar]
- Rodgers, E.B.; Baik, J.-J.; Pierce, H.F. The Environmental Influence on Tropical Cyclone Precipitation. J. Appl. Meteorol. 1994, 33, 573–593. [Google Scholar] [CrossRef]
- Shi, D.; Chen, G. The Implication of Outflow Structure for the Rapid Intensification of Tropical Cyclones under Vertical Wind Shear. Mon. Weather Rev. 2021, 149, 4107–4127. [Google Scholar] [CrossRef]
- Titley, H.A.; Cloke, H.L.; Harrigan, S.; Pappenberger, F.; Prudhomme, C.; Robbins, J.C.; Stephens, E.M.; Zsoter, E. Key factors influencing the severity of fluvial flood hazard from tropical cyclones. J. Hydrometeorol. 2021, 22, 180–181. [Google Scholar] [CrossRef]
- Chen, S.S.; Knaff, J.A.; Marks, F. Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM. Mon. Weather Rev. 2006, 134, 3190–3208. [Google Scholar] [CrossRef]
- Wingo, M.T.; Cecil, D.J. Effects of Vertical Wind Shear on Tropical Cyclone Precipitation. Mon. Weather Rev. 2010, 138, 645–662. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, K.; Jou, B.J.-D.; Lee, W.-C. Radar Observation of Precipitation Asymmetries in Tropical Cyclones Making Landfall on East China Coast. Trop. Cyclone Res. Rev. 2013, 2, 81–95. [Google Scholar] [CrossRef]
- Evan, A.T.; Camargo, S. A Climatology of Arabian Sea Cyclonic Storms. J. Clim. 2011, 24, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Terry, J.P.; Gienko, G. Quantitative observations on tropical cyclone tracks in the Arabian Sea. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2019, 135, 1413–1421. [Google Scholar] [CrossRef]
- Fritz, H.M.; Blount, C.D.; Albusaidi, F.B.; Al-Harthy, A.H.M. Cyclone Gonu storm surge in Oman. Estuar. Coast. Shelf Sci. 2010, 86, 102–106. [Google Scholar] [CrossRef]
- Haggag, M.; Badry, H. Hydrometeorological Modeling Study of Tropical Cyclone Phet in the Arabian Sea in 2010. Atmosph. Clim. Sci. 2012, 02, 174–190. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S. Evolution of thErmodynamic structurEs during rapid growth and dEcay of ExtrEmEly sEvErE cyclonic storm Chapala. Trop. Cyclone Res. Rev. 2018, 6, 67–81. [Google Scholar] [CrossRef]
- Murakami, H.; Vecchi, G.A.; Underwood, S. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nat. Clim. Chang. 2017, 7, 885–889. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-J.; Jin, J.; El Akkraoui, A.; McCarty, W.; Todling, R.; Gu, W.; Gelaro, R. The Framework for Assimilating All-Sky GPM Microwave Imager Brightness Temperature Data in the NASA GEOS Data Assimilation System. Mon. Weather Rev. 2020, 148, 2433–2455. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.T.; Hu, L.; Alenin, A.S.; Ritchie, E.A.; Tyo, J.S. A Satellite-Based Remote-Sensing Framework to Quantify the Upwelling Radiation Due to Tropical Cyclones. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5488–5500. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Xu, H. Observed Rainfall Asymmetry in Tropical Cyclones Making Landfall over China. J. Appl. Meteorol. Clim. 2014, 54, 117–136. [Google Scholar] [CrossRef]
- Finocchio, P.M.; Majumdar, S.J.; Nolan, D.S.; Iskandarani, M. Idealized Tropical Cyclone Responses to the Height and Depth of Environmental Vertical Wind Shear. Mon. Weather Rev. 2016, 144, 2155–2175. [Google Scholar] [CrossRef]
- Rios-Berrios, R.; Torn, R. Climatological Analysis of Tropical Cyclone Intensity Changes under Moderate Vertical Wind Shear. Mon. Weather Rev. 2017, 145, 1717–1738. [Google Scholar] [CrossRef]
- Amador, J.; Alfaro, E.; Rivera, E.; Calderón, B. Climatic Features and Their Relationship with Tropical Cyclones Over the Intra-Americas Seas. In Hurricanes and Climate Change; Springer: Dordrecht, The Netherlands, 2010; Volume 2, pp. 149–173. [Google Scholar]
- Deng, Y.; Gao, T.; Gao, H.; Yao, X.; Xie, L. Regional precipitation variability in East Asia related to climate and environmental factors during 1979–2012. Sci. Rep. 2014, 4, 5693. [Google Scholar] [CrossRef] [Green Version]
- Guzman, O.; Jiang, H. Heavier Inner-core Rainfall of Major Hurricanes in the North Atlantic Basin than Other Global Basins. J. Clim. 2021, 34, 5707–5721. [Google Scholar] [CrossRef]
- Stevenson, S.N.; Corbosiero, K.L.; Abarca, S.F. Lightning in Eastern North Pacific Tropical Cyclones: A Comparison to the North Atlantic. Mon. Weather Rev. 2015, 144, 225–239. [Google Scholar] [CrossRef]
- Wu, Q.; Ruan, Z.; Chen, D.; Lian, T. Diurnal variations of tropical cyclone precipitation in the inner and outer rainbands. J. Geophys. Res. Atmos. 2015, 120, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Cheung, K.; Chan, J.; Tokuno, M. Rainfall distribution of five landfalling tropical cyclones in the northwestern Australian region. Aust. Meteorol. Oceanogr. J. 2013, 63, 325–338. [Google Scholar] [CrossRef]
- Cintineo, R.M.; Otkin, J.A.; Jones, T.A.; Koch, S.; Stensrud, D.J. Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE. Mon. Weather Rev. 2016, 144, 3159–3180. [Google Scholar] [CrossRef]
- Lee, C.-S.; Cheung, K.; Hui, J.S.N.; Elsberry, R.L. Mesoscale Features Associated with Tropical Cyclone Formations in the Western North Pacific. Mon. Weather Rev. 2008, 136, 2006–2022. [Google Scholar] [CrossRef]
- Hu, Y.; Zou, X. Tropical Cyclone Center Positioning Using Single Channel Microwave Satellite Observations of Brightness Temperature. Remote Sens. 2021, 13, 2466. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Xu, H.; Davidson, N.; Chen, Y.; Chen, Y.; Yu, H. On the Relationship between Intensity and Rainfall Distribution in Tropical Cyclones Making Landfall over China. J. Appl. Meteorol. Clim. 2017, 56, 2883–2901. [Google Scholar] [CrossRef]
- Frank, W.; Ritchie, L. Effects of Vertical Wind Shear on the Intensity and Structure of Numerically Simulated Hurricanes. Mon. Weather Rev. 2001, 129, 2249–2269. [Google Scholar] [CrossRef]
- Corbosiero, K.; Molinari, J. The Relationship between Storm Motion, Vertical Wind Shear, and Convective Asymmetries in Tropical Cyclones. J. Atmosph. Sci. 2003, 60, 366–376. [Google Scholar] [CrossRef]
- Kim, D.; Ho, C.-H.; Park, D.-S.R.; Kim, J. Influence of vertical wind shear on wind- and rainfall areas of tropical cyclones making landfall over South Korea. PLoS ONE 2019, 14, e0209885. [Google Scholar] [CrossRef]
- Lemburg, A.; Bader, J.; Claussen, M. Sahel Rainfall–Tropical Easterly Jet Relationship on Synoptic to Intraseasonal Time Scales. Mon. Weather Rev. 2019, 147, 1733–1752. [Google Scholar] [CrossRef]
TC | Status | Date (DD/MM/YYYY) | Latitude (°N) | Longitude (°E) | MWS (m·s−1) | Central Pressure (hPa) |
---|---|---|---|---|---|---|
2002_ARB01 | Generated | 5 May 2002 | 8.6 | 67.7 | 25 | 1002 |
Landfall | 10 May 2002 | 16.5 | 53.3 | 32 | 997 | |
Dissipated | 10 May 2002 | 17.4 | 53.1 | 30 | 1000 | |
LUBAN | Generated | 5 October 2018 | 11.2 | 68.9 | 20 | 1004 |
Landfall | 14 October 2018 | 15.8 | 52.2 | 35 | 996 | |
Dissipated | 14 October 2018 | 16.5 | 51 | 25 | 1004 |
Tropical Cyclone | Date and Time | Average Precipitation (mm/h) | Maximum Precipitation (mm/h) |
---|---|---|---|
ARB 01 | 10 May 2002 12:00 | 0.0077 | 34.07 |
10 May 2002 18:00 | 0.0042 | 17.05 | |
Luban | 14 October 2018 06:00 | 0.0099 | 60.80 |
14 October 2018 12:00 | 0.0015 | 35.49 |
Tropical Cyclone | Date and Time | Average Wind Speed in a Radius Range of 400 km around the TC Center (m/s) | Average Wind Speed in a Radius Range of 400–1000 km around the TC Center (m/s) |
---|---|---|---|
ARB 01 | 10 May 2002 12:00 | 12.7 | 10.2 |
10 May 2002 18:00 | 11.6 | 9.7 | |
Luban | 14 October 2018 06:00 | 14.4 | 8.3 |
14 October 2018 12:00 | 13.0 | 6.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Lü, H.; Shi, D.; Xia, C.; Dong, C. A Comparative Study of the Landfall Precipitation by Tropical Cyclones ARB 01 (2002) and Luban (2018) near the Arabian Peninsula. Remote Sens. 2022, 14, 1194. https://doi.org/10.3390/rs14051194
Cui Y, Lü H, Shi D, Xia C, Dong C. A Comparative Study of the Landfall Precipitation by Tropical Cyclones ARB 01 (2002) and Luban (2018) near the Arabian Peninsula. Remote Sensing. 2022; 14(5):1194. https://doi.org/10.3390/rs14051194
Chicago/Turabian StyleCui, Yusheng, Haibin Lü, Dawei Shi, Chuqi Xia, and Changming Dong. 2022. "A Comparative Study of the Landfall Precipitation by Tropical Cyclones ARB 01 (2002) and Luban (2018) near the Arabian Peninsula" Remote Sensing 14, no. 5: 1194. https://doi.org/10.3390/rs14051194
APA StyleCui, Y., Lü, H., Shi, D., Xia, C., & Dong, C. (2022). A Comparative Study of the Landfall Precipitation by Tropical Cyclones ARB 01 (2002) and Luban (2018) near the Arabian Peninsula. Remote Sensing, 14(5), 1194. https://doi.org/10.3390/rs14051194